Stem cells and their physiological effects
A. V. Moskalev , B. Yu. Gumilevskiy , A. V. Apchel , V. N. Tsygan
Bulletin of the Russian Military Medical Academy ›› 2019, Vol. 21 ›› Issue (4) : 172 -180.
Stem cells and their physiological effects
The characteristic of various populations stem cells is presented. Their physiological features are examined: differentiations, dedifferentiation, transdifferentiation, plasticity, and also the factors promoting their display. The comparative characteristic embryonic and somatic stem cells which are closest to practical application is received broad covarage. It is shown, that embryonic stem cells are differentiated in three various types of tissue: endoderm, giving rise to internal bodies, mesoderm from which develops connecting, muscular and bone tissue, and also the system of blood circulation and ectoderm, a derivative of a skin, sense organs and nervous cells is formed. Because of ability to be differentiated in various types of tissue embryonic stem cells name multipotenteus. Somatic stem cells also are capable to the differentiation however more limited, than embryonic. Somatic cells of one type are capable to give rise to other types of cells. This property makes possible application somatic stem cells for therapy and reparation of the sick and damaged tissues. Use somatic stem cells limits that they give in to differentiation more difficultly and are cultivated in laboratory conditions worse, than embryonic. It is confirmed, that one of the most strongly pronounced attributes of ability of a cell to prolonged proliferative activity is the size cellular telomere, directly connected with activity of enzyme telomerase. The more actively telomerase and is longer telomere, the to longer proliferative activity and to longer self-maintenance the given cell is capable. Advantages, lacks and prospects of various methods of allocation and enrichment hemopoietic stem cells from peripheral blood, a bone brain and umbilical blood of the newborns, being by the most perspective source of reception hemopoietic stem cells are examined and characterized.
stem cells / marrow / hematosis / peripheral blood / cytokines / transcriptional factors / genes / phenotype / cellular differentiation
| [1] |
Владимирская, Е.Б. Биологические основы и перспективы терапии стволовыми клетками / Е.Б. Владимирская, О.А. Майорова, С.А. Румянцев. – М.: Медицина и здоровье, 2007. – 392 с. |
| [2] |
Москалев, А.В. Общая иммунология с основами клинической иммунологии / А.В. Москалев, В.Б. Сбойчаков, А.С. Рудой. – М.: Гэотар-Медиа, 2015. – 351 с. |
| [3] |
Москалев, А.В. Аутоиммунные заболевания. Диагностика и лечение / А.В. Москалев [и др.]. – М.: Гэотар-Медиа, 2017. – 218 с. |
| [4] |
Трактуев, Д.О. Стромальные клетки жировой ткани – пластический тип клеток, обладающих высоким терапевтическим потенциалом / Д.О. Трактуев, Е.В. Парфенова, В.Н. Ткачук // Цитология. – 2006. – Т. 48. – С. 83–94 |
| [5] |
Трактуев, Д.О. Стромальные клетки жировой ткани – мультипотентные клетки с терапевтическим потенциалом для стимуляции ангиогенеза при ишемии тканей / Д.О. Драктуев [и др.] // Кардиология. – 2006. – Т. 6. – С. 53–63 |
| [6] |
6.Ярилин, А.А. Иммунология / А.А. Ярилин. – М.: Гэотар-Медиа, 2010. – 957 с. |
| [7] |
Abbas, A.K. Cellular and Molecular Immunology. – 9-th edition / A.K. Abbas, A.H. Lichtman, S. Pillai. – Philadelphia, Pennsylvania: W. B. Saunders Company, 2018. – 565 p. |
| [8] |
Cai, L. Suppression o f hepatocyte growth factor production impairs the ability of adipose-derived stem cells to promote ischemic tissue revascularization / L. Cai [et al.] // Stem Cells. – 2007. – Vol. 25. – P. 3234–3243 |
| [9] |
Di Rocco, G. Myogenic potential of adipose tissue-derived cells/ G. Di Rocco [et al.] // J. Cell Sci. – 2006. – Vol. 119. – P. 2945–2952. |
| [10] |
Dominici, M. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement / M. Dominici [et al.] // Cytotherapy. – 2006. – Vol. 8. – P. 315–317. |
| [11] |
Jeon, E.S. Sphingosylphosphorylcholine induces proliferation of human adipose tissue derived mesenchymal stem cells via activation of JNK / E.S. Jeon [et al.] // J. Lipid Res. – 2006. – Vol. 47. – P. 653–664. |
| [12] |
Kern, S.E. Comparative analysis o f mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue / S.E. Kern [et al.] // Stem Cells. – 2006. – Vol. 24. – P. 1294–1301. |
| [13] |
Lee, J. Human adipose-derived stem cells display myogenic potential and perturbed function in hypoxic conditions / J. Lee [et al.] // Biochem. Biophys. Res. Commun. – 2006. – Vol.341. – P. 882–888. |
| [14] |
Li, B. Adipose tissue stromal cells transplantation in rats of acute myocardial infarction / B. Li [et al.] // Coron Artery Dis. – 2007. – Vol. 18. – P. 221–227. |
| [15] |
Lipinski, M.J. Impact o f intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction: a collaborative systematic review and meta-analysis of controlled clinical trials / M.J. Lipinski [et al.] // J. Am. Coli. Cardiol. – 2007. – Vol. 50. – P. 1761–1767. |
| [16] |
Miyahara, Y. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction / Y. Miyahara [et al.] // Nat Med. – 2006. – Vol. 12, № 4. – P. 459–465. |
| [17] |
Nakagami, H. Adipose tissue-derived stromal cells as a novel option for regenerative cell therapy / H. Nakagami [et al.] // J. Atheroscler. Thromb. – 2006. – Vol. 13. – P. 77– 81. |
| [18] |
Olson, K. Contemporary clinical immunology and serology / K. Olson, E. De Nardin. – New Jersey: Upper Saddle River, 2013. – 439 p. |
| [19] |
Rose, N.R. The autoimmune diseases. – fith edition / N.R. Rose, I.R. Mackay. – Philadelphia, 2018. – 1265 p. |
| [20] |
Schaffler, A. Concise review: Adipose Tissue derived stromal cells – basic and clinical implications for novel cell-based therapies / A. Schaffler, C. Buchler // Stem Cells. – 2007. – Vol. 25. – P. 818–827. |
| [21] |
Smith, P. Autologous human fat grafting: Effect of harvesting and preparation techniques on adipocyte graft survival / P. Smith [et al.] // Plast. Reconstr. Surg. – 2006. – Vol. 117. – P. 1836–1844. |
| [22] |
Timper, K. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glueagon expressing cells / K. Timper [et al.] // Biochem. Biophys. Res. Commun. – 2006. – Vol. 341. – P. 1135–1140. |
| [23] |
Traktuev, D.O. A population o f multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks / D.O. Traktuev [et al.] // Cire. Res. – 2008. – Vol. 102. – P. 77–85. |
| [24] |
Valina, C. Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodeling after acute myocardial infarction / C. Valina [et al.] // Eur Heart J. – 2007. – Vol. 28, № 21. – P. 2667–2677. |
| [25] |
Wu, Y. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis / Y. Wu [et al.] // Stem Cells. – 2007. – Vol. 25. – P. 2648–2659. |
| [26] |
Yamada, Y. Cardiae progenitor cells in brown adipose tissue repaired damaged myocardium / Y. Yamada [et al.] // Biochem. Biophys. Res. Commun. – 2006. – Vol. 342. – P. 662–670. |
| [27] |
Zabriskie, J.B. Essential clinical immunology / J.B. Zabriskie – N.Y., 2009. – 362 p. |
Eco-Vector
/
| 〈 |
|
〉 |