Experimental study of the comparative effectiveness of the use of oxygen, zinc bisvinylimidazole diacetate, and ascorbic acid for the correction of intoxication by thermal destruction products of nitrocellulose
Ilya D. Shapovalov , Dmitry M. Yaroshenko , Pavel G. Tolkach , Arkady V. Yazenok , Vadim A. Basharin
Bulletin of the Russian Military Medical Academy ›› 2024, Vol. 26 ›› Issue (2) : 217 -224.
Experimental study of the comparative effectiveness of the use of oxygen, zinc bisvinylimidazole diacetate, and ascorbic acid for the correction of intoxication by thermal destruction products of nitrocellulose
The effectiveness of the use of oxygen, zinc bisvinylimidazole diacetate, and ascorbic acid for the treatment of powder gas poisoning was evaluated using an intoxication model of laboratory animals (mice) with thermal destruction products of nitrocellulose. Mice were subjected to intoxication with thermal destruction products of nitrocellulose in an average lethal concentration. Oxygen therapy (proportion of inhaled oxygen: 0.3; 1 ata) was performed immediately after exposure and once for 30 min. Zinc bisvinylimidazole diacetate (9 mg/kg, intraperitoneal) and ascorbic acid (40 mg/kg, intraperitoneal) were administered to mice once after exposure. Survival rate, hemoglobin derivative concentrations, pulmonary coefficient, and histological changes in the lung tissue were determined. The effectiveness of the use (protection, antidote power, and guaranteed protection indices) of a combination of zinc bisvinylimidazole diacetate and ascorbic acid was assessed. The survival rate of mice that received oxygen after intoxication with thermal destruction products of nitrocellulose was lower (20 ± 13%; p < 0.05) than that of animals that did not receive treatment (60 ± 16%); 3 h after exposure, the pulmonary coefficient was 22.5 [21.9; 23.8] rel. units and 13.1 [12.5; 13.7] rel. units respectively. The protection index of the combination of zinc bisvinylimidazole diacetate and ascorbic acid was 1.39 rel. units, antidote power indicator was 0.95 rel. units, and guaranteed protection coefficient was 0.65 rel. units. The use of the study combination resulted in decreased carboxyhemoglobin (9.3 [7.8, 12.9]%; p < 0.05) and methemoglobin (2.4 [1.5, 4.1]%; p < 0.05) concentrations compared to animals that did not receive treatment (24.5 [22.9; 28.3]% and 8.9 [7.3; 11.1]%, respectively). The pulmonary coefficient of mice receiving the study drug combination was lower (p < 0.05) than that of animals not receiving treatment at 3 and 6 h after exposure. Moreover, 6 h after exposure, signs of the alveolar phase were determined in mice that did not receive treatment, and in animals that were administered the study drug combination, signs of the interstitial phase of toxic pulmonary edema were observed. Thus, the use of oxygen after intoxication with products of thermal destruction of nitrocellulose leads to early formation of toxic pulmonary edema. As a pathogenetically based approach to the treatment of intoxication, the use of zinc bisvinylimidazole diacetate and ascorbic acid should be considered, the mechanism of action of which is aimed at relieving hemic and respiratory hypoxia.
ascorbic acid / zinc bisvinylimidazole diacetate / oxygen / powder gases / products of thermal destruction of nitrocellulose / antidote power / hemoglobin derivatives / hemic hypoxia / respiratory hypoxia
| [1] |
Kryukov EV, editors. Military field therapy: national leadership. 2nd ed., revised. and additional. Moscow: GEOTAR-Media, 2023. 736 p. (In Russ.) doi: 10.33029/9704-8023-6-VPT-2024-1-736 |
| [2] |
Военно-полевая терапия: национальное руководство / под ред. Е.В. Крюкова. 2-е изд., перераб. и доп. Москва: ГЭОТАР-Медиа, 2023. 736 с. doi: 10.33029/9704-8023-6-VPT-2024-1-736 |
| [3] |
Tkachishin VS, Fomenko KS. The impact of powder gases on human body. Emergency Medicine. 2016;6:121–131. EDN: XEELLB doi: 10.22141/2224-0586.6.77.2016.82177 |
| [4] |
Ткачишин В.С., Фоменко К.С. Влияние пороховых газов на организм человека // Медицина неотложных состояний. 2016. № 6. С. 121–131. EDN: XEELLB doi: 10.22141/2224-0586.6.77.2016.82177 |
| [5] |
Bogatyrev AS, Chuntul AV, Sinitsyn MS. Air environment in helicopter cockpits, regulatory requirements and reality. In: Proceedings of the III International Conference “Human Factor in Complex Technical Systems and Environments” (Ergo-2018). 2018: 338–345. (In Russ.) |
| [6] |
Богатырев А.С., Чунтул А.В., Синицын М.С. Воздушная среда в кабинах экипажей вертолетов, нормативные требования и реальность. В кн.: Труды III Международной конференции «Человеческий фактор в сложных техническихсистемах и средах» (Эрго-2018). 2018. С. 338–345. |
| [7] |
Patent RU 2560229 / 20.08.2015. bull. no. 23. Kotrovskiy AA. Method of removal of powder gases from the gun of the armored armament object. (In Russ.) |
| [8] |
Патент RU 2560229 / 20.08.2015. бюлл. № 23. Котровский А.А. Способ удаления пороховых газов от орудия объекта бронетанкового вооружения. |
| [9] |
Chumakov VV. Preventive fundamentals of ship toxicology. Saint Petersburg: Admiral N.G. Kuznetsov VMA. 2017. 107 p. EDN: YWQCOU |
| [10] |
Чумаков В.В. Профилактические основы корабельной токсикологии. Санкт Петербург: ВМА им. Адмирала Н.Г. Кузнецова, 2017. 107 с. EDN: YWQCOU |
| [11] |
Tiunov LA, Kustov VV. Toxicology of carbon monoxide Moscow: Medicine; 1980. 285 p. (In Russ.) |
| [12] |
Тиунов Л.А., Кустов В.В. Токсикология окиси углерода. Москва: Медицина, 1980. 285 с. |
| [13] |
Tiunov LA, Golovenko Nya, Galkin BN, Barinov VA. Biochemical mechanisms of nitrogen oxide toxicity. Advances in Modern Biology. 1991;111(5):738–750. (In Russ.) |
| [14] |
Тиунов Л.А., Головенко Н.Я., Галкин Б.Н., Баринов В.А. Биохимические механизмы токсичности оксидов азота // Успехи современной биологии. 1991. Т. 111, № 5. С. 738–750. |
| [15] |
Chumakov AV, Cherkashin DV, Chmyrev IV, et al. Features of the diagnostic and treatment approach and evacuation tactics for thermal injuries in the navy. News of the Russian Military Medical Academy. 2020;39(2):3–16. (In Russ.) EDN: WXVIBF |
| [16] |
Чумаков А.В. Черкашин Д.В., Чмырев И.В., и др. Особенности лечебно-диагностического подхода и эвакуационная тактика при термических поражениях на военно-морском флоте // Известия Российской военно-медицинской академии. 2020. Т. 39, № 2. С. 3–16. EDN: WXVIBF |
| [17] |
Sokolova MM, Kuzkov VV, Rodionova LN, Kirov MYu. Oxygen in intensive care and anesthesiology — friend or foe? Bulletin of anesthesiology and resuscitation. 2015;12(3):56–64. (In Russ.) EDN: RWHMLA |
| [18] |
Соколова М.М., Кузьков В.В., Родионова Л.Н., Киров М.Ю. Кислород в интенсивной терапии и анестезиологии — друг или враг? // Вестник анестезиологии и реаниматологии. 2015. Т. 12, № 3. С. 56–64. EDN: RWHMLA |
| [19] |
Ruzanova EA, Drachkova IM, Tolkach PG. Comparative study of effectiveness of inhaled antioxidants and sodium cromoglycate in rat model of asphyxiant-indused acute lung injury. Medline. ru. Russian Biomedical Journal. 2013;14:241–254. EDN: RYBHGJ |
| [20] |
Рузанова Э.А., Драчкова И.М., Толкач П.Г. Сравнительный анализ эффективности ингаляционного введения антиоксидантов и кромогликата натрия при отравлении крыс пульмонотоксикантами // Медлайн.ру Российский биомедицинский журнал. 2013. Т. 14. С. 241–254. EDN: RYBHGJ |
| [21] |
Fomichev AV, Sosyukin AE, Fedonyuk VP, et al. Experimental study of the effectiveness of a 5-component antioxidant formulation as a means of early rehabilitation for moderate carbophos poisoning. Medline. ru. Russian Biomedical Journal. 2004;5:381–385. (In Russ.) EDN: TKRBON |
| [22] |
Фомичев А.В., Сосюкин А.Е., Федонюк В.П., и др. Экспериментальное исследование эффективности 5-компонентной антиоксидантной рецептуры в качестве средства ранней реабилитации при отравлениях карбофосом средней степени тяжести // Медлайн.ру Российский биомедицинский журнал. 2004. Т. 5. С. 381–385. EDN: TKRBON |
| [23] |
Timirkhanova GA, Abdullina GM, Kulagina IG. Vitamin C: classical ideas and new facts about the mechanisms of biological action. Vyatka Medical Bulletin. 2007;4:158–161. (In Russ.) EDN: PBPMZV |
| [24] |
Тимирханова Г.А., Абдуллина Г.М., Кулагина И.Г. Витамин С: классические представления и новые факты о механизмах биологического действия // Вятский медицинский вестник. 2007. № 4. С. 158–161. EDN: PBPMZV |
| [25] |
Directive 2010/63/EU of the European Parliament and of the Council for the Protection of Animals Used for Scientific Purposes NP association of specialists in working with laboratory animals. Saint Petersburg: Rus-LASA; 2012. 50 р. (In Russ.) |
| [26] |
Директива 2010/63/EU Европейского парламента и Совета Европейского союза по охране животных, используемых в научных целях НП объединение специалистов по работе с лабораторными животными. Санкт-Петербург: Rus-LASA, 2012. 50 с. |
| [27] |
Kornyushenkov EA. Features of drugs, clinical pharmacology for pet anesthesia and sedation. Part 2. Russian Veterinary Journal. 2013;(1):33–39. (In Russ.) |
| [28] |
Корнюшенков Е.А. Особенности клинической фармакологии препаратов для анестезии и седации мелких домашних животных часть 2 // Российский ветеринарный журнал. 2013. № 1. С. 33–39. |
| [29] |
Prozorovsky VB. Statistic processing of data of pharmacological investigations. Psychopharmacology and Biological Narcology. 2007;7(3–4):2090–2120. EDN: JVWCBJ |
| [30] |
Прозоровский В.Б. Статистическая обработка результатов фармакологических исследований // Психофармакология и биологическая наркология. 2007. Т. 7, № 3–4. С. 2090–2120. EDN: JVWCBJ |
| [31] |
Finney DJ. A statistical treatment of the sigmoid response curve. Probit analysis. London: Cambridge University Press, 1971. Р. 633. |
| [32] |
Finney D.J. A statistical treatment of the sigmoid response curve. Probit analysis. London: Cambridge University Press, 1971. Р. 633. |
| [33] |
Basharin VA, Chepur SV, Shchegolev AV, et al. The role and place of respiratory support in treatment regimens for acute pulmonary edema caused by inhalation exposure to toxic substances. Military Medical Journal. 2019;340(11):26–32. EDN: JPJONV doi: 10.17816/RMMJ81664 |
| [34] |
Башарин В.А., Чепур С.В., Щеголев А.В., и др. Роль и место респираторной поддержки в схемах терапии острого легочного отека, вызванного ингаляционным воздействием токсичных веществ // Военно-медицинский журнал. 2019. Т. 340, № 11. С. 26–32. EDN: JPJONV doi: 10.17816/RMMJ81664 |
Eco-Vector
/
| 〈 |
|
〉 |