Experimental evaluation of the purity of medical oxygen obtained by adsorption technology with pressure fluctuations taking into account the variability of the parameters of the incoming air

Yurii V. Miroshnichenko , Rimma A. Enikeeva , Ekaterina A. Klimkina

Bulletin of the Russian Military Medical Academy ›› 2023, Vol. 25 ›› Issue (4) : 647 -652.

PDF
Bulletin of the Russian Military Medical Academy ›› 2023, Vol. 25 ›› Issue (4) : 647 -652. DOI: 10.17816/brmma607444
Original Study Article
research-article

Experimental evaluation of the purity of medical oxygen obtained by adsorption technology with pressure fluctuations taking into account the variability of the parameters of the incoming air

Author information +
History +
PDF

Abstract

This study presents the results of the evaluation of the purity of medical oxygen obtained by adsorption technology with pressure fluctuations, taking into account the variability of the parameters of the incoming air, and the results of the correlation analysis of data obtained from the monographs of the European and American Pharmacopoeias. The quality of oxygen obtained from air that meets sanitary standards and under conditions of the “worst case,” while fixing the time of the output of the slip signal of monoxide and carbon dioxide as marker gases, was assessed. The slip time under the experimental conditions was 13 h 22 min. The composition of the gas produced by installation was analyzed. Impurities of nitrogen, argon, and water were recognized as predominant quantitatively. Nitrous gases and sulfur dioxide were not detected. A comparative assessment of the data on medical oxygen (93%) presented in the European EP 8. 0 (No. 2455) and the American USP 38-NF (No. 4180) pharmacopeias showed that no single approach is available to assess the quality of 93% medical oxygen in pharmaceutical practice worldwide. The authors of the above-mentioned pharmacopeias note that installations for obtaining 93% medical oxygen, implementing adsorption technology with pressure fluctuations, must be equipped with gas-analytical devices to quantify the level of at least two impurities: carbon monoxide and dioxide. In general, the data obtained indicate that when obtaining 93% medical oxygen by adsorption technology with pressure fluctuations from air corresponding to sanitary and hygienic indicators (clean), the resulting gas did not contain impurities requiring quantitative assessment and/or identification. If oxygen in its pure form is rarely supplied to the patient, its further dilution to 40%–60% is more often required, and the content of hypothetically possible impurities becomes negligible. However, the technology of air separation on molecular sieves is a complex physicochemical (thermodynamic) process, and its effectiveness depends on the component composition of the incoming air, which may change when working under unfavorable environmental conditions in various locations. In this regard, medical oxygen production plants that implement this technology must employ gas-analytical devices to quantify the level of carbon dioxide and carbon monoxide impurities without fail.

Keywords

medical oxygen / oxygen generator / oxygen plant 93% / adsorption under pressure fluctuations / impurities of carbon oxides in medical gases / sodium zeolite type X / experience in the “worst case” / gas analytical

Cite this article

Download citation ▾
Yurii V. Miroshnichenko, Rimma A. Enikeeva, Ekaterina A. Klimkina. Experimental evaluation of the purity of medical oxygen obtained by adsorption technology with pressure fluctuations taking into account the variability of the parameters of the incoming air. Bulletin of the Russian Military Medical Academy, 2023, 25(4): 647-652 DOI:10.17816/brmma607444

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Trishkin DV, Fisun AYa, Kryukov EV, Vertii BD. Voennaya meditsina i sovremennye voiny: opyt istorii i prognozy, chto zhdat’ i k chemu gotovit’sya. In: Collection of articles of the III All-Russian Scientific and Technical Conference “Sostoyanie i perspektivy razvitiya sovremennoi nauki po napravleniyu «Biotekhnicheskie sistemy i tekhnologii»”, Anapa, May 27–28, 2021. Anapa: Military Innovative Technopolis «ERA». 2021:8–16. (In Russ.).

[2]

Тришкин Д.В., Фисун А.Я., Крюков Е.В., Вертий Б.Д. Военная медицина и современные войны: опыт истории и прогнозы, что ждать и к чему готовиться // Состояние и перспективы развития современной науки по направлению «Биотехнические системы и технологии»: сборник статей III Всероссийской научно-технической конференции, Анапа, 27–28 мая 2021 г. Анапа: Военный инновационный технополис «ЭРА», 2021. С. 8–16.

[3]

Miroshnichenko YV, Ivchenko EV, Kononov VN, et al. Prospective directions for innovative development strategies in pharmacy in the military health system of the Russian Federation. Bulletin of the Russian Military Medical Academy. 2022;24(1):179–188. (In Russ.). DOI: 10.17816/brmma101106

[4]

Мирошниченко Ю.В., Ивченко Е.В., Кононов В.Н., и др. Перспективные направления инновационного развития фармации в военном здравоохранении России // Вестник Российской военно-медицинской академии. 2022. Т. 24, № 1. С. 179–188. DOI: 10.17816/brmma101106

[5]

Kryukov EV, Trishkin DV, Saluhov VV, Ivchenko EV. Experience of military medicine in the fight against new coronavirus infection. Bulletin of the Russian Military Medical Academy. 2022;92(7): 699–706. (In Russ.). DOI: 10.31857/S086958732207009X

[6]

Крюков Е.В., Тришкин Д.В., Салухов В.В., Ивченко Е.В. Опыт военной медицины в борьбе с новой коронавирусной инфекцией // Вестник Российской академии наук. 2022. Т. 92, № 7. С. 699–706. DOI: 10.31857/S086958732207009X

[7]

Andreenko AA, Andrejchuk YuV, Arsent’ev VG, et al. Infektsiya, vyzvannaya SARS-CoV-2. Saint Petersburg: MMA; 2023. 260 p. (In Russ.).

[8]

Андреенко А.А., Андрейчук Ю.В., Арсентьев В.Г., и др. Инфекция, вызванная SARS-CoV-2. Санкт-Петербург: ВМА, 2023. 260 с.

[9]

Miroshnichenko YV, Enikeeva RA, Shchegolev AV, Vertii BD. Implementation of modern approaches to the provision of medical oxygen in military healthcare. Bulletin of the Russian Military Medical Academy. 2022;343(6):68–72. (In Russ.). DOI: 10.52424/00269050_2022_343_6_68

[10]

Мирошниченко Ю.В., Еникеева Р.А., Щеголев А.В., Вертий Б.Д. Реализация в военном здравоохранении современных подходов к обеспечению медицинским кислородом // Военно-медицинский журнал. 2022. Т. 343, № 6. С. 68–72. DOI: 10.52424/00269050_2022_343_6_68

[11]

Jayaraman A, Cho S, Yang RT, Bhat TSG. Adsorption of nitrogen, oxygen and argon on Na-CeX zeolites. Adsorption. 2002;8(4):271–278. DOI:10.1023/A:1021529328878

[12]

Jayaraman A., Cho S., Yang R.T., Bhat T.S.G. Adsorption of nitrogen, oxygen and argon on Na-CeX zeolites // Adsorption. 2002. Vol. 8, No. 4. P. 271–278.

[13]

Akulov AK. Proizvodstvo azota i kisloroda metodom adsorbtsii pri kolebanii davleniya. Exposition Oil Gas. 2017;3(56):67–68. (In Russ.)

[14]

Акулов А.К. Производство азота и кислорода методом адсорбции при колебании давления // Экспозиция Нефть Газ. 2017. № 3 (56). С. 67–68.

[15]

Petrov SV. Medical oxygen. Comparison of approaches to quality assessment in the European Union and in the Russian Federation. Drug Development & Registration. 2014;3(8):124–126. (In Russ.).

[16]

Петров С.В. Кислород медицинский. Сравнение подходов к оценке качества в Евросоюзе и в Российской Федерации // Разработка и регистрация лекарственных средств. 2014. № 3 (8). С. 124–126.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

70

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/