Pulmonary artery thrombosis prophylaxis and treatment in clinical practice and experiment

Olga Ya. Porembskaya , Kirill V. Lobastov , Sergey N. Tsaplin , Olga V. Pashovkina , Victoria А. Ilina , Eleonora A. Starikova , Janet T. Mammedova , Vsevolod A. Tsinserling , Yana G. Toropova , Maxim I. Galchenko , Leonid A. Laberko , Vyacheslav N. Kravchuk , Sergey A. Saiganov

Bulletin of the Russian Military Medical Academy ›› 2024, Vol. 26 ›› Issue (1) : 23 -33.

PDF
Bulletin of the Russian Military Medical Academy ›› 2024, Vol. 26 ›› Issue (1) : 23 -33. DOI: 10.17816/brmma623151
Original Study Article
research-article

Pulmonary artery thrombosis prophylaxis and treatment in clinical practice and experiment

Author information +
History +
PDF

Abstract

The effectiveness of anticoagulant therapy in the prevention and treatment of pulmonary artery thrombosis and the possibility of anti-inflammatory therapy in preventing this complication in clinical practice and experiments were assessed. Data from patients with a new coronavirus infection and those suffering from urgent noninfectious pathology with confirmed pulmonary artery thrombosis were retrospectively analyzed. The outcomes of anticoagulant therapy and anticoagulant therapy combined with glucocorticoid and/or anticytokine drugs were assessed. Histological preparations of the lung vessels of patients were examined. Using an experimental model of rats with induced thrombosis of the posterior vena cava, changes in the pulmonary artery branches were assessed in the main group administered with edible mussel (Mytilus edulis) hydrolyzate and the control group given a physiological solution. No statistically significant relationship was found between the therapeutic, intermediate, and preventive anticoagulant therapy regimens and mortality, changes in lung dynamics, and D-dimer levels in 313 patients with new coronavirus infection. No predominance of any anticoagulant therapy regimen used was found among deceased patients. Thirty-nine patients were treated with glucocorticoid and/or anticytokine drugs in the presence of anticoagulant therapy. No statistically significant relationship in the onset of thrombotic complications was found between the groups receiving therapy with glucocorticoid and anticytokine drugs. No differences were noted in the drug-induced pathomorphosis of the wall of the pulmonary artery branches in the group receiving anticoagulant therapy or in the group receiving a combination of anticoagulant therapy and glucocorticoid and/or anticytokine drugs. Pulmonary artery thrombosis developed in all 19 patients suffering from urgent noninfectious pathology, 11 of whom were under anticoagulant therapy. In 12 of 15 rats in the control group with thrombosis of the posterior vena cava, blood clots were found in the lumen of the pulmonary artery branches. In 14 rats of the main group administered M. edulis hydrolyzate, no blood clots were found in the pulmonary artery branches. Thus, the systemic effects of anticoagulant therapy were offset by the local prothrombotic effects of the vascular wall caused by inflammation. Glucocorticoid and anticytokine drugs did not affect inflammatory changes in the vascular wall and did not prevent pulmonary artery thrombosis. The introduction of M. edulis in the experiment prevented pulmonary artery thrombosis in the presence of posterior vena cava thrombosis, which indicates a promising direction in the search for pathogenetic prevention of this complication.

Keywords

new coronavirus infection / urgent non-infectious pathology / angiopathy / anticoagulant therapy / anticytokine therapy / Mytilus edulis hydrolysate / glucocorticoids / pulmonary artery thrombosis / thrombotic complications

Cite this article

Download citation ▾
Olga Ya. Porembskaya, Kirill V. Lobastov, Sergey N. Tsaplin, Olga V. Pashovkina, Victoria А. Ilina, Eleonora A. Starikova, Janet T. Mammedova, Vsevolod A. Tsinserling, Yana G. Toropova, Maxim I. Galchenko, Leonid A. Laberko, Vyacheslav N. Kravchuk, Sergey A. Saiganov. Pulmonary artery thrombosis prophylaxis and treatment in clinical practice and experiment. Bulletin of the Russian Military Medical Academy, 2024, 26(1): 23-33 DOI:10.17816/brmma623151

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Khan F, Rahman A, Carrier M, et al. Long term risk of symptomatic recurrent venous thromboembolism after discontinuation of anticoagulant treatment for first unprovoked venous thromboembolism event: Systematic review and meta-analysis. BMJ. 2019;366:4363. doi: 10.1136/bmj.l4363

[2]

Khan F., Rahman A., Carrier M., et al. Long term risk of symptomatic recurrent venous thromboembolism after discontinuation of anticoagulant treatment for first unprovoked venous thromboembolism event: Systematic review and meta-analysis // BMJ. 2019. Vol. 366. ID 14363. doi: 10.1136/bmj.l4363

[3]

Khan F, Rahman A, Carrier M, et al. Long term risk of symptomatic recurrent venous thromboembolism after discontinuation of anticoagulant treatment for first unprovoked venous thromboembolism event: Systematic review and meta-analysis. BMJ. 2019;366:4363. doi: 10.1136/bmj.l4363

[4]

Kearon C, Gent M, Hirsh J, et al. A comparison of three months of anticoagulation with extended anticoagulation for a first episode of idiopathic venous thromboembolism. N Engl J Med. 1999;340(12):901–907. doi: 10.1056/NEJM199903253401201

[5]

Kearon C., Gent M., Hirsh J., et al. A comparison of three months of anticoagulation with extended anticoagulation for a first episode of idiopathic venous thromboembolism // N Engl J Med. 1999. Vol. 340, N. 12. Р. 901–907. doi: 10.1056/NEJM199903253401201

[6]

Kearon C, Gent M, Hirsh J, et al. A comparison of three months of anticoagulation with extended anticoagulation for a first episode of idiopathic venous thromboembolism. N Engl J Med. 1999;340(12):901–907. doi: 10.1056/NEJM199903253401201

[7]

Ten Cate V, Prochaska JH, Schulz A, et al. Clinical profile and outcome of isolated pulmonary embolism: a systematic review and meta-analysis. EClinicalMedicine. 2023;59:101973. doi: 10.1016/j.eclinm.2023.101973

[8]

Ten Cate V., Prochaska J.H., Schulz A., et al. Clinical profile and outcome of isolated pulmonary embolism: a systematic review and meta-analysis // EClinicalMedicine. 2023. Vol. 59. ID 101973. doi: 10.1016/j.eclinm.2023.101973

[9]

Ten Cate V, Prochaska JH, Schulz A, et al. Clinical profile and outcome of isolated pulmonary embolism: a systematic review and meta-analysis. EClinicalMedicine. 2023;59:101973. doi: 10.1016/j.eclinm.2023.101973

[10]

Konstantinides SV, Meyer G, Bueno H, et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European respiratory society (ERS). Eur Heart J. 2020;41(4):543–603. doi: 10.1093/eurheartj/ehz405

[11]

Konstantinides S.V., Meyer G., Bueno H., et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European respiratory society (ERS) // Eur Heart J. 2020. Vol. 41, N. 4. P. 543–603. doi: 10.1093/eurheartj/ehz405

[12]

Konstantinides SV, Meyer G, Bueno H, et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European respiratory society (ERS). Eur Heart J. 2020;41(4):543–603. doi: 10.1093/eurheartj/ehz405

[13]

Ortel TL, Neumann I, Ageno W, et al. American society of hematology 2020 guidelines for management of venous thromboembolism: Treatment of deep vein thrombosis and pulmonary embolism. Blood Adv. 2020;4(19):4693–4738. doi: 10.1182/bloodadvances.2020001830

[14]

Ortel T.L., Neumann I., Ageno W., et al. American society of hematology 2020 guidelines for management of venous thromboembolism: Treatment of deep vein thrombosis and pulmonary embolism // Blood Adv. 2020. Vol. 4, N. 19. Р. 4693–4738. doi: 10.1182/bloodadvances.2020001830

[15]

Ortel TL, Neumann I, Ageno W, et al. American society of hematology 2020 guidelines for management of venous thromboembolism: Treatment of deep vein thrombosis and pulmonary embolism. Blood Adv. 2020;4(19):4693–4738. doi: 10.1182/bloodadvances.2020001830

[16]

Seliverstov EI, Lobastov KV, Ilyukhin EA, et al. Prevention, diagnostics and treatment of deep vein thrombosis. Russian experts consensus. Flebologiya. 2023;17(3):152–296. EDN: RHOTOW doi: 10.17116/flebo202317031152

[17]

Селиверстов Е.И., Лобастов К.В., Илюхин Е.А., и др. Профилактика, диагностика и лечение тромбоза глубоких вен. Рекомендации российских экспертов // Флебология. 2023. Т. 17, № 3. С. 152–296. EDN: RHOTOW doi: 10.17116/flebo202317031152

[18]

Seliverstov EI, Lobastov KV, Ilyukhin EA, et al. Prevention, diagnostics and treatment of deep vein thrombosis. Russian experts consensus. Flebologiya. 2023;17(3):152–296. EDN: RHOTOW doi: 10.17116/flebo202317031152

[19]

Porembskaya OYa, Kravchuk VN, Lobastov KV, et al. Pulmonary artery thrombosis: strategy of anticoagulation. Pirogov Russian Journal of Surgery. 2021;(11):76–82. EDN: PABNVT doi: 10.17116/hirurgia202111176

[20]

Порембская О.Я., Кравчук В.Н., Лобастов К.В., и др. Тромбоз легочной артерии: тактика при выборе антикоагулянтной терапии // Хирургия Журнал имени Н.И. Пирогова. 2021. № 11. С. 76–82. EDN: PABNVT doi: 10.17116/hirurgia202111176

[21]

Porembskaya OYa, Kravchuk VN, Lobastov KV, et al. Pulmonary artery thrombosis: strategy of anticoagulation. Pirogov Russian Journal of Surgery. 2021;(11):76–82. EDN: PABNVT doi: 10.17116/hirurgia202111176

[22]

Nguyen ET, Hague C, Manos D, et al. Canadian Society of Thoracic Radiology/Canadian Association of Radiologists best practice guidance for investigation of acute pulmonary embolism, Part 2: Technical issues and interpretation pitfalls. Can Assoc Radiol J. 2022;73(1):203–213. doi: 10.1177/08465371211000739

[23]

Nguyen E.T., Hague C., Manos D., et al. Canadian Society of Thoracic Radiology/Canadian Association of Radiologists best practice guidance for investigation of acute pulmonary embolism, Part 2: Technical issues and interpretation pitfalls // Can Assoc Radiol J. 2022. Vol. 73, N. 1. Р. 203–213. doi: 10.1177/08465371211000739

[24]

Nguyen ET, Hague C, Manos D, et al. Canadian Society of Thoracic Radiology/Canadian Association of Radiologists best practice guidance for investigation of acute pulmonary embolism, Part 2: Technical issues and interpretation pitfalls. Can Assoc Radiol J. 2022;73(1):203–213. doi: 10.1177/08465371211000739

[25]

Nguyen GC, Bernstein CN, Bitton A, et al. Consensus statements on the risk, prevention, and treatment of venous thromboembolism in inflammatory bowel disease: Canadian association of gastroenterology. Gastroenterology. 2014;146(3):835–848.e6. doi: 10.1053/j.gastro.2014.01.042

[26]

Nguyen G.C., Bernstein C.N., Bitton A., et al. Consensus statements on the risk, prevention, and treatment of venous thromboembolism in inflammatory bowel disease: Canadian association of gastroenterology // Gastroenterology. 2014. Vol. 146, N. 3. Р. 835–848.e6. doi: 10.1053/j.gastro.2014.01.042

[27]

Nguyen GC, Bernstein CN, Bitton A, et al. Consensus statements on the risk, prevention, and treatment of venous thromboembolism in inflammatory bowel disease: Canadian association of gastroenterology. Gastroenterology. 2014;146(3):835–848.e6. doi: 10.1053/j.gastro.2014.01.042

[28]

Lobastov KV, Stepanov EA, Tsaplin SN, et al. Efficacy and safety of increased doses of anticoagulants in COVID-19 patients: A systematic review and meta-analysis. Surgeon. 2022;(1-2):50–65. EDN: FHQTYB doi: 10.33920/med-15-2201-05

[29]

Лобастов К.В., Степанов Е., Цаплин С.Н., и др. Эффективность и безопасность повышенных доз антикоагулянтов у пациентов с COVID-19: результаты систематического обзора литературы и метаанализа // Хирург. 2022. № 1-2. С. 50–65. EDN: FHQTYB doi: 10.33920/med-15-2201-05

[30]

Lobastov KV, Stepanov EA, Tsaplin SN, et al. Efficacy and safety of increased doses of anticoagulants in COVID-19 patients: A systematic review and meta-analysis. Surgeon. 2022;(1-2):50–65. EDN: FHQTYB doi: 10.33920/med-15-2201-05

[31]

Menezes RG, Rizwan T, Saad Ali S, et al. Postmortem findings in COVID-19 fatalities: A systematic review of current evidence. Leg Med (Tokyo). 2022;54:102001. DOI: 10.1016/j.legalmed.2021.102001

[32]

Menezes R.G., Rizwan T., Saad Ali S., et al. Postmortem findings in COVID-19 fatalities: A systematic review of current evidence // Leg Med (Tokyo). 2022. Vol. 54. ID 102001. doi: 10.1016/j.legalmed.2021.102001

[33]

Menezes RG, Rizwan T, Saad Ali S, et al. Postmortem findings in COVID-19 fatalities: A systematic review of current evidence. Leg Med (Tokyo). 2022;54:102001. DOI: 10.1016/j.legalmed.2021.102001

[34]

Porembskaya OYa, Kravchuk VN, Galchenko MI, et al. Pulmonary vascular thrombosis in COVID-19: clinical and morphological parallels. Rational pharmacotherapy in cardiology. 2022;18(4): 376–384. EDN: HTTTBO doi: 10.20996/1819-6446-2022-08-01

[35]

Порембская О.Я., Кравчук В.Н., Гальченко М.И., и др. Тромбоз сосудистого русла легких при COVID-19: клинико-морфологические параллели // Рациональная фармакотерапия в кардиологии. 2022. Т. 18, № 4. С. 376–384. EDN: HTTTBO doi: 10.20996/1819-6446-2022-08-01

[36]

Porembskaya OYa, Kravchuk VN, Galchenko MI, et al. Pulmonary vascular thrombosis in COVID-19: clinical and morphological parallels. Rational pharmacotherapy in cardiology. 2022;18(4): 376–384. EDN: HTTTBO doi: 10.20996/1819-6446-2022-08-01

[37]

Porembskaya O, Toropova Y, Tomson V, et al. Pulmonary artery thrombosis: A diagnosis that strives for its independence. Int J Mol Sci. 2020;21(14):5086. doi: 10.3390/ijms21145086

[38]

Porembskaya O., Toropova Y., Tomson V., et al. Pulmonary artery thrombosis: A diagnosis that strives for its independence // Int J Mol Sci. 2020. Vol. 21, N. 14. ID 5086. doi: 10.3390/ijms21145086

[39]

Porembskaya O, Toropova Y, Tomson V, et al. Pulmonary artery thrombosis: A diagnosis that strives for its independence. Int J Mol Sci. 2020;21(14):5086. doi: 10.3390/ijms21145086

[40]

von Brühl M-L, Stark K, Steinhart A, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209(4):819–835. doi: 10.1084/jem.20112322

[41]

von Brühl M.-L., Stark K., Steinhart A., et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo // J Exp Med. 2012. Vol. 209, N. 4. Р. 819–835. doi: 10.1084/jem.20112322

[42]

von Brühl M-L, Stark K, Steinhart A, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209(4):819–835. doi: 10.1084/jem.20112322

[43]

Downing LJ, Wakefield TW, Strieter RM, et al. Anti-P-selectin antibody decreases inflammation and thrombus formation in venous thrombosis. J Vasc Surg. 1997;25(5):816–828. doi: 10.1016/S0741-5214(97)70211-8

[44]

Downing L.J., Wakefield T.W., Strieter R.M., et al. Anti-P-selectin antibody decreases inflammation and thrombus formation in venous thrombosis // J Vasc Surg. 1997, Vol. 25, N. 5. Р. 816–828. doi: 10.1016/S0741-5214(97)70211-8

[45]

Downing LJ, Wakefield TW, Strieter RM, et al. Anti-P-selectin antibody decreases inflammation and thrombus formation in venous thrombosis. J Vasc Surg. 1997;25(5):816–828. doi: 10.1016/S0741-5214(97)70211-8

[46]

Brill A, Fuchs TA, Savchenko AS, et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost. 2012;10(1):136–144. doi: 10.1111/J.1538-7836.2011.04544.X

[47]

Brill A., Fuchs T.A., Savchenko A.S., et al. Neutrophil extracellular traps promote deep vein thrombosis in mice // J Thromb Haemost. 2012. Vol. 10, N. 1. Р. 136–144. doi: 10.1111/J.1538-7836.2011.04544.X

[48]

Brill A, Fuchs TA, Savchenko AS, et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost. 2012;10(1):136–144. doi: 10.1111/J.1538-7836.2011.04544.X

[49]

Meng D, Luo M, Liu B. The role of CLEC-2 and its ligands in thromboinflammation. Front Immunol. 2021;12:688643. doi: 10.3389/FIMMU.2021.688643/BIBTEX

[50]

Meng D., Luo M., Liu B. The role of CLEC-2 and its ligands in thromboinflammation // Front Immunol. 2021. N. 12. ID 688643. doi: 10.3389/FIMMU.2021.688643/BIBTEX

[51]

Meng D, Luo M, Liu B. The role of CLEC-2 and its ligands in thromboinflammation. Front Immunol. 2021;12:688643. doi: 10.3389/FIMMU.2021.688643/BIBTEX

[52]

Cherpokova D, Jouvene CC, Libreros S, et al. Resolvin D4 attenuates the severity of pathological thrombosis in mice. Blood. 2019;134(17):1458–1468. doi: 10.1182/BLOOD.2018886317

[53]

Cherpokova D., Jouvene C.C., Libreros S., et al. Resolvin D4 attenuates the severity of pathological thrombosis in mice // Blood. 2019. Vol. 134, N. 17. Р. 1458–1468. doi: 10.1182/BLOOD.2018886317

[54]

Cherpokova D, Jouvene CC, Libreros S, et al. Resolvin D4 attenuates the severity of pathological thrombosis in mice. Blood. 2019;134(17):1458–1468. doi: 10.1182/BLOOD.2018886317

[55]

Stark K, Philippi V, Stockhausen S, et al. Disulfide HMGB1 derived from platelets coordinates venous thrombosis in mice. Blood. 2016;128(20):2435–2449. doi: 10.1182/blood-2016-04-710632

[56]

Stark K., Philippi V., Stockhausen S., et al. Disulfide HMGB1 derived from platelets coordinates venous thrombosis in mice // Blood. 2016. Vol. 128, N. 20. Р. 2435–2449. doi: 10.1182/blood-2016-04-710632

[57]

Stark K, Philippi V, Stockhausen S, et al. Disulfide HMGB1 derived from platelets coordinates venous thrombosis in mice. Blood. 2016;128(20):2435–2449. doi: 10.1182/blood-2016-04-710632

[58]

Weiss EJ, Hamilton JR, Lease KE, Coughlin SR. Protection against thrombosis in mice lacking PAR3. Blood. 2002;100(9):3240–3244. doi: 10.1182/blood-2002-05-1470

[59]

Weiss E.J., Hamilton J.R., Lease K.E., Coughlin S.R. Protection against thrombosis in mice lacking PAR3 // Blood. 2002. Vol. 100, N. 9. Р. 3240–3244. doi: 10.1182/blood-2002-05-1470

[60]

Weiss EJ, Hamilton JR, Lease KE, Coughlin SR. Protection against thrombosis in mice lacking PAR3. Blood. 2002;100(9):3240–3244. doi: 10.1182/blood-2002-05-1470

[61]

Porembskaya O, Zinserling V, Tomson V, et al. Neutrophils mediate pulmonary artery thrombosis in situ. Int J Mol Sci. 2022;23(10):5829. doi: 10.3390/IJMS23105829

[62]

Porembskaya O., Zinserling V., Tomson V., et al. Neutrophils mediate pulmonary artery thrombosis in situ // Int J Mol Sci. 2022. Vol. 23, N. 10. ID 5829. doi: 10.3390/IJMS23105829

[63]

Porembskaya O, Zinserling V, Tomson V, et al. Neutrophils mediate pulmonary artery thrombosis in situ. Int J Mol Sci. 2022;23(10):5829. doi: 10.3390/IJMS23105829

[64]

Camprubí-Rimblas M, Tantinyà N, Bringué J, et al. Anticoagulant therapy in acute respiratory distress syndrome. Ann Transl Med. 2018;6(2):36. doi: 10.21037/atm.2018.01.08

[65]

Camprubí-Rimblas M., Tantinyà N., Bringué J., et al. Anticoagulant therapy in acute respiratory distress syndrome // Ann Transl Med. 2018. Vol. 6, N. 2. ID 36. doi: 10.21037/atm.2018.01.08

[66]

Camprubí-Rimblas M, Tantinyà N, Bringué J, et al. Anticoagulant therapy in acute respiratory distress syndrome. Ann Transl Med. 2018;6(2):36. doi: 10.21037/atm.2018.01.08

[67]

Spadaro S, Park M, Turrini C, et al. Biomarkers for acute respiratory distress syndrome and prospects for personalised medicine. J Inflamm (Lond). 2019;16:1. doi: 10.1186/S12950-018-0202-Y

[68]

Spadaro S., Park M., Turrini C., et al. Biomarkers for acute respiratory distress syndrome and prospects for personalised medicine // J Inflamm (Lond). 2019. Vol. 16. ID 1. doi: 10.1186/S12950-018-0202-Y

[69]

Spadaro S, Park M, Turrini C, et al. Biomarkers for acute respiratory distress syndrome and prospects for personalised medicine. J Inflamm (Lond). 2019;16:1. doi: 10.1186/S12950-018-0202-Y

[70]

Evans CE, Zhao Y-Y. Impact of thrombosis on pulmonary endothelial injury and repair following sepsis. Am J Physiol Lung Cell Mol Physiol. 2017;312(4):L441–L451. doi: 10.1152/AJPLUNG.00441.2016

[71]

Evans C.E., Zhao Y.-Y. Impact of thrombosis on pulmonary endothelial injury and repair following sepsis // Am J Physiol Lung Cell Mol Physiol. 2017. Vol. 312, N. 4. Р. L441–L451. doi: 10.1152/AJPLUNG.00441.2016

[72]

Evans CE, Zhao Y-Y. Impact of thrombosis on pulmonary endothelial injury and repair following sepsis. Am J Physiol Lung Cell Mol Physiol. 2017;312(4):L441–L451. doi: 10.1152/AJPLUNG.00441.2016

[73]

Starikova E, Mammedova J, Ozhiganova A, et al. Protective role of mytilus edulis hydrolysate in lipopolysaccharide-galactosamine acute liver injury. Front Pharmacol. 2021;12:667572. doi: 10.3389/FPHAR.2021.667572

[74]

Starikova E., Mammedova J., Ozhiganova A., et al. Protective role of mytilus edulis hydrolysate in lipopolysaccharide-galactosamine acute liver injury // Front Pharmacol. 2021. Vol. 12. ID 667572. doi: 10.3389/FPHAR.2021.667572

[75]

Starikova E, Mammedova J, Ozhiganova A, et al. Protective role of mytilus edulis hydrolysate in lipopolysaccharide-galactosamine acute liver injury. Front Pharmacol. 2021;12:667572. doi: 10.3389/FPHAR.2021.667572

[76]

Kim Y-S, Ahn C-B, Je J-Y. Anti-inflammatory action of high molecular weight Mytilus edulis hydrolysates fraction in LPS-induced RAW264.7 macrophage via NF-κB and MAPK pathways. Food Chem. 2016;202:9–14. doi: 10.1016/J.FOODCHEM.2016.01.114

[77]

Kim Y.-S., Ahn C.-B., Je J.-Y. Anti-inflammatory action of high molecular weight Mytilus edulis hydrolysates fraction in LPS-induced RAW264.7 macrophage via NF-κB and MAPK pathways // Food Chem. 2016. Vol. 202. Р. 9–14. doi: 10.1016/J.FOODCHEM.2016.01.114

[78]

Kim Y-S, Ahn C-B, Je J-Y. Anti-inflammatory action of high molecular weight Mytilus edulis hydrolysates fraction in LPS-induced RAW264.7 macrophage via NF-κB and MAPK pathways. Food Chem. 2016;202:9–14. doi: 10.1016/J.FOODCHEM.2016.01.114

[79]

Qiao M, Tu M, Wang Z, et al. Identification and antithrombotic activity of peptides from blue mussel (Mytilus edulis) protein. Int J Mol Sci. 2018;19(1):138. doi: 10.3390/ijms19010138

[80]

Qiao M., Tu M., Wang Z., et al. Identification and antithrombotic activity of peptides from blue mussel (Mytilus edulis) protein // Int J Mol Sci. 2018. Vol. 19, N. 1. ID 138. doi: 10.3390/ijms19010138

[81]

Qiao M, Tu M, Wang Z, et al. Identification and antithrombotic activity of peptides from blue mussel (Mytilus edulis) protein. Int J Mol Sci. 2018;19(1):138. doi: 10.3390/ijms19010138

[82]

Starikova EA, Mammedova JT, Porembskaya OYa, et al. Mytilus edulis hydrolysate enhances proliferation and protects endothelial cells against hypochlorous acid-induced oxidative stress. Medical academic journal. 2022;22(4):57–67. EDN: EAFIBR doi: 10.17816/MAJ114811

[83]

Старикова Э.А., Маммедова Д.Т., Порембская О.Я. Гидролизат Mytilus Edulis усиливает пролиферацию эндотелиальных клеток и защищает от индуцированного хлорноватистой кислотой окислительного стресса // Медицинский академический журнал. 2022. Т. 22, № 4. С. 57–67. EDN: EAFIBR doi: 10.17816/MAJ114811

[84]

Starikova EA, Mammedova JT, Porembskaya OYa, et al. Mytilus edulis hydrolysate enhances proliferation and protects endothelial cells against hypochlorous acid-induced oxidative stress. Medical academic journal. 2022;22(4):57–67. EDN: EAFIBR doi: 10.17816/MAJ114811

[85]

Jung W-K, Kim S-K. Isolation and characterisation of an anticoagulant oligopeptide from blue mussel, Mytilus edulis. Food Chem. 2009;117(4):687–692. doi: 10.1016/J.FOODCHEM.2009.04.077

[86]

Jung W.-K., Kim S.-K. Isolation and characterisation of an anticoagulant oligopeptide from blue mussel, Mytilus edulis // Food Chem. 2009. Vol. 117, N. 4. Р. 687–692. doi: 10.1016/J.FOODCHEM.2009.04.077

[87]

Jung W-K, Kim S-K. Isolation and characterisation of an anticoagulant oligopeptide from blue mussel, Mytilus edulis. Food Chem. 2009;117(4):687–692. doi: 10.1016/J.FOODCHEM.2009.04.077

[88]

Lendrum A, Fraser D, Slidders W, Henderson R. Studies on the character and staining of fibrin. J Clin Pathol. 1962;15(5):401–413. doi: 10.1136/jcp.15.5.401

[89]

Lendrum A., Fraser D., Slidders W., Henderson R. Studies on the character and staining of fibrin // J Clin Pathol. 1962. Vol. 15, N. 5. Р. 401–413. doi: 10.1136/jcp.15.5.401

[90]

Lendrum A, Fraser D, Slidders W, Henderson R. Studies on the character and staining of fibrin. J Clin Pathol. 1962;15(5):401–413. doi: 10.1136/jcp.15.5.401

[91]

Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–675. doi: 10.1038/nmeth.2089

[92]

Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis // Nat Methods. 2012. Vol. 9, N. 7. Р. 671–675. doi: 10.1038/nmeth.2089

[93]

Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–675. doi: 10.1038/nmeth.2089

[94]

Akoglu H. User’s guide to correlation coefficients. Turk J Emerg Med. 2018;18(3):91–93. doi: 10.1016/j.tjem.2018.08.001

[95]

Akoglu H. User’s guide to correlation coefficients // Turk J Emerg Med. 2018. Vol. 18, N. 3. Р. 91–93. doi: 10.1016/j.tjem.2018.08.001

[96]

Akoglu H. User’s guide to correlation coefficients. Turk J Emerg Med. 2018;18(3):91–93. doi: 10.1016/j.tjem.2018.08.001

[97]

Porembskaya O, Lobastov K, Pashovkina O, et al. Thrombosis of pulmonary vasculature despite anticoagulation and thrombolysis: The findings from seven autopsies. Thromb Update. 2020;1:100017. doi: 10.1016/j.tru.2020.100017

[98]

Porembskaya O., Lobastov K., Pashovkina O., et al. Thrombosis of pulmonary vasculature despite anticoagulation and thrombolysis: The findings from seven autopsies // Thromb Update. 2020. Vol. 1. ID 100017. doi: 10.1016/j.tru.2020.100017

[99]

Porembskaya O, Lobastov K, Pashovkina O, et al. Thrombosis of pulmonary vasculature despite anticoagulation and thrombolysis: The findings from seven autopsies. Thromb Update. 2020;1:100017. doi: 10.1016/j.tru.2020.100017

[100]

Nuckton TJ, Alonso JA, Kallet RH, et al. Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N Engl J Med. 2002;346(17):1281–1286. doi: 10.1056/NEJMOA012835

[101]

Nuckton T.J., Alonso J.A., Kallet R.H., et al. Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome // N Engl J Med. 2002. Vol. 346, N. 17. Р. 1281–1286. doi: 10.1056/NEJMOA012835

[102]

Nuckton TJ, Alonso JA, Kallet RH, et al. Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N Engl J Med. 2002;346(17):1281–1286. doi: 10.1056/NEJMOA012835

[103]

Robertson HT. Dead space: the physiology of wasted ventilation. Eur Respir J. 2015;45(6):1704–1716. doi: 10.1183/09031936.00137614

[104]

Robertson H.T. Dead space: the physiology of wasted ventilation // Eur Respir J. 2015. Vol. 45, N. 6. Р. 1704–1716. doi: 10.1183/09031936.00137614

[105]

Robertson HT. Dead space: the physiology of wasted ventilation. Eur Respir J. 2015;45(6):1704–1716. doi: 10.1183/09031936.00137614

[106]

Nicklas JM, Gordon AE, Henke PK. Resolution of deep venous thrombosis: Proposed immune paradigms. Int J Mol Sci. 2020;21(6):2080. doi: 10.3390/ijms21062080

[107]

Nicklas J.M., Gordon A.E., Henke P.K. Resolution of deep venous thrombosis: Proposed immune paradigms // Int J Mol Sci. 2020. Vol. 21, N. 6. ID 2080. doi: 10.3390/ijms21062080

[108]

Nicklas JM, Gordon AE, Henke PK. Resolution of deep venous thrombosis: Proposed immune paradigms. Int J Mol Sci. 2020;21(6):2080. doi: 10.3390/ijms21062080

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

162

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/