Effects of a hemostatic preparation based on silver polyacrylate on the morphological features and energy status of bacteria

Marina V. Kuznetsova , Larisa Yu. Nesterova , Alexey S. Vasilchenko , Marina P. Kuznetsova , Vladimir A. Samartsev

Bulletin of the Russian Military Medical Academy ›› 2024, Vol. 26 ›› Issue (4) : 523 -532.

PDF
Bulletin of the Russian Military Medical Academy ›› 2024, Vol. 26 ›› Issue (4) : 523 -532. DOI: 10.17816/brmma633018
Original Study Article
research-article

Effects of a hemostatic preparation based on silver polyacrylate on the morphological features and energy status of bacteria

Author information +
History +
PDF

Abstract

This study evaluates the effect of the hemostatic surgical preparation, containing a 1% aqueous solution of partial silver salt of polyacrylic acid with silver nanoparticles, on the morphological features, viability, and energy status of Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. Atomic force microscopy and bioluminescent determination of bacterial adenosine triphosphate were used to assess the morphological and functional reactions of bacterial cells. Exposure to the preparation was found to cause diverse reactions in different bacteria. Gram-positive cocci increased their volume, decreasing their relative surface area, thereby reducing their contact with the preparation. These changes can be considered one of the adaptive mechanisms of staphylococci to the toxic compound. Gram-negative bacteria (P. aeruginosa and E. coli) also changed their sizes in response to hemostatic preparation, but both exhibited an increase in relative surface area and cell surface roughness, which may indicate depletion of their adaptive potential.

Bacterial survival and intracellular adenosine triphosphate levels in cells exposed to hemostatic preparation showed that most staphylococci became non-viable, while the effect of the preparation was concentration-dependent. Exposure of Pseudomonas to the undiluted preparation resulted in their death, while a similar effect was observed for E. coli at a 10% concentration. The assessment of the viability and energy status of the studied strains confirmed the hypothesis of greater tolerance of staphylococci to hemostatic preparation, as they remained viable even after exposure to the undiluted preparation. The addition of the hemostatic preparation to a Pseudomonas suspension led to their death, whereas a similar effect was observed for E. coli even with the diluted preparation. Overall, the morphological changes in the bacterial cell wall and a decrease in their adenosine triphosphate content after exposure to the preparation demonstrate its antibacterial effect against certain types of clinically significant microorganisms.

Keywords

hemostatic preparation / antibacterial properties / atomic force microscopy / bioluminescent determination of bacterial adenosine triphosphate / nanocomposite organic/inorganic materials

Cite this article

Download citation ▾
Marina V. Kuznetsova, Larisa Yu. Nesterova, Alexey S. Vasilchenko, Marina P. Kuznetsova, Vladimir A. Samartsev. Effects of a hemostatic preparation based on silver polyacrylate on the morphological features and energy status of bacteria. Bulletin of the Russian Military Medical Academy, 2024, 26(4): 523-532 DOI:10.17816/brmma633018

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Annabi N, Tamayol A, Shina SR, et al. Surgical materials: Current challenges and nano-enabled solutions. Nano Today. 2014;9(5):574–589. doi: 10.1016/j.nantod.2014.09.006

[2]

Annabi N., Tamayol A., Shina S.R., et al. Surgical materials: Current challenges and nano-enabled solutions // Nano Today. 2014. Vol. 9, N 5. P. 574–589. doi: 10.1016/j.nantod.2014.09.006

[3]

Annabi N, Tamayol A, Shina SR, et al. Surgical materials: Current challenges and nano-enabled solutions. Nano Today. 2014;9(5):574–589. doi: 10.1016/j.nantod.2014.09.006

[4]

Trufakina LM. Properties of polymer composites on the basis polyvinyl alcohol. Bulletin of the Tomsk Polytechnic University. Chemistry and Сhemical Еechnologies. 2014;325(3):92–97. (In Russ.) EDN: SZGHFN

[5]

Труфакина Л.М. Свойства полимерных композитов на основе поливинилового спирта // Известия Томского политехнического университета. Химия и химические технологии. 2014. Т. 325, № 3. С. 92–97. EDN: SZGHFN

[6]

Trufakina LM. Properties of polymer composites on the basis polyvinyl alcohol. Bulletin of the Tomsk Polytechnic University. Chemistry and Сhemical Еechnologies. 2014;325(3):92–97. (In Russ.) EDN: SZGHFN

[7]

Fahmy A, Eisa WH, Yosef M, Hassan A. Ultra-thin films of polyacrylic acid/silver nanocomposite coatings for antimicrobial applications. Journal of Spectroscopy. 2016;(5):1–11. doi: 10.1155/2016/7489536

[8]

Fahmy A., Eisa W.H., Yosef M., Hassan A. Ultra-thin films of polyacrylic acid/silver nanocomposite coatings for antimicrobial applications // Journal of Spectroscopy. 2016. N 5. P. 1–11. doi: 10.1155/2016/7489536

[9]

Fahmy A, Eisa WH, Yosef M, Hassan A. Ultra-thin films of polyacrylic acid/silver nanocomposite coatings for antimicrobial applications. Journal of Spectroscopy. 2016;(5):1–11. doi: 10.1155/2016/7489536

[10]

Rejepov DT, Vodyashkin AA, Sergorodceva AV, Stanishevskiy YM. Biomedical applications of silver nanoparticles (review). Drug development & registration. 2021;10(3):176–187. EDN: AFLZNU doi: 10.33380/2305-2066-2021-10-3-176-187

[11]

Реджепов Д.Т., Водяшкин А.А., Сергородцева А.В., Станишевский Я.М. Биомедицинское применение наночастиц серебра // Разработка и регистрация лекарственных средств. 2021. Т. 10, № 3. С. 176–187. EDN: AFLZNU doi: 10.33380/2305-2066-2021-10-3-176-187

[12]

Rejepov DT, Vodyashkin AA, Sergorodceva AV, Stanishevskiy YM. Biomedical applications of silver nanoparticles (review). Drug development & registration. 2021;10(3):176–187. EDN: AFLZNU doi: 10.33380/2305-2066-2021-10-3-176-187

[13]

Plotkin AV, Pokrovskoj EZh, Voronova GV, Menglet KA. The evaluation of the effectivity of hemostatic activity of haemoblock for local topical use haemoblock in different surgical situations. Multicenter clinical trials. Bulletin of Modern Clinical Medicine. 2015;8(1):56–61. EDN: THWGPP

[14]

Плоткин А.В., Покровский Е.Ж., Воронова Г.В., Менглет К.А. Оценка эффективности гемостатического действия препарата «Гемоблок» при полостных и лапароскопических вмешательствах: мультицентровые клинические исследования // Вестник современной клинической медицины. 2015. Т. 8, № 1. С. 56–61. EDN: THWGPP

[15]

Plotkin AV, Pokrovskoj EZh, Voronova GV, Menglet KA. The evaluation of the effectivity of hemostatic activity of haemoblock for local topical use haemoblock in different surgical situations. Multicenter clinical trials. Bulletin of Modern Clinical Medicine. 2015;8(1):56–61. EDN: THWGPP

[16]

Erokhin PS, Utkin DV, Kuznetsov OS, et al. Application of atomic force microscopy for detection of influence of antibiotic upon the microbial cell (on the model of e. Coli and I generation cephalosporins). Izvestiya of Saratov University. New Series. Series: Physics. 2013;13(2):28–33. (In Russ.) EDN: TFMJYZ

[17]

Ерохин П.С., Уткин Д.В., Кузнецов О.С., и др. Применение методов атомно-силовой микроскопии для определения воздействия антибактериальных препаратов на микробную клетку (на примере E. coli и цефалоспоринов I поколения) // Известия Саратовского университета. Новая серия. Серия Физика. 2013. Т. 13, № 2. С. 28–33. EDN: TFMJYZ

[18]

Erokhin PS, Utkin DV, Kuznetsov OS, et al. Application of atomic force microscopy for detection of influence of antibiotic upon the microbial cell (on the model of e. Coli and I generation cephalosporins). Izvestiya of Saratov University. New Series. Series: Physics. 2013;13(2):28–33. (In Russ.) EDN: TFMJYZ

[19]

Vasilchenko AS, Dymova VV, Kartashova OL, Sycheva MV. Morphofunctional reaction of bacteria treated with antimicrobial peptides derived from farm animal platelets. Probiotics and Antimicrobal Proteins. 2015;7(1):60–65. doi: 10.1007/s12602-014-9172-4

[20]

Vasilchenko A.S., Dymova V.V., Kartashova O.L., Sycheva M.V. Morphofunctional reaction of bacteria treated with antimicrobial peptides derived from farm animal platelets // Probiotics and Antimicrobal Proteins. 2015. Vol. 7, N 1. P. 60–65. doi: 10.1007/s12602-014-9172-4

[21]

Vasilchenko AS, Dymova VV, Kartashova OL, Sycheva MV. Morphofunctional reaction of bacteria treated with antimicrobial peptides derived from farm animal platelets. Probiotics and Antimicrobal Proteins. 2015;7(1):60–65. doi: 10.1007/s12602-014-9172-4

[22]

Efremenko EN, Stepanov NA, Senko OV, et al. Biocatalysts based on immobilized cells of microorganisms in the production of bioethanol and biobutanol. Catalysis in Industry. 2011;3(1):41–46. EDN: OHVTWV doi: 10.1134/S207005041101003X

[23]

Efremenko E.N., Stepanov N.A., Senko O.V., et al. Biocatalysts based on immobilized cells of microorganisms in the production of bioethanol and biobutanol // Catalysis in Industry. 2011. Vol. 3, N 1. P. 41–46. EDN: OHVTWV doi: 10.1134/S207005041101003X

[24]

Efremenko EN, Stepanov NA, Senko OV, et al. Biocatalysts based on immobilized cells of microorganisms in the production of bioethanol and biobutanol. Catalysis in Industry. 2011;3(1):41–46. EDN: OHVTWV doi: 10.1134/S207005041101003X

[25]

Sánchez MC, Llama-Palacios A, Marín MJ. Validation of ATP bioluminescence as a tool to assess antimicrobial effects of mouthrinses in an in vitro subgingival-biofilm model. Med Oral, Patol Oral, Cir Bucal. 2013;18(1):86–92. doi: 10.4317/medoral.18376

[26]

Sánchez M.C., Llama-Palacios A., Marín M.J. Validation of ATP bioluminescence as a tool to assess antimicrobial effects of mouthrinses in an in vitro subgingival-biofilm model // Med Oral, Patol Oral, Cir Bucal. 2013. Vol. 18, N 1. P. 86–92. doi: 10.4317/medoral.18376

[27]

Sánchez MC, Llama-Palacios A, Marín MJ. Validation of ATP bioluminescence as a tool to assess antimicrobial effects of mouthrinses in an in vitro subgingival-biofilm model. Med Oral, Patol Oral, Cir Bucal. 2013;18(1):86–92. doi: 10.4317/medoral.18376

[28]

Furr JR, Russell AD, Turner TD, Andrews A. Antibacterial activity of actisorb plus, actisorb and silver nitrate. J Hosp Infect. 1994;27(3):201–208. doi: 10.1016/0195-6701(94)90128-7

[29]

Furr J.R., Russell A.D., Turner T.D., Andrews A. Antibacterial activity of actisorb plus, actisorb and silver nitrate // J Hosp Infect. 1994. Vol. 27, N 3. P. 201-208. doi: 10.1016/0195-6701(94)90128-7

[30]

Furr JR, Russell AD, Turner TD, Andrews A. Antibacterial activity of actisorb plus, actisorb and silver nitrate. J Hosp Infect. 1994;27(3):201–208. doi: 10.1016/0195-6701(94)90128-7

[31]

Brown T, Smith D. The effects of silver nitrate on the growth and ultrastructure of the yeast Cryptococcus albidus. Microbios Letters. 1976;(3):155–162.

[32]

Brown T., Smith D. The effects of silver nitrate on the growth and ultrastructure of the yeast Cryptococcus albidus // Microbios Letters. 1976. N 3. P. 155–162.

[33]

Brown T, Smith D. The effects of silver nitrate on the growth and ultrastructure of the yeast Cryptococcus albidus. Microbios Letters. 1976;(3):155–162.

[34]

Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004;275(1):177–182. doi: 10.1016/j.jcis.2004.02.012

[35]

Sondi I., Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria // J Colloid Interface Sci. 2004. N 275, N 1. P. 177–182. doi: 10.1016/j.jcis.2004.02.012

[36]

Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004;275(1):177–182. doi: 10.1016/j.jcis.2004.02.012

[37]

Yamanaka M, Hara K, Kudo J. Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol. 2005;71(11):7589–7593. doi: 10.1128/AEM.71.11.7589-7593.2005

[38]

Yamanaka M., Hara K., Kudo J. Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis // Appl Environ Microbiol. 2005. Vol. 71, N 11. P. 7589–7593. doi: 10.1128/AEM.71.11.7589-7593.2005

[39]

Yamanaka M, Hara K, Kudo J. Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol. 2005;71(11):7589–7593. doi: 10.1128/AEM.71.11.7589-7593.2005

[40]

Abbas WS, Atwan ZW, Abdulhussein ZR, Mahdi MA. Preparation of silver nanoparticles as antibacterial agents through DNA damage. Materials Technology. 2019;34(14):867–879. doi: 10.1080/10667857.2019.1639005

[41]

Abbas W.S., Atwan Z.W., Abdulhussein Z.R., Mahdi M.A. Preparation of silver nanoparticles as antibacterial agents through DNA damage // Materials Technology. 2019. Vol. 34, N 14. P. 867–879. doi: 10.1080/10667857.2019.1639005

[42]

Abbas WS, Atwan ZW, Abdulhussein ZR, Mahdi MA. Preparation of silver nanoparticles as antibacterial agents through DNA damage. Materials Technology. 2019;34(14):867–879. doi: 10.1080/10667857.2019.1639005

[43]

Qamer S, Romli MH, Che-Hamzah F, et al. Systematic review on biosynthesis of silver nanoparticles and antibacterial activities: Application and theoretical perspectives. Molecules. 2021;26(16):5057. doi: 10.3390/molecules26165057

[44]

Qamer S., Romli M.H., Che-Hamzah F., et al. Systematic review on biosynthesis of silver nanoparticles and antibacterial activities: Application and theoretical perspectives // Molecules. 2021. Vol. 26, N 16. P. 5057. doi: 10.3390/molecules26165057

[45]

Qamer S, Romli MH, Che-Hamzah F, et al. Systematic review on biosynthesis of silver nanoparticles and antibacterial activities: Application and theoretical perspectives. Molecules. 2021;26(16):5057. doi: 10.3390/molecules26165057

[46]

Morones JR, Elechiguerra JL, Camacho A, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16(10):23–46. doi: 10.1088/0957-4484/16/10/059

[47]

Morones J.R., Elechiguerra J.L., Camacho A., et al. The bactericidal effect of silver nanoparticles // Nanotechnology. 2005. Vol. 16, N 10. P. 23–46. doi: 10.1088/0957-4484/16/10/059

[48]

Morones JR, Elechiguerra JL, Camacho A, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16(10):23–46. doi: 10.1088/0957-4484/16/10/059

[49]

Wang G, Jin W, Qasim AM, et al. Antibacterial effects of titanium embedded with silver nanoparticles based on electron-transfer-induced reactive oxygen species. Biomaterials. 2017;124:25–34. doi: 10.1016/j.biomaterials.2017.01.028

[50]

Wang G., Jin W., Qasim A.M., et al. Antibacterial effects of titanium embedded with silver nanoparticles based on electron-transfer-induced reactive oxygen species // Biomaterials. 2017. N 124. P. 25–34. doi: 10.1016/j.biomaterials.2017.01.028

[51]

Wang G, Jin W, Qasim AM, et al. Antibacterial effects of titanium embedded with silver nanoparticles based on electron-transfer-induced reactive oxygen species. Biomaterials. 2017;124:25–34. doi: 10.1016/j.biomaterials.2017.01.028

[52]

Hetrick EM, Schoenfisch MH. Reducing implant-related infections: active release strategies. Chem Soc Rev. 2006;35(9):780–789. doi: 10.1039/b515219b

[53]

Hetrick E.M., Schoenfisch M.H. Reducing implant-related infections: active release strategies // Chem Soc Rev. 2006. Vol. 35, N 9. P. 780–789. doi: 10.1039/b515219b

[54]

Hetrick EM, Schoenfisch MH. Reducing implant-related infections: active release strategies. Chem Soc Rev. 2006;35(9):780–789. doi: 10.1039/b515219b

[55]

The effect of the surgical hemostatic product “Hemoblock” tm on in vitro bacterial colonization. Clinical Microbiology and Antimicrobial Chemotherapy. 2020;22(1):67–70. EDN: LIZUJJ doi: 10.36488/cmac.2020.1.67-70

[56]

Кузнецова М.В., Паршаков А.А., Кузнецова М.П., и др. Влияние хирургического гемостатического препарата «Гемоблок»TM на бактериальную колонизацию in vitro // Клиническая микробиология и антимикробная химиотерапия. 2020. Т. 22, № 1. С. 67–70. EDN: LIZUJJ doi: 10.36488/cmac.2020.1.67-70

[57]

The effect of the surgical hemostatic product “Hemoblock” tm on in vitro bacterial colonization. Clinical Microbiology and Antimicrobial Chemotherapy. 2020;22(1):67–70. EDN: LIZUJJ doi: 10.36488/cmac.2020.1.67-70

[58]

Ojkic N,Serbanescu D, Banerjee S. Surface-to-volume scaling and aspect ratio preservation in rod-shaped bacteria. Elife. 2019;8:e47033. doi: 10.7554/eLife.47033

[59]

Ojkic N., Serbanescu D., Banerjee S. Surface-to-volume scaling and aspect ratio preservation in rod-shaped bacteria // Elife. 2019. Vol. 8. P. e47033. doi: 10.7554/eLife.47033

[60]

Ojkic N,Serbanescu D, Banerjee S. Surface-to-volume scaling and aspect ratio preservation in rod-shaped bacteria. Elife. 2019;8:e47033. doi: 10.7554/eLife.47033

[61]

Neumann G, Veeranagouda Y, Karegoudar TB, et al. Cells of Pseudomonas putida and Enterobacter sp. adapt to toxic organic compounds by increasing their size. Extremophiles. 2005;9(2): 163–168. doi: 10.1007/s00792-005-0431-x

[62]

Neumann G., Veeranagouda Y., Karegoudar T.B., et al. Cells of Pseudomonas putida and Enterobacter sp. adapt to toxic organic compounds by increasing their size // Extremophiles. 2005. Vol. 9, N 2. P. 163–168. doi: 10.1007/s00792-005-0431-x

[63]

Neumann G, Veeranagouda Y, Karegoudar TB, et al. Cells of Pseudomonas putida and Enterobacter sp. adapt to toxic organic compounds by increasing their size. Extremophiles. 2005;9(2): 163–168. doi: 10.1007/s00792-005-0431-x

[64]

Gavrilova IA, Zhavnerko GK, Titov LP. Morphological changes in pseudomonas aeruginosa acted upon by biocide based on alkylmethylbenzylammonium chloride and polyhexamethylenguanidine. Reports of the National Academy of Sciences of Belarus. 2013;5:81–87. EDN: WHHLYN

[65]

Гаврилова И.А., Жавнерко Г.К., Титов Л.П. Атомно-силовая микроскопия морфоструктурных изменений Pseudomonas aeruginosa, подвергшихся воздействию биоцида на основе алкилдиметилбензиламмония хлорида и полигексаметиленгуанидина // Доклады Национальной академии наук Беларуси. 2013. Т. 57, № 5. С. 81–87. EDN: WHHLYN

[66]

Gavrilova IA, Zhavnerko GK, Titov LP. Morphological changes in pseudomonas aeruginosa acted upon by biocide based on alkylmethylbenzylammonium chloride and polyhexamethylenguanidine. Reports of the National Academy of Sciences of Belarus. 2013;5:81–87. EDN: WHHLYN

[67]

Turner R, Vollmer W, Foster S. Different walls for rods and balls: the diversity of peptidoglycan. Mol Microbiol. 2014;91(5):862–874. doi: 10.1111/mmi.12513

[68]

Turner R., Vollmer W., Foster S. Different walls for rods and balls: the diversity of peptidoglycan // Mol Microbiol. 2014. Vol. 91, N 5. P. 862–874. doi: 10.1111/mmi.12513

[69]

Turner R, Vollmer W, Foster S. Different walls for rods and balls: the diversity of peptidoglycan. Mol Microbiol. 2014;91(5):862–874. doi: 10.1111/mmi.12513

[70]

Matias VR, Al-Amoudi A, Dubochet J, Beveridge TJ. Cryo-transmission electron microscopy of frozen-hydrated sections of Escherichia coli and Pseudomonas aeruginosa. J Bacteriol. 2003;185(20):6112–6118. doi: 10.1128/jb.185.20.6112-6118.2003

[71]

Matias V.R., Al-Amoudi A., Dubochet J., Beveridge T.J. Cryo-transmission electron microscopy of frozen-hydrated sections of Escherichia coli and Pseudomonas aeruginosa // J Bacteriol. 2003. Vol. 185, N 20. P. 6112–6118. doi: 10.1128/jb.185.20.6112-6118.2003

[72]

Matias VR, Al-Amoudi A, Dubochet J, Beveridge TJ. Cryo-transmission electron microscopy of frozen-hydrated sections of Escherichia coli and Pseudomonas aeruginosa. J Bacteriol. 2003;185(20):6112–6118. doi: 10.1128/jb.185.20.6112-6118.2003

[73]

Torrens G, Escobar-Salom M, Pol-Pol E, et al. Comparative analysis of peptidoglycans from Pseudomonas aeruginosa isolates recovered from chronic and acute infections. Front Microbiol. 2019;10:1868. doi: 10.3389/fmicb.2019.0186

[74]

Torrens G., Escobar-Salom M., Pol-Pol E., et al. Comparative analysis of peptidoglycans from Pseudomonas aeruginosa isolates recovered from chronic and acute infections // Front Microbiol. 2019. N 10. P. 1868. doi: 10.3389/fmicb.2019.0186

[75]

Torrens G, Escobar-Salom M, Pol-Pol E, et al. Comparative analysis of peptidoglycans from Pseudomonas aeruginosa isolates recovered from chronic and acute infections. Front Microbiol. 2019;10:1868. doi: 10.3389/fmicb.2019.0186

[76]

Jung WK, Koo HC, Kim KW, et al. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol. 2008;74(7):2171–2178. doi: 10.1128/AEM.02001-07

[77]

Jung W.K., Koo H.C., Kim K.W., et al. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli // Appl Environ Microbiol. 2008. Vol. 74, N 7. P. 2171–2178. doi: 10.1128/AEM.02001-07

[78]

Jung WK, Koo HC, Kim KW, et al. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol. 2008;74(7):2171–2178. doi: 10.1128/AEM.02001-07

[79]

Feng QL, Wu J, Chen GQ, et al. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res. 2000;52(4):662–668. doi: 10.1002/1097-4636(20001215)52:4<662::aid-jbm10>3.0.co;2-3

[80]

Feng Q.L., Wu J., Chen G.Q., et al. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus // J Biomed Mater Res. 2000. Vol. 52, N 4. P. 662–668. doi: 10.1002/1097-4636(20001215)52:4<662::aid-jbm10>3.0.co;2-3

[81]

Feng QL, Wu J, Chen GQ, et al. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res. 2000;52(4):662–668. doi: 10.1002/1097-4636(20001215)52:4<662::aid-jbm10>3.0.co;2-3

[82]

Yang Y, Zhang Z, Wan M, et al. A facile method for the fabrication of silver nanoparticles surface decorated polyvinyl alcohol electrospun nanofibers and controllable antibacterial activities. Polymers (Basel). 2020;12(11):2486. doi: 10.3390/polym12112486

[83]

Yang Y., Zhang Z., Wan M., et al. A facile method for the fabrication of silver nanoparticles surface decorated polyvinyl alcohol electrospun nanofibers and controllable antibacterial activities // Polymers (Basel). 2020. Vol. 12, N 11. P. 2486. doi: 10.3390/polym12112486

[84]

Yang Y, Zhang Z, Wan M, et al. A facile method for the fabrication of silver nanoparticles surface decorated polyvinyl alcohol electrospun nanofibers and controllable antibacterial activities. Polymers (Basel). 2020;12(11):2486. doi: 10.3390/polym12112486

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/