Application of a mathematical model of a human lower limb for modeling shock-wave effects of contact explosion
Alexey V. Denisov , Sergey V. Matveikin , Sergey V. Zaikin , Alexey V. Anisin , Svetlana N. Vasilyeva , Evgeny A. Selivanov
Bulletin of the Russian Military Medical Academy ›› 2024, Vol. 26 ›› Issue (3) : 337 -348.
Application of a mathematical model of a human lower limb for modeling shock-wave effects of contact explosion
A simulation finite-element model of the destruction process of biomaterials of the human musculoskeletal system under shock-wave effects of a contact explosion is substantiated to predict the nature and extent of damage to the lower limbs, including designing special explosion-proof shoes. The physical and mechanical properties of the biological tissues of human lower limbs and their behavior under local shock-wave action were analyzed. The mechanical behavior of each biological material as part of a mathematical model of a human lower limb was selected. The original finite-element model of the human lower limb symmetrically interacted with the main components of its anatomical structures. The developed computational model was verified using data obtained from the results of experiments on mechanical and shock-wave effects. A specialized program for processing the received data was created, which implements an algorithm for processing received graphic images of changes in pressure indicators and accelerations over time to obtain tolerance curves. Several numerical calculations were performed to simulate contact detonation through the protective composition of the developed model of the lower limb. Pressure and acceleration tolerance curves were derived from the results of the calculations, animations of the behavior of anatomical structures of the lower limb under shock-wave action were created, and the propagation of the pressure field within them was visualized. In the future, the proposed method of conducting “virtual” tests can be employed to solve application issues of testing to protect the lower extremities of sappers. In general, the use of computer modeling techniques will help reduce the time and cost of producing new samples of protective products in the interests of the country’s defense capability.
mathematical modeling / modeling of biological tissues / spatial finite element model / factors of a near explosion / mine protection / means of protecting the lower extremities / pressure tolerance curves / shock wave effect
| [1] |
Darenskaya NG, Ushakov IB, Ivanov IV, et al. Extrapolation of the experimental data on man: principles, approaches, substantiation of methods and their use in physiology and radiobiology (manual). Moscow: Istoki; 2004. 232 p. (In Russ.) EDN: PXXXHX |
| [2] |
Даренская Н.Г., Ушаков И.Б., Иванов И.В., и др. Экстраполяция экспериментальных данных на человека в физиологии и радиобиологии: принципы, подходы, обоснование методов и их использование в физиологии и радиобиологии: руководство. Москва: Истоки, 2004. 232 с. EDN: PXXXHX |
| [3] |
Cartner JL, Hartsell Z, Ricci W, Tornetta P. Can we trust ex vivo mechanical testing of freshfrozen cadaveric specimens? The effect of postfreezing delays. J Orthop. Trauma. 2011;25(8):459–461. doi: 10.1097/BOT.0b013e318225b875 |
| [4] |
Cartner J.L., Hartsell Z., Ricci W., Tornetta P. Can we trust ex vivo mechanical testing of freshfrozen cadaveric specimens? The effect of postfreezing delays // J Orthop Trauma. 2011. Vol. 25, N 8. P. 459–461. doi: 10.1097/BOT.0b013e318225b875 |
| [5] |
Gusentsov AO, Kildyushov EM. Human body simulator as an input parameter of a ballistic experiment. Forensic Medical Expertise. 2020;63(5):23–29. EDN: LZBQCZ doi: 10.17116/sudmed20206305123 |
| [6] |
Гусенцов А.О., Кильдюшов Е.М. Имитатор тела человека как входной параметр баллистического эксперимента // Судебно-медицинская экспертиза. 2020. Т. 63, № 5. С. 23–29. EDN: LZBQCZ doi: 10.17116/sudmed20206305123 |
| [7] |
Coupland RM, Rothschild MA, Thali MJ. Wound Ballistics: Basics and applications. Berlin: Springer; 2008. 514 p. |
| [8] |
Coupland R.M., Rothschild M.A., Thali M.J. Wound Ballistics: Basics and applications. Berlin: Springer, 2008. 514 p. |
| [9] |
Kuz’min NN, Chernozemcev AV, Rybakov AP. Models to describe phenomena of impact of impactor on armoured waistcoat panel. Izvestiya TulGU. Tekhnicheskie nauki. 2014;12(1):174–181. (In Russ.) EDN: TKIWFZ |
| [10] |
Кузьмин Н.Н., Черноземцев А.В., Рыбаков А.П. Модели для описания явлений воздействия ударников на панели бронежилета // Известия ТулГУ. Технические науки. 2014. № 12-1. С. 174–181. EDN: TKIWFZ |
| [11] |
Roberts JC, Ward EE, Merkle AC, O’Connor JV. Assessing behind armor blunt trauma in accordance with the national institute of justice standard for personal body armor protection using finite element modeling. J Trauma. 2007;62(5):1127–1133. doi: 10.1097/01.ta.0000231779.99416.ee |
| [12] |
Roberts J.C., Ward E.E., Merkle A.C., O’Connor J.V. Assessing behind armor blunt trauma in accordance with the national institute of justice standard for personal body armor protection using finite element modeling // J Trauma. 2007. Vol. 62, N 5. Р. 1127–1133. doi: 10.1097/01.ta.0000231779.99416.ee |
| [13] |
Gricanov AI, Fomin NF, Minnulin IP, Fajzi N. Features of pathogenesis, clinic, diagnosis and treatment of mine-blast injuries. Military Medical Journal. 1990;(9):46–48. (In Russ.) |
| [14] |
Грицанов А.И., Фомин Н.Ф., Миннулин И.П., Файзи Н. Особенности патогенеза, клиники, диагностики и лечения минно-взрывных повреждений // Военно-медицинский журнал. 1990. № 9. С. 46–48. |
| [15] |
Shapovalov VM, Gritsanov AI. Pathogenesis and principles of treatment of blast injuries. Modern medical technologies and prospects for the development of military traumatology and orthopedics. 2000:3–4. (In Russ.) |
| [16] |
Шаповалов В.М., Грицанов А.И. Патогенез и принципы лечения взрывных повреждений // Современные медицинские технологии и перспективы развития военной травматологии и ортопедии. 2000. С. 3–4. |
| [17] |
Yamada H. Strength of Biological Materials. Williams and Wilkins, Baltimore; 1970. 297 р. |
| [18] |
Yamada H. Strength of biological materials. Williams and Wilkins, Baltimore, 1970. 297 р. |
| [19] |
Kemper AR, McNally C, Duma SM. Biofidelity of an original and modified SID-IIs matched cadaver and dummy compression tests. Biomed Sci Instrum. 2008;44:111–116. |
| [20] |
Kemper A.R., McNally C., Duma S.M. Biofidelity of an original and modified SID-IIs matched cadaver and dummy compression tests // Biomed Sci Instrum. 2008. Vol. 44. P. 111–116. |
| [21] |
LS-DYNA. Keyword User’s Manual. Vol. II. Material Models. LS-DYNA R.11; 10/12/18 (rev.:10572). Livermore Software Technology Corporation (LSTC). 2018. 1207 р. |
| [22] |
LS-DYNA. Keyword User’s Manual. Volume II. Material Models. LS-DYNA R.11; 10/12/18 (rev.:10572). Livermore Software Technology Corporation (LSTC). 2018. 1207 р. |
| [23] |
Muizemnek AYu, Bogach AA. Mathematical modeling of impact and explosion processes in the LS-DYNA program: tutorial. Penza: Information and Publishing Center of PSU; 2005. 106 p. (In Russ.) EDN: QJOEKB |
| [24] |
Муйземнек А.Ю., Богач А.А. Математическое моделирование процессов удара и взрыва в программе LS-DYNA: учебное пособие. Пенза: Информационно-издательский центр ПГУ, 2005. 106 с. EDN: QJOEKB |
| [25] |
Tremblay J. Impulse on Blast Deflectors from a Landmine Explosion. Valcartier, Quebec. Defence Research Establishment. 1998. Report No: DREV-TM-9814. |
| [26] |
Tremblay J. Impulse on blast deflectors from a landmine explosion. Valcartier, Quebec. Defence Research Establishment. 1998. Report No: DREV-TM-9814. |
| [27] |
Ottenio M, Tran D, Annaidh AN, et al. Strain rate and anisotropy effects on the tensile failure characteristics of human skin. J Mech Behav Biomed Mater. 2015;41:241–250. doi: 10.1016/j.jmbbm.2014.10.006 |
| [28] |
Ottenio M., Tran D., Annaidh A.N., et al. Strain rate and anisotropy effects on the tensile failure characteristics of human skin // J Mech Behav Biomed Mater. 2015. Vol. 41. Р. 241–250. doi: 10.1016/j.jmbbm.2014.10.006 |
| [29] |
Mooney M. A theory of large elastic deformation. Journal of Applied Physics. 1940;11(9):582–592. doi: 10.1063/1.1712836 |
| [30] |
Mooney M. A theory of large elastic deformation // Journal of Applied Physics. 1940. Vol. 11, N 9. Р. 582–592. doi: 10.1063/1.1712836 |
| [31] |
Macosko CW. Rheology: principles, measurement and applications. Wiley-VCH; 1994. 576 р. |
| [32] |
Macosko C.W. Rheology: principles, measurement and applications. Wiley-VCH, 1994. 576 р. |
| [33] |
Reed MP, Rupp JD. An anthropometric comparison of current ATDs with the US adult population. Traffic Injury Prevention. 2013;14(7):703–705. doi: 10.1080/15389588.2012.752819 |
| [34] |
Reed M.P., Rupp J.D. An anthropometric comparison of current ATDs with the US adult population // Traffic injury prevention. 2013. Vol. 14, N 7. P. 703–705. doi: 10.1080/15389588.2012.752819 |
Eco-Vector
/
| 〈 |
|
〉 |