Potential use of xenogenic biomaterial based on elastin derived from animal aortas for tissue remodeling

Nikita A. Shutskiy , Sergey L. Kashutin , Lyubov N. Gorbatova , Nikita S. Kholopov , D. V. Mizgirev , A. K. Sherstennikova , Nikolay V. Sherstennikov , Leonid L. Shagrov

Bulletin of the Russian Military Medical Academy ›› 2024, Vol. 26 ›› Issue (4) : 533 -540.

PDF
Bulletin of the Russian Military Medical Academy ›› 2024, Vol. 26 ›› Issue (4) : 533 -540. DOI: 10.17816/brmma627216
Original Study Article
research-article

Potential use of xenogenic biomaterial based on elastin derived from animal aortas for tissue remodeling

Author information +
History +
PDF

Abstract

This study addresses one of the key challenges in experimental and regenerative medicine: the development of a novel biomaterial based on native elastin, devoid of antigenic properties and derived from the aorta of a reindeer, by complete decellularization, with the aim of using it for tissue remodeling after injuries. The development of new approaches and agents for treating thermal burns and wounds (including gunshot wounds) is a crucial task, especially given the current context of large-scale military operations. The concept of obtaining a bioresorbable material with reduced antigenic properties from reindeer connective tissue arises from the need to improve treatment methods aimed at accelerating reparative processes in thermal and gunshot injuries, including penetrating wounds, as well as in those with a high risk of complications and permanent disability. Elastin, a fibrillar protein responsible for tissue stretching, is a key component of connective tissue found in many organs. In this study, the aorta of a reindeer, an elastic-type artery, was chosen as the source of elastin. Through mechanical, chemical, and biochemical processing, cells, collagen fibers, and ground substance with antigenic properties were removed, and an elastin-based biomaterial was obtained. The biomaterial was analyzed using light and electron microscopy. It was then used as a xenograft without antigenic properties to restore tissue integrity after thermal injuries. In experiments on laboratory rats, no rejection reactions were observed, indicating the absence of immunogenicity in the obtained biomaterial. These results suggest the potential use of this aorta-derived biomaterial for tissue remodeling to accelerate healing processes.

Keywords

aorta / elastin / fibrillar protein / xenogenic biomaterial / tissue remodeling / thermal injuries / rejection reaction / regenerative medicine

Cite this article

Download citation ▾
Nikita A. Shutskiy, Sergey L. Kashutin, Lyubov N. Gorbatova, Nikita S. Kholopov, D. V. Mizgirev, A. K. Sherstennikova, Nikolay V. Sherstennikov, Leonid L. Shagrov. Potential use of xenogenic biomaterial based on elastin derived from animal aortas for tissue remodeling. Bulletin of the Russian Military Medical Academy, 2024, 26(4): 533-540 DOI:10.17816/brmma627216

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kraft R, Herndon DN, Finnerty CC, et al. Predictive value of IL-8 for sepsis and severe infections after burn injury-A clinical study. Shock. 2015;43(3):222. doi: 10.1097/SHK.0000000000000294

[2]

Kraft R., Herndon D.N., Finnerty C.C., et al. Predictive value of IL-8 for sepsis and severe infections after burn injury-A clinical study // Shock. 2015. Vol. 43, N 3. P. 222–227. doi: 10.1097/SHK.0000000000000294

[3]

Kraft R, Herndon DN, Finnerty CC, et al. Predictive value of IL-8 for sepsis and severe infections after burn injury-A clinical study. Shock. 2015;43(3):222. doi: 10.1097/SHK.0000000000000294

[4]

Peretyagin PV, Solovyova AG, Boyarinov GA, Martynov IA. Features of the functional state of pro- and antioxidant balance, enzymatic activity and substrate energy supply in the treatment of burn shock with ozonated saline solution, mexidol and microhydrin in an experiment. Bioradicals and Antioxidants. 2020;7(3):205–214. (In Russ.) EDN: VLAMYW

[5]

Перетягин П.В., Соловьева А.Г., Бояринов Г.А., Мартынов И.А. Особенности функционального состояния про- и антиоксидантного баланса, энзиматической активности и субстратного обеспечения энергетики при лечении ожогового шока озонированным физиологическим раствором, мексидолом и микрогидрином в эксперименте // Биорадикалы и антиоксиданты. 2020. Т. 7, № 3. С. 205–214. EDN: VLAMYW

[6]

Peretyagin PV, Solovyova AG, Boyarinov GA, Martynov IA. Features of the functional state of pro- and antioxidant balance, enzymatic activity and substrate energy supply in the treatment of burn shock with ozonated saline solution, mexidol and microhydrin in an experiment. Bioradicals and Antioxidants. 2020;7(3):205–214. (In Russ.) EDN: VLAMYW

[7]

Friedman LS, Abasilim C, Fitts R, Wueste M. Clinical outcomes of temperature related injuries treated in the hospital setting, 2011–2018. Environ Res. 2020;189:109882. doi: 10.1016/j.envres.2020.109882

[8]

Friedman L.S., Abasilim C., Fitts R., Wueste M. Clinical outcomes of temperature related injuries treated in the hospital setting, 2011–2018 // Environ Res. 2020. Vol. 189. P. 109882. doi: 10.1016/j.envres.2020.109882

[9]

Friedman LS, Abasilim C, Fitts R, Wueste M. Clinical outcomes of temperature related injuries treated in the hospital setting, 2011–2018. Environ Res. 2020;189:109882. doi: 10.1016/j.envres.2020.109882

[10]

Merrell SW, Saffle JR, Sullivan JJ, et al. Increased survival after major thermal injury: a nine year review. Am J Surg. 1987;154(6): 623–627. doi: 10.1016/0002-9610(87)90229-7

[11]

Merrell S.W., Saffle J.R., Sullivan J.J., et al. Increased survival after major thermal injury: a nine year review // Am J Surg. 1987. Vol. 154, N 6. P. 623–627. doi: 10.1016/0002-9610(87)90229-7

[12]

Merrell SW, Saffle JR, Sullivan JJ, et al. Increased survival after major thermal injury: a nine year review. Am J Surg. 1987;154(6): 623–627. doi: 10.1016/0002-9610(87)90229-7

[13]

Kovalev AN, Kovalev NN, Pivnenko TN. Collagen of some species of fish and invertebrates. In: Current problems of development of biological resources of the World Ocean. 2020:45–48. EDN: IRFRBT

[14]

Ковалев А.Н., Ковалев Н.Н., Пивненко Т.Н. Коллаген некоторых видов рыб и беспозвоночных // Актуальные проблемы освоения биологических ресурсов Мирового океана. 2020. С. 45–48. EDN: IRFRBT

[15]

Kovalev AN, Kovalev NN, Pivnenko TN. Collagen of some species of fish and invertebrates. In: Current problems of development of biological resources of the World Ocean. 2020:45–48. EDN: IRFRBT

[16]

Vorobyov VI, Nizhnikova EV. Obtaining collagen and hydroxyapatitis fractions from fish scales. KSTU News. 2021;62: 80–91. EDN: NQXDTM doi: 10.46845/1997-3071-2021-62-80-91

[17]

Воробьев В.И., Нижникова Е.В. Получение фракций коллагена и гидроксиапатита из рыбьей чешуи // Известия КГТУ. 2021. № 62. С. 80–91. EDN: NQXDTM doi: 10.46845/1997-3071-2021-62-80-91

[18]

Vorobyov VI, Nizhnikova EV. Obtaining collagen and hydroxyapatitis fractions from fish scales. KSTU News. 2021;62: 80–91. EDN: NQXDTM doi: 10.46845/1997-3071-2021-62-80-91

[19]

Antipova LV, Storublevtsev SA, Bolgova SB. As the use of collagen substances fish origin for tissue wound healing. Bulletin of Voronezh State University. Series: Chemistry. Biology. Pharmacy. 2016;(4):123–126. EDN: XGRHBZ

[20]

Антипова Л.В., Сторублевцев С.А., Болгова С.Б. Перспектива применения коллагеновых субстанций рыбного происхождения для тканевого ранозаживления // Вестник Воронежского государственного университета. Серия: Химия. Биология. Фармация. 2016. №. 4. С. 123–126. EDN: XGRHBZ

[21]

Antipova LV, Storublevtsev SA, Bolgova SB. As the use of collagen substances fish origin for tissue wound healing. Bulletin of Voronezh State University. Series: Chemistry. Biology. Pharmacy. 2016;(4):123–126. EDN: XGRHBZ

[22]

Antipova LV, Glotova IA. Obtaining collagen substances based on enzymatic processing of secondary raw materials of the meat industry. News of higher educational institutions. Food technology. 2000;5–6:17–21. (In Russ.) EDN: QCPFOR

[23]

Антипова Л.В., Глотова И.А. Получение коллагеновых субстанций на основе ферментативной обработки вторичного сырья мясной промышленности // Известия высших учебных заведений. Пищевая технология. 2000. № 5–6. С. 17–21. EDN: QCPFOR

[24]

Antipova LV, Glotova IA. Obtaining collagen substances based on enzymatic processing of secondary raw materials of the meat industry. News of higher educational institutions. Food technology. 2000;5–6:17–21. (In Russ.) EDN: QCPFOR

[25]

Abdullaeva MA, Urakova KH. Histological characteristics of the aortic wall. Education, science and innovative ideas in the world. 2023:33(1):48–55. (In Russ.)

[26]

Абдуллаева М.А., Уракова К.Х. Гистологическая характеристика стенки аорты // Образование наука и инновационные идеи в мире. 2023. Т. 33, №. 1. С. 48–55.

[27]

Abdullaeva MA, Urakova KH. Histological characteristics of the aortic wall. Education, science and innovative ideas in the world. 2023:33(1):48–55. (In Russ.)

[28]

Patent RUS No. 2689337/ 21.12.2022. Kholopov NS, Gorbatova LN, Kashutin SL, et al. Method for obtaining xenogenic biomaterial from reindeer aorta. (In Russ.)

[29]

Патент РФ на изобретение № 2689337/ 21.12.2022. Холопов Н.С., Горбатова Л.Н., Кашутин С.Л., и др. Способ получения ксеногенного биоматериала из аорты северного оленя.

[30]

Patent RUS No. 2689337/ 21.12.2022. Kholopov NS, Gorbatova LN, Kashutin SL, et al. Method for obtaining xenogenic biomaterial from reindeer aorta. (In Russ.)

[31]

Barker K. Phenol-Chloroform Isoamyl Alcohol (PCI) DNA Extraction. In: At the bench: a laboratory navigator. 1998. P. 284–289.

[32]

Barker K. Phenol-Chloroform Isoamyl Alcohol (PCI) DNA Extraction // At the bench: a laboratory navigator. 1998. P. 284–289.

[33]

Barker K. Phenol-Chloroform Isoamyl Alcohol (PCI) DNA Extraction. In: At the bench: a laboratory navigator. 1998. P. 284–289.

[34]

Allaire E, Guettier C, Bruneval P, et al. Cell-free arterial grafts: morphologic characteristics of aortic isografts, allografts, and xenografts in rats. J Vasc Surg. 1994;19(3):446–456. doi: 10.1016/S0741-5214 (94)70071-0

[35]

Allaire E., Guettier C., Bruneval P., et al. Cell-free arterial grafts: morphologic characteristics of aortic isografts, allografts, and xenografts in rats // J Vasc Surg. 1994. Vol. 19, N 3. P. 446–456. doi: 10.1016/S0741-5214 (94)70071-0

[36]

Allaire E, Guettier C, Bruneval P, et al. Cell-free arterial grafts: morphologic characteristics of aortic isografts, allografts, and xenografts in rats. J Vasc Surg. 1994;19(3):446–456. doi: 10.1016/S0741-5214 (94)70071-0

[37]

Tsarev SV. Fungal allergy in clinical practice. Russian Journal of Allergy. 2010;(4):11–31. EDN: MWGMGB

[38]

Царев С.В. Значение аллергии к грибам микромицетам в клинической практике // Российский аллергологический журнал. 2010. № 4. С. 11–31. EDN: MWGMGB

[39]

Tsarev SV. Fungal allergy in clinical practice. Russian Journal of Allergy. 2010;(4):11–31. EDN: MWGMGB

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

76

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/