Bacteriostatic effects of cell-free matrix lyophilisates and hydrogel from human umbilical cord

Albina A. Kondratenko , Vladimir E. Chernov , Dmitry V. Tovpeko , Daniil A. Volov , Nikolay V. Beliy , Dmitry A. Zemlyanoy , Lidiya I. Kalyuzhnaya

Bulletin of the Russian Military Medical Academy ›› 2024, Vol. 26 ›› Issue (3) : 361 -372.

PDF (1572KB)
Bulletin of the Russian Military Medical Academy ›› 2024, Vol. 26 ›› Issue (3) : 361 -372. DOI: 10.17816/brmma629139
Original Study Article
research-article

Bacteriostatic effects of cell-free matrix lyophilisates and hydrogel from human umbilical cord

Author information +
History +
PDF (1572KB)

Abstract

The bacteriostatic effects of human umbilical cord-derived matrices and hydrogels were examined. The use of biomimetics based on the extracellular matrix of extraembryonic organs, including the human umbilical cord, is promising for regenerative medicine and tissue engineering. Cell-free products from the extracellular matrix of various human organs and tissues are resistant to intentional bacterial contamination. Two acellular scaffolds prepared using different human umbilical cord decellularization protocols and two derived hydrogels were evaluated for their bacteriostatic properties. Two clinical cases of the use of lyophilisates of umbilical cord-derived hydrogels were described. The compositions of human umbilical cord-derived acellular matrices and hydrogels were studied using biochemical analysis techniques. The sensitivities of Staphylococcus aureus and Escherichia coli to umbilical cord-derived matrices and hydrogels were assessed using culture techniques, and metabolic activities of bacteria were also examined. Human umbilical cord-derived acellular matrices and hydrogels consist of collagens and contain proteins and glycosaminoglycans. A significant bacteriostatic effect of hydrogels against Escherichia coli was detected during the first 16 h of incubation, regardless of the type of detergents used for their preparation. The matrices did not show a bacteriostatic effect, which indicates that the hydrolysis of structural components contributes to the release of substances with bacteriostatic activities. The effect was presumed to be due to the influence on the level of metabolic activity of microorganisms. The use of powdered lyophilized hydrogels derived from human umbilical cord as an adjunct to autodermal graft in the treatment of infected deep wounds in two volunteer patients promoted healing without infections. In general, the use of hydrogel lyophilisates from acellular human umbilical cord as an additional treatment allows for the engraftment of skin autografts and promotes the healing of extensive deep wounds at risk of infection.

Keywords

tissue engineering: bacteriostatic effect / hydrogel / acellular matrix from human umbilical cord / extraembryonic organs / lyophilisate / decellularization / autodermograft / regenerative medicine

Cite this article

Download citation ▾
Albina A. Kondratenko, Vladimir E. Chernov, Dmitry V. Tovpeko, Daniil A. Volov, Nikolay V. Beliy, Dmitry A. Zemlyanoy, Lidiya I. Kalyuzhnaya. Bacteriostatic effects of cell-free matrix lyophilisates and hydrogel from human umbilical cord. Bulletin of the Russian Military Medical Academy, 2024, 26(3): 361-372 DOI:10.17816/brmma629139

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Basok YB, Kondratenko AA, Kalyuzhnaya LI, et al. Decellularized umbilical cord stroma in tissue engineering and regenerative medicine: a systematic review. Bulletin of transplantology and artificial organs. 2023;25(2):82–98. (In Russ.) EDN: NBDKJU doi: 10.15825/1995-1191-2023-2-82-98

[2]

Басок Ю.Б., Кондратенко А.А., Калюжная Л.И., и др. Децеллюляризованная строма пуповины в тканевой инженерии и регенеративной медицине: систематический обзор // Вестник трансплантологии и искусственных органов. 2023. Т. 25, № 2. С. 82–98. EDN: NBDKJU doi: 10.15825/1995-1191-2023-2-82-98

[3]

Dubus M, Scomazzon L, Chevrier J, et al. Antibacterial and immunomodulatory properties of acellular Wharton’s Jelly matrix. Biomedicines. 2022;10(2):227. doi: 10.3390/biomedicines10020227

[4]

Dubus M., Scomazzon L., Chevrier J., et al. Antibacterial and immunomodulatory properties of acellular Wharton’s Jelly matrix // Biomedicines. 2022. Vol. 10, N 2. Р. 227. doi: 10.3390/biomedicines10020227

[5]

Dubus M, Scomazzon L, Chevrier J, et al. Decellularization of Wharton’s jelly increases its bioactivity and antibacterial properties. Front Bioeng Biotechnol. 2022;10:828424. doi: 10.3389/fbioe.2022.828424

[6]

Dubus M., Scomazzon L., Chevrier J., et al. Decellularization of Wharton’s jelly increases its bioactivity and antibacterial properties // Front Bioeng Biotechnol. 2022. Vol. 10. Р. 828424. doi: 10.3389/fbioe.2022.828424

[7]

Ramzan F, Ekram S, Frazier T, et al. Decellularized human umbilical tissue derived hydrogels promote proliferation and chondrogenic differentiation of mesenchymal stem cells. Bioengineering. 2022;9(6):239. doi: 10.3390/bioengineering9060239

[8]

Ramzan F., Ekram S., Frazier T., et al. Decellularized human umbilical tissue derived hydrogels promote proliferation and chondrogenic differentiation of mesenchymal stem cells // Bioengineering. 2022. Vol. 9, N 6. Р. 239. doi: 10.3390/bioengineering9060239

[9]

Gupta A, El-Amin SF, Levy HJ, et al. Umbilical cord-derived Wharton’s jelly for regenerative medicine applications. J Orthop Surg Res. 2020;15(1):49. doi: 10.1186/s13018-020-1553-7

[10]

Gupta A., El-Amin S.F., Levy H.J., et al. Umbilical cord-derived Wharton’s jelly for regenerative medicine applications // J Orthop Surg Res. 2020. Vol. 15, N 1. Р. 49. doi: 10.1186/s13018-020-1553-7

[11]

Ramuta TŽ, Tratnjek L, Janev A, et al. The antibacterial activity of human amniotic membrane against multidrug-resistant bacteria associated with urinary tract infections: new insights from normal and cancerous urothelial models. Biomedicines. 2021;9(2):218. doi: 10.3390/biomedicines9020218

[12]

Ramuta T.Ž., Tratnjek L., Janev A., et al. The antibacterial activity of human amniotic membrane against multidrug-resistant bacteria associated with urinary tract infections: new insights from normal and cancerous urothelial models // Biomedicines. 2021. Vol. 9, N 2. Р. 218. doi: 10.3390/biomedicines9020218

[13]

Yadav MK, Go YY, Kim SH, et al. Antimicrobial and antibiofilm effects of human amniotic/chorionic membrane extract on Streptococcus pneumonia. Front Microbiol. 2017;8:1948. doi: 10.3389/fmicb.2017.01948

[14]

Yadav M.K., Go Y.Y., Kim S.H., et al. Antimicrobial and antibiofilm effects of human amniotic/chorionic membrane extract on Streptococcus pneumonia // Front Microbiol. 2017. Vol. 8. Р. 1948. doi: 10.3389/fmicb.2017.01948

[15]

Mao Y, Singh-Varma A, Hoffman T, et al. The effect of cryopreserved human placental tissues on biofilm formation of wound-associated pathogens. J Funct Biomater. 2018;9(1):3. doi: 10.3390/jfb9010003

[16]

Mao Y., Singh-Varma A., Hoffman T., et al. The effect of cryopreserved human placental tissues on biofilm formation of wound-associated pathogens // J Funct Biomater. 2018. Vol. 9, N 1. Р. 3. doi: 10.3390/jfb9010003

[17]

Brennan EP, Reing J, Chew D, et al. Antibacterial activity within degradation products of biological scaffolds composed of extracellular matrix. Tissue Eng. 2006;12(10):2949–2955. doi: 10.1089/ten.2006.12.2949

[18]

Brennan E.P., Reing J., Chew D., et al. Antibacterial activity within degradation products of biological scaffolds composed of extracellular matrix // Tissue Eng. 2006. Vol. 12, N 10. Р. 2949–2955. doi: 10.1089/ten.2006.12.2949

[19]

Sarikaya A, Record R, Wu CC, et al. Antimicrobial activity associated with extracellular matrices. Tissue Eng. 2002;8(1):63–71. doi: 10.1089/107632702753503063

[20]

Sarikaya A., Record R., Wu C.C., et al. Antimicrobial activity associated with extracellular matrices // Tissue Eng. 2002. Vol. 8, N 1. Р. 63–71. doi: 10.1089/107632702753503063

[21]

Silini AR, Ramuta TŽ, Pires AS, et al. Methods and criteria for validating the multimodal functions of perinatal derivatives when used in oncological and antimicrobial applications. Front Bioeng Biotechnol. 2022;10:958669. doi: 10.3389/fbioe.2022.958669

[22]

Silini A.R., Ramuta T.Ž., Pires A.S., et al. Methods and criteria for validating the multimodal functions of perinatal derivatives when used in oncological and antimicrobial applications // Front Bioeng Biotechnol. 2022. Vol. 10. Р. 958669. doi: 10.3389/fbioe.2022.958669

[23]

Tovpeko DV, Kondratenko AA, Kalyuzhnaya LI, et al. Biotechnological cell-free non-immunogenic product preserves the main regenerative structural components of the human umbilical cord. Biotechnology. 2023;39(1):49–59. (In Russ.) EDN: PVPMQO doi: 10.56304/S0234275823010118

[24]

Товпеко Д.В., Кондратенко А.А., Калюжная Л.И., и др. Биотехнологический бесклеточный неиммуногенный продукт сохраняет основные регенеративные структурные компоненты пуповины человека // Биотехнология. 2023. Т. 39, № 1. С. 49–59. EDN: PVPMQO doi: 10.56304/S0234275823010118

[25]

Capella-Monsonis H, Coentro J, Graceffa V, et al. An experimental toolbox for characterization of mammalian collagen type I in biological specimens. Nat Prot. 2018;13(3):507–529. doi: 10.1038/nprot.2017.117

[26]

Capella-Monsonis H., Coentro J., Graceffa V., et al. An experimental toolbox for characterization of mammalian collagen type I in biological specimens // Nat Prot. 2018. Vol. 13, N 3. P. 507–529. doi: 10.1038/nprot.2017.117

[27]

Wang C, Li G, Cui K, et al. Sulfated glycosaminoglycans in decellularized placenta matrix as critical regulators for cutaneous wound healing. Acta Biomater. 2021;22:199–210. doi: 10.1016/j.actbio.2020.12.055

[28]

Wang C., Li G., Cui K., et al. Sulfated glycosaminoglycans in decellularized placenta matrix as critical regulators for cutaneous wound healing // Acta Biomater. 2021. Vol. 22. P. 199–210. doi: 10.1016/j.actbio.2020.12.055

[29]

Ersanli C, Tzora A, Skoufos I, et al. Recent advances in collagen antimicrobial biomaterials for tissue engineering applications: a review. Int J Mol Sci. 2023;24(9):7808. doi: 10.3390/ijms24097808

[30]

Ersanli C. Tzora A., Skoufos I., et al. Recent advances in collagen antimicrobial biomaterials for tissue engineering applications: a review // Int J Mol Sci. 2023. Vol. 24, N 9. Р. 7808. doi: 10.3390/ijms24097808

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (1572KB)

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/