Prostheses from the decellularized aorta and bioresorbable material in vivo

V. N. Alexandrov , A. V. Kriventsov , E. V. Mikhailovа , M. A. Figurkina , M. O. Sokolova , V. E. Yudin , P. V. Popryadukhin , G. G. Khubulava

Bulletin of the Russian Military Medical Academy ›› 2017, Vol. 19 ›› Issue (2) : 120 -125.

PDF
Bulletin of the Russian Military Medical Academy ›› 2017, Vol. 19 ›› Issue (2) : 120 -125. DOI: 10.17816/brmma623251
Experimental trials
research-article

Prostheses from the decellularized aorta and bioresorbable material in vivo

Author information +
History +
PDF

Abstract

Modern vascular prostheses are prone to thrombosis and infections. Effective anticoagulant antibacterial therapy approaches and the development of other prostheses materials are very relevant today. In this context, prostheses from the decellularized vessel and bioresorbable material, polylactide for example, are of great interest due to the high probability of endogenous endothelization induced by the extracellular protein matrix, followed by the formation of the autogenic matrix of the vessel. Such blood vessels are characterized by atrombogenicity, porosity of the structure, prone to integration with the vascular wall of the recipient, endothelization, matrix and vessel formation. We would like to emphasize that such prostheses are capable of growth and are suitable not only for adults, but also for children with cardiovascular defects. However, our study of these prostheses in the dynamics of the posttransplantation period did not match the expected results: the prosthesis from the decellularized aorta turned out to be unsuitable within the first month after transplantation. The prosthesis from the bioresorbable material didn’t cause complications but conceal the risk of spontaneous insolvency caused by predetermined bioresorption and postponement formation of extracellular matrix. We assumed that the hybrid biosynthetic prosthesis consisting of two layers: the inner one made of a bioresorbable thrombo-resistant material and the outer one – from a decellularized vessel may be the decision. The internal bioresorbable layer will remove the problems of thrombosis, the formation of an aneurysm, and the external layer from the vascular matrix will ensure the migration into the prosthesis of the cells of the precursors of endotheliocytes and myocytes.

Keywords

Vessel / extracellular matrix / decellularization / bioresorption / prosthesis / thrombosis / aneurysm / endotheliocytes / chemotaxis

Cite this article

Download citation ▾
V. N. Alexandrov, A. V. Kriventsov, E. V. Mikhailovа, M. A. Figurkina, M. O. Sokolova, V. E. Yudin, P. V. Popryadukhin, G. G. Khubulava. Prostheses from the decellularized aorta and bioresorbable material in vivo. Bulletin of the Russian Military Medical Academy, 2017, 19(2): 120-125 DOI:10.17816/brmma623251

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ахмедов, Ш.Д. Использование бесклеточного коллагенового матрикса в качестве платформы для изготовления кровеносных сосудов в сердечно-сосудистой хирургии / Ш.Д. Ахмедов [и др.] // Ангиология и сосудистая хирургия. – 2012. – Т.18, № 2. – С. 7–12.

[2]

Бокерия, Л.А. Результаты 3000 операций с использованием эксплантатов и заплат «Басэкс» в сердечно-сосудистой хирургии / Л.А. Бокерия [и др.] // Грудная и сердечно-сосудистая хирургия. – 2012. – № 3. – С. 47–51.

[3]

Добровольская, И.П. Полимерные матрицы для тканевой инженерии / И.П. Добровольская [и др.]. – СПб.: Издательско-полиграфическая ассоциация университетов России, 2016. – 233 с.

[4]

Петровский, Б.В. Хирургическое лечение окклюзионных поражений брюшного отдела аорты и ее ветвей, питающих жизненно важные органы / Х Межд. конгресс по серд.сосуд. заболеваниям, Москва, 26–28 августа 1971 г.: тез. – М., 1971. – С. 45–47.

[5]

Покровский, А.В. Пластические операции на магистральных венах / А.В. Покровский, Л.И. Клионер, Э.А. Апсатаров.– Алма-Ата: Казахстан, 1977. – 172 с.

[6]

Попов, Г.И. Разработка и оценка эффективности биодеградируемой матрицы для создания тканеинженерного сосудистого имплантата в длительном хроническом эксперименте / Г.И. Попов [и др.] //Всеросс. конф. с междунар. участием «StemCellBio-2016: фундаментальная наука как основа клеточных технологий». 9–11 ноября 2016. – СПб.– 174 с.

[7]

Попрядухин, П.В. Композитные материалы на основе хитозана и монтмориллонита: перспективы использования в качестве матриц для культивирования стволовых и регенеративных клеток / П.В. Попрядухин [и др.] // Цитология. –2011. – Т. 53, № 12. – С. 952–958.

[8]

Baumgarten, P.K. Electrostatic spinning of acrylic microfibers / P.K Baumgarten // J. Colloid Interface Sci. – 1971. – Vol. 36. – P.71–79.

[9]

Cho, S.W. Evidence for in vivo growth potential and vascular remodeling of tissue-engineered artery /S.W. Cho [et al.] // Tissue Eng.: Part A. – 2009. – Vol. 15, № 4. – P. 901–912.

[10]

Crapo, P.M. An overview of tissue and whole organ decellularization processes/P.M. Crapo, T.W. Gilbert, S.F. Badylak // Biomaterials. – 2011. – Vol. 32, №12. – P.3233–3243.

[11]

Dobrovolskaya, I.P. Structure and properties of porous films based on aliphatic copolyamide developed for cellular technologies / I.P. Dobrovolskaya [et al.] // Mater. Sci. Mater. Med. – 2015. – Vol. 26. № 1. – P. 1.

[12]

Duan, B. Electrospinning of chitosan solutions in acetic acid with poly(ethylene oxide)/ B. Duan [et al.]// J. Biomater. Sci. Polym. Ed. –2004. –Vol. 15.– P. 797.

[13]

Gui, L. Development of decellularized human umbilical arteries as small-diameter vascular grafts / L. Gui [et al.]// Tissue Engineering: Part A. – 2009. – Vol. 15, № 9. – P. 2665–2676.

[14]

Hwang, S.J.The decellularized vascular allograft as an experimental platform for developing a biocompatible smalldiameter graft conduit in a rat surgical model / S.J.Hwang [et al.]// Yonsei Med. J. –2011. –Vol. 52, № 2. –P. 227–233.

[15]

Kallenbach, K.A novel small-animal model for accelerated investigation of tissue-engineered aortic valve conduit / K. Kallenbach [et al.]// Tissue Engineering. Part C. – 2010. – Vol. 16, № 1. – P. 41–50.

[16]

Lichtenberg, A.In vitro re-endothelialization of detergent decellularized heart valves under simulated physiological dynamic conditions / A.Lichtenberg [et al.]// Biomaterials. – 2006. – Vol. 27. – P. 4221–4229.

[17]

Lichtenberg, A.Preclinical testing of tissue-engineered heart valvesre-endothelialized under simulated physiological conditions / A.Lichtenberg [et al.]// Circulation.– 2006. – Vol. 114. – Р. 1559–1565.

[18]

Liu, G.F. Decellularized aorta of fetal pigs as a potential scaffold for small diameter tissue engineered vascular graft /G.F. Liu [et al.] // Chin. Med. J. – 2008. – Vol.121, № 15. – P.1398–1406.

[19]

Mulder, M. Basic Principles of membrane technology / M. Mulder. –Dortrecht: Kluwer Acad. Publ, 1996. –564p.

[20]

Muzzarelli, R.A.A. Chitin nanofibrils/chitosan glycolate composites as wound medicaments /R.A.A. Muzzarelli [et al.] // Carbohydr. Polymers.– 2007.– Vol. 70,№ 3.– P. 274–284.

[21]

Negishi, J.Effect of treatment temperature on collagen structures of the decellularized carotid artery using highhydrostatic pressure / J. Negishi [et al.] // J. Artif. Organs. – 2011. – Vol. 14, №3. – Р. 223–231.

[22]

Quint, C.Allogeneic human tissue-engineered blood vessel /C. Quint [et al.] // J. Vasc. Surg. – 2012. – Vol.55, № 3. –P. 790–798.

[23]

Rieder, E. Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells / E. Rieder [et al.]// J. Thorac. Cardiovasc. Surg. –2004. – Vol. 127, №2. – P. 399–405.

[24]

Seyednejad, H.In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly (ε-caprolactone)/H.Seyednejad [et al.] // Biomaterials. – 2012. – Vol. 33.– P. 4309–4318.

[25]

Shoichet, M.S. Polymer scaffolds for biomaterials applications / M.S. Shoichet // Macromolecules. –2010. –Vol. 43. – P. 581.

[26]

Surrao, D.C. Biomimetic poly(lactide) based fibrous scaffolds for ligament tissue engineering/ D.C. Surrao, S.D. Waldman, B.G. Amsden // Acta Biomater. –2012. –Vol. 8.– P. 3997–4006.

[27]

Swartz, D.D. Animal models for vascular tissue engineering /D.D. Swartz, S.T. Andreadis // Curr. Opin. Biotechnol. – 2013. – Vol. 24, № 5. – P. 916–925.

[28]

Yudin, V.E. Wet spinning of fibers made of chitosan and chitin nanofibrils / V.E. Yudin [et al.] // Carbohydr. Polymers. –2014.– Vol. 108. – P. 176–182.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/