Stem cell exosomes in the pathophysiology of cardiovascular diseases

Andrei S. Rudoy , Alexander V. Moskalev

Bulletin of the Russian Military Medical Academy ›› 2024, Vol. 26 ›› Issue (1) : 113 -128.

PDF
Bulletin of the Russian Military Medical Academy ›› 2024, Vol. 26 ›› Issue (1) : 113 -128. DOI: 10.17816/brmma595914
Review
review-article

Stem cell exosomes in the pathophysiology of cardiovascular diseases

Author information +
History +
PDF

Abstract

This study focused on the current state of the therapeutic potential of extracellular vesicles, which depends on the methods of their isolation and composition and the characteristics of the vesicular and nonvesicular components. Myocardial damage, particularly as a result of acute myocardial infarction, leads to irreversible death of cardiomyocytes and sarcomeres and ultimately to heart failure. The adult heart has limited regenerative capacity; therefore, stimulation of endogenous repair and regenerative potentials using cell therapy has potential. Moreover, the benefit from the injection of stem cells and progenitor cells into the damaged myocardium is mediated by the factors they secrete. In particular, exosomes, nanosized secreted extracellular vesicles of endosomal origin, have become key signaling organelles in intercellular communication and are currently considered key regenerative components of the secretome of stem and progenitor cells. Exosomes released from cardiac embryonic and mesenchymal stem cells, resident stem and progenitor cells (including a specific subgroup of cardiosphere cells), induced pluripotent stem cells, and cardiomyocytes isolated from these cells have cardioprotective, immunomodulatory, and reparative abilities. The use of exosomes in the targeted transport of drugs in lipid-like nanocontainers and extracellular vesicles is another promising area. Because artificial drug carriers, including liposomes and lipid-based nanoparticles, are limited by potential toxicity, immunogenicity, and inability to target specific organs, exosomes hold good promise as potential drug carriers. Compounds can be transported both inside exosomes and on their surface. Secreted extracellular vesicles, particularly exosomes, can be considered a key functional component of the secretome of stem cells and cardiogenic progenitor cells (mesenchymal stem cells, endogenous cardiac progenitor cells, cardiospheres, bone marrow embryonic stem cells, and bone marrow induced pluripotent stem cells). They have demonstrated therapeutic efficacy in preclinical models in the study of cardiovascular pathology.

Keywords

cardiosphere / extracellular vesicles / myocardium / cardiomyocytes / nucleic acids / stem cells / progenitor cells / progenitor cells / exosome / sarcomere

Cite this article

Download citation ▾
Andrei S. Rudoy, Alexander V. Moskalev. Stem cell exosomes in the pathophysiology of cardiovascular diseases. Bulletin of the Russian Military Medical Academy, 2024, 26(1): 113-128 DOI:10.17816/brmma595914

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lázár E, Sadek HA, Bergmann O. Cardiomyocyte renewal in the human heart: insights from the fall-out. Eur Heart J. 2017;38(30):2333–2342. doi: 10.1093/eurheartj/ehx343

[2]

Lázár E., Sadek H.A., Bergmann O. Cardiomyocyte renewal in the human heart: insights from the fall-out // Eur Heart J. 2017. Vol. 38, N. 30. P. 2333–2342. doi: 10.1093/eurheartj/ehx343

[3]

Lázár E, Sadek HA, Bergmann O. Cardiomyocyte renewal in the human heart: insights from the fall-out. Eur Heart J. 2017;38(30):2333–2342. doi: 10.1093/eurheartj/ehx343

[4]

Nguyen PK, Rhee J-W, Wu JC. Adult stem cell therapy and heart failure, 2000 to 2016: a systematic review. JAMA Cardiol. 2016;1(7):831–841. doi: 10.1001/jamacardio.2016.2225

[5]

Nguyen P.K., Rhee J.-W., Wu J.C. Adult stem cell therapy and heart failure, 2000 to 2016: a systematic review // JAMA Cardiol. 2016. Vol. 1, N. 7. P. 831–841. doi: 10.1001/jamacardio.2016.2225

[6]

Nguyen PK, Rhee J-W, Wu JC. Adult stem cell therapy and heart failure, 2000 to 2016: a systematic review. JAMA Cardiol. 2016;1(7):831–841. doi: 10.1001/jamacardio.2016.2225

[7]

Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature. 2001;410(6829):701–705. doi: 10.1038/35070587

[8]

Orlic D., Kajstura J., Chimenti S., et al. Bone marrow cells regenerate infarcted myocardium // Nature. 2001. Vol. 410, N. 6829. P. 701–705. doi: 10.1038/35070587

[9]

Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature. 2001;410(6829):701–705. doi: 10.1038/35070587

[10]

Balsam LB, Wagers AJ, Christensen JL, et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature. 2004;428(6983):668–673. doi: 10.1038/nature02460

[11]

Balsam L.B., Wagers A.J., Christensen J.L., et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium // Nature. 2004. Vol. 428, N. 6983. P. 668–673. doi: 10.1038/nature02460

[12]

Balsam LB, Wagers AJ, Christensen JL, et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature. 2004;428(6983):668–673. doi: 10.1038/nature02460

[13]

Tompkins BA, Balkan W, Winkler J, et al. Preclinical studies of stem cell therapy for heart disease. Circ Res. 2018;122(70): 1006–1020. doi: 10.1161/CIRCRESAHA.117.312486

[14]

Tompkins B.A., Balkan W., Winkler J., et al. Preclinical studies of stem cell therapy for heart disease // Circ Res. 2018. Vol. 122, N. 7. P. 1006–1020. doi: 10.1161/CIRCRESAHA.117.312486

[15]

Tompkins BA, Balkan W, Winkler J, et al. Preclinical studies of stem cell therapy for heart disease. Circ Res. 2018;122(70): 1006–1020. doi: 10.1161/CIRCRESAHA.117.312486

[16]

Dergilev KV, Vasilets ID, Tsokolaeva ZI, et al. Perspectives of cell therapy for myocardial infarction and heart failure based on cardiosphere cells. Therapeutic archive. 2020;92(4):111–120. EDN: BCFIOG doi: 10.26442/00403660.2020.04.000634

[17]

Дергилев К.В., Василец Ю.Д., Цоколаева З.И., и др. Перспективы клеточной терапии инфаркта миокарда и сердечной недостаточности на основе клеток кардиосфер // Терапевтический архив. 2020. Т. 92, № 4. С. 111–120. EDN: BCFIOG doi: 10.26442/00403660.2020.04.000634

[18]

Dergilev KV, Vasilets ID, Tsokolaeva ZI, et al. Perspectives of cell therapy for myocardial infarction and heart failure based on cardiosphere cells. Therapeutic archive. 2020;92(4):111–120. EDN: BCFIOG doi: 10.26442/00403660.2020.04.000634

[19]

Makkar RR, Smith RR, Cheng K, et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet. 2012;379(9819):895–904. doi: 10.1016/S0140-6736(12)60195-0

[20]

Makkar R.R., Smith R.R., Cheng K., et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial // Lancet. 2012. Vol. 379, N. 9819. P. 895–904. doi: 10.1016/S0140-6736(12)60195-0

[21]

Makkar RR, Smith RR, Cheng K, et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet. 2012;379(9819):895–904. doi: 10.1016/S0140-6736(12)60195-0

[22]

Tarui S, Ishigami S, Ousaka D, et al. Transcoronary infusion of cardiac progenitor cells in hypoplastic left heart syndrome: Three-year follow up of the Transcoronary Infusion of Cardiac Progenitor Cells in patients with single-ventricle physiology (TICAP) trial. J Thorac Cardiovasc Surg. 2015;150(5):1198–1208.e2. doi: 10.1016/j.jtcvs.2015.06.076

[23]

Tarui S., Ishigami S., Ousaka D., et al. Transcoronary infusion of cardiac progenitor cells in hypoplastic left heart syndrome: Three-year follow up of the Transcoronary Infusion of Cardiac Progenitor Cells in patients with single-ventricle physiology (TICAP) trial // J Thorac Cardiovasc Surg. 2015. Vol. 150, N. 5. P. 1198–1208.e2. doi: 10.1016/j.jtcvs.2015.06.076

[24]

Tarui S, Ishigami S, Ousaka D, et al. Transcoronary infusion of cardiac progenitor cells in hypoplastic left heart syndrome: Three-year follow up of the Transcoronary Infusion of Cardiac Progenitor Cells in patients with single-ventricle physiology (TICAP) trial. J Thorac Cardiovasc Surg. 2015;150(5):1198–1208.e2. doi: 10.1016/j.jtcvs.2015.06.076

[25]

Ishigami S, Ohtsuki S, Eitoku T, et al. Intracoronary cardiac progenitor cells in single ventricle physiology: the PERSEUS (cardiac progenitor cell infusion to treat univentricular heart disease) randomized phase 2 trial. Circ Res. 2017;120(7):1162–1173. doi: 10.1161/CIRCRESAHA.116.310253

[26]

Ishigami S., Ohtsuki S., Eitoku T., et al. Intracoronary cardiac progenitor cells in single ventricle physiology: the PERSEUS (cardiac progenitor cell infusion to treat univentricular heart disease) randomized phase 2 trial // Circ Res. 2017. Vol. 120, N. 7. P. 1162–1173. doi: 10.1161/CIRCRESAHA.116.310253

[27]

Ishigami S, Ohtsuki S, Eitoku T, et al. Intracoronary cardiac progenitor cells in single ventricle physiology: the PERSEUS (cardiac progenitor cell infusion to treat univentricular heart disease) randomized phase 2 trial. Circ Res. 2017;120(7):1162–1173. doi: 10.1161/CIRCRESAHA.116.310253

[28]

Chakravarty T, Makkar RR, Ascheim DD, et al. ALLogeneic Heart STem Cells to Achieve Myocardial Regeneration (ALLSTAR) Trial: rationale and design. Cell Transplant. 2017;26(2):205–214. doi: 10.3727/096368916X692933

[29]

Chakravarty T., Makkar R.R., Ascheim D.D., et al. ALLogeneic Heart STem Cells to Achieve Myocardial Regeneration (ALLSTAR) Trial: rationale and design // Cell Transplant. 2017. Vol. 26, N. 2. P. 205–214. doi: 10.3727/096368916X692933

[30]

Chakravarty T, Makkar RR, Ascheim DD, et al. ALLogeneic Heart STem Cells to Achieve Myocardial Regeneration (ALLSTAR) Trial: rationale and design. Cell Transplant. 2017;26(2):205–214. doi: 10.3727/096368916X692933

[31]

Chakravarty T, Makkar R, Henry T, et al. Multivessel intracoronary infusion of allogeneic derived cardiosphere cells in cardiomyopathy: long term outcomes of the dilated cardiomyopathy intervention with allogeneic myocardially regenerative cells (DYNAMIC STUDY). J Am Coll Cardiol. 2016;68(18-1):B332. doi: 10.1016/j.jacc.2016.09.848

[32]

Chakravarty T., Makkar R., Henry T., et al. Multivessel intracoronary infusion of allogeneic derived cardiosphere cells in cardiomyopathy: long term outcomes of the dilated cardiomyopathy intervention with allogeneic myocardially regenerative cells (DYNAMIC STUDY) // J Am Coll Cardiol. 2016. Vol. 68, N. 18-1. ID B332. doi: 10.1016/j.jacc.2016.09.848

[33]

Chakravarty T, Makkar R, Henry T, et al. Multivessel intracoronary infusion of allogeneic derived cardiosphere cells in cardiomyopathy: long term outcomes of the dilated cardiomyopathy intervention with allogeneic myocardially regenerative cells (DYNAMIC STUDY). J Am Coll Cardiol. 2016;68(18-1):B332. doi: 10.1016/j.jacc.2016.09.848

[34]

Taylor M, Jefferies J, Byrne B, et al. Cardiac and skeletal muscle effects in the randomized HOPE-Duchenne trial. Neurology. 2019;92(8):866–878. doi: 10.1212/WNL.0000000000006950

[35]

Taylor M., Jefferies J., Byrne B., et al. Cardiac and skeletal muscle effects in the randomized HOPE-Duchenne trial // Neurology. 2019. Vol. 92, N. 8. P. 866–878. doi: 10.1212/WNL.0000000000006950

[36]

Taylor M, Jefferies J, Byrne B, et al. Cardiac and skeletal muscle effects in the randomized HOPE-Duchenne trial. Neurology. 2019;92(8):866–878. doi: 10.1212/WNL.0000000000006950

[37]

Keerthikumar S, Chisanga D, Ariyaratne D, et al. ExoCarta: a web-based compendium of exosomal cargo. J Mol Biol. 2016;428(4): 688–692. doi: 10.1016/j.jmb.2015.09.019

[38]

Keerthikumar S., Chisanga D., Ariyaratne D., et al. ExoCarta: a web-based compendium of exosomal cargo // J Mol Biol. 2016. Vol. 428, N. 4. P. 688–692. doi: 10.1016/j.jmb.2015.09.019

[39]

Keerthikumar S, Chisanga D, Ariyaratne D, et al. ExoCarta: a web-based compendium of exosomal cargo. J Mol Biol. 2016;428(4): 688–692. doi: 10.1016/j.jmb.2015.09.019

[40]

Kalra H, Simpson RJ, Hong J, et al. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol. 2012;10(12):1001450. doi: 10.1371/journal.pbio.1001450

[41]

Kalra H., Simpson R.J., Hong J., et al. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation // PLoS Biol. 2012. Vol. 10, N. 12. ID 1001450. doi: 10.1371/journal.pbio.1001450

[42]

Kalra H, Simpson RJ, Hong J, et al. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol. 2012;10(12):1001450. doi: 10.1371/journal.pbio.1001450

[43]

Kim D-K, Kang B, Kim OY, et al. EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles. J Extracell Vesicles. 2013;2(1):20384. doi: 10.3402/jev.v2i0.20384

[44]

Kim D.-K., Kang B., Kim O.Y., et al. EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles // J Extracell Vesicles. 2013. Vol. 2, N. 1. ID 20384. doi: 10.3402/jev.v2i0.20384

[45]

Kim D-K, Kang B, Kim OY, et al. EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles. J Extracell Vesicles. 2013;2(1):20384. doi: 10.3402/jev.v2i0.20384

[46]

Banerjee MN, Bolli R, Hare JM. Clinical studies of cell therapy in cardiovascular medicine: Recent developments and future directions. Circ Res. 2018;123(2):266–287. doi: 10.1161/CIRCRESAHA.118.311217

[47]

Banerjee M.N., Bolli R., Hare J.M. Clinical studies of cell therapy in cardiovascular medicine: Recent developments and future directions // Circ Res. 2018. Vol. 123, N. 2. P. 266–287. doi: 10.1161/CIRCRESAHA.118.311217

[48]

Banerjee MN, Bolli R, Hare JM. Clinical studies of cell therapy in cardiovascular medicine: Recent developments and future directions. Circ Res. 2018;123(2):266–287. doi: 10.1161/CIRCRESAHA.118.311217

[49]

Tang X-L, Li Q, Rokosh G, et al. Long-term outcome of administration of c-kitPOS cardiac progenitor cells after acute myocardial infarction: transplanted cells do not become cardiomyocytes, but structural and functional improvement and proliferation of endogenous cells persist for at least one year. Circ Res. 2016;118(7):1091–1105. doi: 10.1161/CIRCRESAHA.115.307647

[50]

Tang X.-L., Li Q., Rokosh G., et al. Long-term outcome of administration of c-kitPOS cardiac progenitor cells after acute myocardial infarction: transplanted cells do not become cardiomyocytes, but structural and functional improvement and proliferation of endogenous cells persist for at least one year // Circ Res. 2016. Vol. 118, N. 7. P. 1091–1105. doi: 10.1161/CIRCRESAHA.115.307647

[51]

Tang X-L, Li Q, Rokosh G, et al. Long-term outcome of administration of c-kitPOS cardiac progenitor cells after acute myocardial infarction: transplanted cells do not become cardiomyocytes, but structural and functional improvement and proliferation of endogenous cells persist for at least one year. Circ Res. 2016;118(7):1091–1105. doi: 10.1161/CIRCRESAHA.115.307647

[52]

Ibrahim A, Marbán E. Exosomes: fundamental biology and roles in cardiovascular physiology. Ann Rev Physiol. 2016;78:67–83. doi: 10.1146/annurev-physiol-021115-104929

[53]

Ibrahim A., Marbán E. Exosomes: fundamental biology and roles in cardiovascular physiology // Ann Rev Physiol. 2016. Vol. 78. P. 67–83. doi: 10.1146/annurev-physiol-021115-104929

[54]

Ibrahim A, Marbán E. Exosomes: fundamental biology and roles in cardiovascular physiology. Ann Rev Physiol. 2016;78:67–83. doi: 10.1146/annurev-physiol-021115-104929

[55]

Zhang ZG, Buller B, Chopp M. Exosomes – beyond stem cells for restorative therapy in stroke and neurological injury. Nat Rev Neurol. 2019;15(4):193–203. doi: 10.1038/s41582-018-0126-4

[56]

Zhang Z.G., Buller B., Chopp M. Exosomes – beyond stem cells for restorative therapy in stroke and neurological injury // Nat Rev Neurol. 2019. Vol. 15, N. 4. P. 193–203. doi: 10.1038/s41582-018-0126-4

[57]

Zhang ZG, Buller B, Chopp M. Exosomes – beyond stem cells for restorative therapy in stroke and neurological injury. Nat Rev Neurol. 2019;15(4):193–203. doi: 10.1038/s41582-018-0126-4

[58]

Balbi C, Vassalli G. Exosomes: Beyond stem cells for cardiac protection and repair. Stem Cells. 2020;38(11):1387–1399. doi: 10.1002/stem.3261

[59]

Balbi C., Vassalli G. Exosomes: Beyond stem cells for cardiac protection and repair // Stem Cells. 2020. Vol. 38, N. 11. P. 1387–1399. doi: 10.1002/stem.3261

[60]

Balbi C, Vassalli G. Exosomes: Beyond stem cells for cardiac protection and repair. Stem Cells. 2020;38(11):1387–1399. doi: 10.1002/stem.3261

[61]

Glembotski CC. Expanding the paracrine hypothesis of stem cell–mediated repair in the heart: When the unconventional becomes conventional. Circ Res. 2017;120(5):772–774. doi: 10.1161/CIRCRESAHA.116.310298

[62]

Glembotski C.C. Expanding the paracrine hypothesis of stem cell–mediated repair in the heart: When the unconventional becomes conventional // Circ Res. 2017. Vol. 120, N. 5. P. 772–774. doi: 10.1161/CIRCRESAHA.116.310298

[63]

Glembotski CC. Expanding the paracrine hypothesis of stem cell–mediated repair in the heart: When the unconventional becomes conventional. Circ Res. 2017;120(5):772–774. doi: 10.1161/CIRCRESAHA.116.310298

[64]

Théry C, Witwer K, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750. doi: 10.1080/20013078.2018.1535750

[65]

Théry C., Witwer K., Aikawa E., et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines // J Extracell Vesicles. 2018. Vol. 7, N. 1. ID 1535750. doi: 10.1080/20013078.2018.1535750

[66]

Théry C, Witwer K, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750. doi: 10.1080/20013078.2018.1535750

[67]

Van Deun J, Mestdagh P, Agostinis P, et al. EV-TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research. Nat Methods. 2017;14(3):228–232. doi: 10.1038/nmeth.4185

[68]

Van Deun J., Mestdagh P., Agostinis P., et al. EV-TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research // Nat Methods. 2017. Vol. 14, N. 3. P. 228–232. doi: 10.1038/nmeth.4185

[69]

Van Deun J, Mestdagh P, Agostinis P, et al. EV-TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research. Nat Methods. 2017;14(3):228–232. doi: 10.1038/nmeth.4185

[70]

Sluijter JP, Davidson SV, Boulanger CM, et al. Extracellular vesicles in diagnostics and therapy of the ischaemic heart: Position Paper from the Working Group on Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res. 2018;114(1):19–34. doi: 10.1093/cvr/cvx211

[71]

Sluijter J.P., Davidson S.V., Boulanger C.M., et al. Extracellular vesicles in diagnostics and therapy of the ischaemic heart: Position Paper from the Working Group on Cellular Biology of the Heart of the European Society of Cardiology // Cardiovasc Res. 2018. Vol. 114, N. 1. P. 19–34. doi: 10.1093/cvr/cvx211

[72]

Sluijter JP, Davidson SV, Boulanger CM, et al. Extracellular vesicles in diagnostics and therapy of the ischaemic heart: Position Paper from the Working Group on Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res. 2018;114(1):19–34. doi: 10.1093/cvr/cvx211

[73]

Das S, Ansel KM, Bitzer M, et al. The extracellular RNA communication consortium: establishing foundational knowledge and technologies for extracellular RNA research. Cell. 2019;177(2): 231–242. doi: 10.1016/j.cell.2019.03.023

[74]

Das S., Ansel K.M., Bitzer M., et al. The extracellular RNA communication consortium: establishing foundational knowledge and technologies for extracellular RNA research // Cell. 2019. Vol. 177, N. 2. P. 231–242. doi: 10.1016/j.cell.2019.03.023

[75]

Das S, Ansel KM, Bitzer M, et al. The extracellular RNA communication consortium: establishing foundational knowledge and technologies for extracellular RNA research. Cell. 2019;177(2): 231–242. doi: 10.1016/j.cell.2019.03.023

[76]

Patel GK, Khan MA, Zubair H, et al. Comparative analysis of exosome isolation methods using culture supernatant for optimum yield, purity and downstream applications. Sci Rep. 2019;9(1):5335. doi: 10.1038/s41598-019-41800-2

[77]

Patel G.K., Khan M.A., Zubair H., et al. Comparative analysis of exosome isolation methods using culture supernatant for optimum yield, purity and downstream applications // Sci Rep. 2019. Vol. 9, N. 1. ID 5335. doi: 10.1038/s41598-019-41800-2

[78]

Patel GK, Khan MA, Zubair H, et al. Comparative analysis of exosome isolation methods using culture supernatant for optimum yield, purity and downstream applications. Sci Rep. 2019;9(1):5335. doi: 10.1038/s41598-019-41800-2

[79]

Gámez-Valero A, Monguió-Tortajada M, Carreras-Planella L, et al. Size-exclusion chromatography-based isolation minimally alters extracellular vesicles’ characteristics compared to precipitating agents. Sci Rep. 2016;6(1):33641. doi: 10.1038/srep33641

[80]

Gámez-Valero A., Monguió-Tortajada M., Carreras-Planella L., et al. Size-exclusion chromatography-based isolation minimally alters extracellular vesicles’ characteristics compared to precipitating agents // Sci Rep. 2016. Vol. 6, N. 1. ID 33641. doi: 10.1038/srep33641

[81]

Gámez-Valero A, Monguió-Tortajada M, Carreras-Planella L, et al. Size-exclusion chromatography-based isolation minimally alters extracellular vesicles’ characteristics compared to precipitating agents. Sci Rep. 2016;6(1):33641. doi: 10.1038/srep33641

[82]

Mol EA, Goumans MJ, Doevendans PA, et al. Higher functionality of extracellular vesicles isolated using size-exclusion chromatography compared to ultracentrifugation. Nanomedicine: Nanotechnology, Biology and Medicine. 2017;13(6):2061–2065. doi: 10.1016/j.nano.2017.03.011

[83]

Mol E.A., Goumans M.J., Doevendans P.A., et al. Higher functionality of extracellular vesicles isolated using size-exclusion chromatography compared to ultracentrifugation // Nanomedicine: Nanotechnology, Biology and Medicine. 2017. Vol. 13, N. 6. P. 2061–2065. doi: 10.1016/j.nano.2017.03.011

[84]

Mol EA, Goumans MJ, Doevendans PA, et al. Higher functionality of extracellular vesicles isolated using size-exclusion chromatography compared to ultracentrifugation. Nanomedicine: Nanotechnology, Biology and Medicine. 2017;13(6):2061–2065. doi: 10.1016/j.nano.2017.03.011

[85]

Jeppesen DK, Fenix AM, Franklin JL, et al. Reassessment of exosome composition. Cell. 2019;177(2):428–445.e18. doi: 10.1016/j.cell.2019.02.029

[86]

Jeppesen D.K., Fenix A.M., Franklin J.L., et al. Reassessment of exosome composition // Cell. 2019. Vol. 177, N. 2. P. 428–445.e18. doi: 10.1016/j.cell.2019.02.029

[87]

Jeppesen DK, Fenix AM, Franklin JL, et al. Reassessment of exosome composition. Cell. 2019;177(2):428–445.e18. doi: 10.1016/j.cell.2019.02.029

[88]

Zhang H, Freitas D, Kim HS, et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat Cell Biol. 2018;20(3):332–343. doi: 10.1038/s41556-018-0040-4

[89]

Zhang H., Freitas D., Kim H.S., et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation // Nat Cell Biol. 2018. Vol. 20, N. 3. P. 332–343. doi: 10.1038/s41556-018-0040-4

[90]

Zhang H, Freitas D, Kim HS, et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat Cell Biol. 2018;20(3):332–343. doi: 10.1038/s41556-018-0040-4

[91]

Pluchino S, Smith JA. Explicating exosomes: reclassifying the rising stars of intercellular communication. Cell. 2019;177(2): 225–227. doi: 10.1016/j.cell.2019.03.020

[92]

Pluchino S., Smith J.A. Explicating exosomes: reclassifying the rising stars of intercellular communication // Cell. 2019. Vol. 177, N. 2. P. 225–227. doi: 10.1016/j.cell.2019.03.020

[93]

Pluchino S, Smith JA. Explicating exosomes: reclassifying the rising stars of intercellular communication. Cell. 2019;177(2): 225–227. doi: 10.1016/j.cell.2019.03.020

[94]

Mironova OI, Berdysheva MV, Elfimova EM. MicroRNA: a clinician’s view of the state of the problem. Part 1. History of the issue. Eurasian heart journal. 2023;(1):100–107. EDN: TLEZJR doi: 10.38109/2225-1685-2023-1-100-107

[95]

Миронова О.Ю., Бердышева М.В., Елфимова Е.М. МикроРНК: взгляд клинициста на состояние проблемы. История вопроса // Евразийский кардиологический журнал. 2023. № 1. С. 100–107. EDN: TLEZJR doi: 10.38109/2225-1685-2023-1-100-107

[96]

Mironova OI, Berdysheva MV, Elfimova EM. MicroRNA: a clinician’s view of the state of the problem. Part 1. History of the issue. Eurasian heart journal. 2023;(1):100–107. EDN: TLEZJR doi: 10.38109/2225-1685-2023-1-100-107

[97]

Barile L, Cervio E, Lionetti V, et al. Cardioprotection by cardiac progenitor cell-secreted exosomes: role of pregnancy-associated plasma protein-A. Cardiovasc Res. 2018;114(7):992–1005. doi: 10.1093/cvr/cvy055

[98]

Barile L., Cervio E., Lionetti V., et al. Cardioprotection by cardiac progenitor cell-secreted exosomes: role of pregnancy-associated plasma protein-A // Cardiovasc Res. 2018. Vol. 114, N. 7. P. 992–1005. doi: 10.1093/cvr/cvy055

[99]

Barile L, Cervio E, Lionetti V, et al. Cardioprotection by cardiac progenitor cell-secreted exosomes: role of pregnancy-associated plasma protein-A. Cardiovasc Res. 2018;114(7):992–1005. doi: 10.1093/cvr/cvy055

[100]

Valadi H, Ekström K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–659. doi: 10.1038/ncb1596

[101]

Valadi H., Ekström K., Bossios A., et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells // Nat Cell Biol. 2007. Vol. 9, N. 6. P. 654–659. doi: 10.1038/ncb1596

[102]

Valadi H, Ekström K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–659. doi: 10.1038/ncb1596

[103]

Gupta S, Knowlton AA. HSP60 trafficking in adult cardiac myocytes: role of the exosomal pathway. Am J Physiol Heart Circ Physiol. 2007;292(6):H3052–H3056. doi: 10.1152/ajpheart.01355.2006

[104]

Gupta S., Knowlton A.A. HSP60 trafficking in adult cardiac myocytes: role of the exosomal pathway // Am J Physiol Heart Circ Physiol. 2007. Vol. 292, N. 6. P. H3052–H3056. doi: 10.1152/ajpheart.01355.2006

[105]

Gupta S, Knowlton AA. HSP60 trafficking in adult cardiac myocytes: role of the exosomal pathway. Am J Physiol Heart Circ Physiol. 2007;292(6):H3052–H3056. doi: 10.1152/ajpheart.01355.2006

[106]

Bang C, Batkai S, Dangwal S, et al. Cardiac fibroblast–derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Investig. 2014;124(5):2136–2146. doi: 10.1172/JCI70577

[107]

Bang C., Batkai S., Dangwal S., et al. Cardiac fibroblast–derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy // J Clin Investig. 2014. Vol. 124, N. 5. P. 2136–2146. doi: 10.1172/JCI70577

[108]

Bang C, Batkai S, Dangwal S, et al. Cardiac fibroblast–derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Investig. 2014;124(5):2136–2146. doi: 10.1172/JCI70577

[109]

Wang X, Huang W, Liu G, et al. Cardiomyocytes mediate anti-angiogenesis in type 2 diabetic rats through the exosomal transfer of miR-320 into endothelial cells. J Mol Cell Cardiol. 2014;74:139–150. doi: 10.1016/j.yjmcc.2014.05.001

[110]

Wang X., Huang W., Liu G., et al. Cardiomyocytes mediate anti-angiogenesis in type 2 diabetic rats through the exosomal transfer of miR-320 into endothelial cells // J Mol Cell Cardiol. 2014. Vol. 74. P. 139–150. doi: 10.1016/j.yjmcc.2014.05.001

[111]

Wang X, Huang W, Liu G, et al. Cardiomyocytes mediate anti-angiogenesis in type 2 diabetic rats through the exosomal transfer of miR-320 into endothelial cells. J Mol Cell Cardiol. 2014;74:139–150. doi: 10.1016/j.yjmcc.2014.05.001

[112]

Cheng M, Yang J, Zhao X, et al. Circulating myocardial microRNAs from infarcted hearts are carried in exosomes and mobilise bone marrow progenitor cells. Nat Commun. 2019;10:959. doi: 10.1038/s41467-019-08895-7

[113]

Cheng M., Yang J., Zhao X., et al. Circulating myocardial microRNAs from infarcted hearts are carried in exosomes and mobilise bone marrow progenitor cells // Nat Commun. 2019. Vol. 10. ID 959. doi: 10.1038/s41467-019-08895-7

[114]

Cheng M, Yang J, Zhao X, et al. Circulating myocardial microRNAs from infarcted hearts are carried in exosomes and mobilise bone marrow progenitor cells. Nat Commun. 2019;10:959. doi: 10.1038/s41467-019-08895-7

[115]

Loyer X, Zlatanova I, Devue C, et al. Intra-cardiac release of extracellular vesicles shapes inflammation following myocardial infarction. Circ Res. 2018;123(1):100–106. doi: 10.1161/CIRCRESAHA.117.311326

[116]

Loyer X., Zlatanova I., Devue C., et al. Intra-cardiac release of extracellular vesicles shapes inflammation following myocardial infarction // Circ Res. 2018. Vol. 123, N. 1. P. 100–106. doi: 10.1161/CIRCRESAHA.117.311326

[117]

Loyer X, Zlatanova I, Devue C, et al. Intra-cardiac release of extracellular vesicles shapes inflammation following myocardial infarction. Circ Res. 2018;123(1):100–106. doi: 10.1161/CIRCRESAHA.117.311326

[118]

Biemmi V, Milano G, Ciullo A, et al. Inflammatory extracellular vesicles prompt heart dysfunction via TRL4-dependent NF-κB activation. Theranostics. 2020;10(6):2773. doi: 10.7150/thno.39072

[119]

Biemmi V., Milano G., Ciullo A., et al. Inflammatory extracellular vesicles prompt heart dysfunction via TRL4-dependent NF-κB activation // Theranostics. 2020. Vol. 10, N. 6. ID 2773. doi: 10.7150/thno.39072

[120]

Biemmi V, Milano G, Ciullo A, et al. Inflammatory extracellular vesicles prompt heart dysfunction via TRL4-dependent NF-κB activation. Theranostics. 2020;10(6):2773. doi: 10.7150/thno.39072

[121]

Elahi FM, Farwell DG, Nolta JA, et al. Preclinical translation of exosomes derived from mesenchymal stem/stromal cells. Stem Cells. 2020;38(1):15–21. doi: 10.1002/stem.3061

[122]

Elahi F.M., Farwell D.G., Nolta J.A., et al. Preclinical translation of exosomes derived from mesenchymal stem/stromal cells // Stem Cells. 2020. Vol. 38, N. 1. P. 15–21. doi: 10.1002/stem.3061

[123]

Elahi FM, Farwell DG, Nolta JA, et al. Preclinical translation of exosomes derived from mesenchymal stem/stromal cells. Stem Cells. 2020;38(1):15–21. doi: 10.1002/stem.3061

[124]

Yu H, Wang Z. Cardiomyocyte-derived exosomes: biological functions and potential therapeutic implications. Front. Physiol. 2019;10:1049. doi: 10.3389/fphys.2019.01049

[125]

Yu H., Wang Z. Cardiomyocyte-derived exosomes: biological functions and potential therapeutic implications // Front. Physiol. 2019. Vol. 10. P. 1049. doi: 10.3389/fphys.2019.01049

[126]

Yu H, Wang Z. Cardiomyocyte-derived exosomes: biological functions and potential therapeutic implications. Front. Physiol. 2019;10:1049. doi: 10.3389/fphys.2019.01049

[127]

Ibrahim AG-E, Cheng K, Marbán E. Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Rep. 2014;2(5):606–619. doi: 10.1016/j.stemcr.2014.04.006

[128]

Ibrahim A.G.-E., Cheng K., Marbán E. Exosomes as critical agents of cardiac regeneration triggered by cell therapy // Stem Cell Rep. 2014. Vol. 2, N. 5. Р. 606–619. doi: 10.1016/j.stemcr.2014.04.006

[129]

Ibrahim AG-E, Cheng K, Marbán E. Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Rep. 2014;2(5):606–619. doi: 10.1016/j.stemcr.2014.04.006

[130]

Gallet R, Dawkins J, Luthringer D, et al. Exosomes secreted by cardiosphere-derived cells reduce scarring, attenuate adverse remodelling, and improve function in acute and chronic porcine myocardial infarction. Eur Heart J. 2017;38(3):201–211. doi: 10.1093/eurheartj/ehw240

[131]

Gallet R., Dawkins J., Luthringer D., et al. Exosomes secreted by cardiosphere-derived cells reduce scarring, attenuate adverse remodelling, and improve function in acute and chronic porcine myocardial infarction // Eur Heart J. 2017. Vol. 38, N. 3. Р. 201–211. doi: 10.1093/eurheartj/ehw240

[132]

Gallet R, Dawkins J, Luthringer D, et al. Exosomes secreted by cardiosphere-derived cells reduce scarring, attenuate adverse remodelling, and improve function in acute and chronic porcine myocardial infarction. Eur Heart J. 2017;38(3):201–211. doi: 10.1093/eurheartj/ehw240

[133]

Kervadec A, Bellamy VE, El Harane N, et al. Cardiovascular progenitor-derived extracellular vesicles recapitulate the beneficial effects of their parent cells in the treatment of chronic heart failure. J Heart Lung Transplant. 2016;35(6):795–807. doi: 10.1016/j.healun.2016.01.013

[134]

Kervadec A., Bellamy V.E., El Harane N., et al. Cardiovascular progenitor-derived extracellular vesicles recapitulate the beneficial effects of their parent cells in the treatment of chronic heart failure // J Heart Lung Transplant. 2016. Vol. 35, N. 6. Р. 795–807. doi: 10.1016/j.healun.2016.01.013

[135]

Kervadec A, Bellamy VE, El Harane N, et al. Cardiovascular progenitor-derived extracellular vesicles recapitulate the beneficial effects of their parent cells in the treatment of chronic heart failure. J Heart Lung Transplant. 2016;35(6):795–807. doi: 10.1016/j.healun.2016.01.013

[136]

Milano G, Biemmi V, Lazzarini E, et al. Intravenous administration of cardiac progenitor cell-derived exosomes protects against doxorubicin/trastuzumab-induced cardiac toxicity. Cardiovasc Res. 2020;116(2):383–392. doi: 10.1093/cvr/cvz108

[137]

Milano G., Biemmi V., Lazzarini E., et al. Intravenous administration of cardiac progenitor cell-derived exosomes protects against doxorubicin/trastuzumab-induced cardiac toxicity // Cardiovasc Res. 2020. Vol. 116, N. 2. Р. 383–392. doi: 10.1093/cvr/cvz108

[138]

Milano G, Biemmi V, Lazzarini E, et al. Intravenous administration of cardiac progenitor cell-derived exosomes protects against doxorubicin/trastuzumab-induced cardiac toxicity. Cardiovasc Res. 2020;116(2):383–392. doi: 10.1093/cvr/cvz108

[139]

Vrijsen KR, Maring JA, Chamuleau SA, et al. Exosomes from cardiomyocyte progenitor cells and mesenchymal stem cells stimulate angiogenesis via EMMPRIN. Adv Health Mater. 2016;5(19):2555–2565. doi: 10.1002/adhm.201600308

[140]

Vrijsen K.R., Maring J.A., Chamuleau S.A., et al. Exosomes from cardiomyocyte progenitor cells and mesenchymal stem cells stimulate angiogenesis via EMMPRIN // Adv Health Mater. 2016. Vol. 5, N. 19. Р. 2555–2565. doi: 10.1002/adhm.201600308

[141]

Vrijsen KR, Maring JA, Chamuleau SA, et al. Exosomes from cardiomyocyte progenitor cells and mesenchymal stem cells stimulate angiogenesis via EMMPRIN. Adv Health Mater. 2016;5(19):2555–2565. doi: 10.1002/adhm.201600308

[142]

Tseliou E, Fouad J, Reich H, et al. Fibroblasts rendered antifibrotic, antiapoptotic, and angiogenic by priming with cardiosphere-derived extracellular membrane vesicles. J Am Coll Cardiol. 2015;66(6): 599–611. doi: 10.1016/j.jacc.2015.05.068

[143]

Tseliou E., Fouad J., Reich H., et al. Fibroblasts rendered antifibrotic, antiapoptotic, and angiogenic by priming with cardiosphere-derived extracellular membrane vesicles // J Am Coll Cardiol. 2015. Vol. 66, N. 6. Р. 599–611. doi: 10.1016/j.jacc.2015.05.068

[144]

Tseliou E, Fouad J, Reich H, et al. Fibroblasts rendered antifibrotic, antiapoptotic, and angiogenic by priming with cardiosphere-derived extracellular membrane vesicles. J Am Coll Cardiol. 2015;66(6): 599–611. doi: 10.1016/j.jacc.2015.05.068

[145]

Cambier LY, de Couto G, Ibrahim A, et al. RNA fragment in extracellular vesicles confers cardioprotection via modulation of IL-10 expression and secretion. EMBO Mol Med. 2017;9(3):337–352. doi: 10.15252/emmm.201606924

[146]

Cambier L.Y., de Couto G., Ibrahim A., et al. RNA fragment in extracellular vesicles confers cardioprotection via modulation of IL-10 expression and secretion // EMBO Mol Med. 2017. Vol. 9, N. 3. Р. 337–352. doi: 10.15252/emmm.201606924

[147]

Cambier LY, de Couto G, Ibrahim A, et al. RNA fragment in extracellular vesicles confers cardioprotection via modulation of IL-10 expression and secretion. EMBO Mol Med. 2017;9(3):337–352. doi: 10.15252/emmm.201606924

[148]

Aminzadeh MA, Rogers RG, Fournier M, et al. Exosome-mediated benefits of cell therapy in mouse and human models of Duchenne muscular dystrophy. Stem Cell Rep. 2018;10(3):942–955. doi: 10.1016/j.stemcr.2018.01.023

[149]

Aminzadeh M.A., Rogers R.G., Fournier M., et al. Exosome-mediated benefits of cell therapy in mouse and human models of Duchenne muscular dystrophy // Stem Cell Rep. 2018. Vol. 10, N. 3. Р. 942–955. doi: 10.1016/j.stemcr.2018.01.023

[150]

Aminzadeh MA, Rogers RG, Fournier M, et al. Exosome-mediated benefits of cell therapy in mouse and human models of Duchenne muscular dystrophy. Stem Cell Rep. 2018;10(3):942–955. doi: 10.1016/j.stemcr.2018.01.023

[151]

Khan M, Nickoloff E, Abramova T, et al. Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circ Res. 2015;117(1):52–64. doi: 10.1161/CIRCRESAHA.117.305990

[152]

Khan M., Nickoloff E., Abramova T., et al. Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction // Circ Res. 2015. Vol. 117, N. 1. Р. 52–64. doi: 10.1161/CIRCRESAHA.117.305990

[153]

Khan M, Nickoloff E, Abramova T, et al. Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circ Res. 2015;117(1):52–64. doi: 10.1161/CIRCRESAHA.117.305990

[154]

Wang Y, Zhang L, Li Y, et al. Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium. Int J Cardiol. 2015;192:61–69. doi: 10.1016/j.ijcard.2015.05.020

[155]

Wang Y., Zhang L., Li Y., et al. Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium // Int J Cardiol. 2015. Vol. 192. Р. 61–69. doi: 10.1016/j.ijcard.2015.05.020

[156]

Wang Y, Zhang L, Li Y, et al. Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium. Int J Cardiol. 2015;192:61–69. doi: 10.1016/j.ijcard.2015.05.020

[157]

Bobis-Wozowicz S, Kmiotek K, Sekula M, et al. Human induced pluripotent stem cell-derived microvesicles transmit RNAs and proteins to recipient mature heart cells modulating cell fate and behavior. Stem Cells. 2015;33(9):2748–2761. doi: 10.1002/stem.2078

[158]

Bobis-Wozowicz S., Kmiotek K., Sekula M., et al. Human induced pluripotent stem cell-derived microvesicles transmit RNAs and proteins to recipient mature heart cells modulating cell fate and behavior // Stem Cells. 2015. Vol. 33, N. 9. Р. 2748–2761. doi: 10.1002/stem.2078

[159]

Bobis-Wozowicz S, Kmiotek K, Sekula M, et al. Human induced pluripotent stem cell-derived microvesicles transmit RNAs and proteins to recipient mature heart cells modulating cell fate and behavior. Stem Cells. 2015;33(9):2748–2761. doi: 10.1002/stem.2078

[160]

Lee WH, Chen W-Y, Shao N-Y, et al. Comparison of non-coding RNAs in exosomes and functional efficacy of human embryonic stem cell-versus induced pluripotent stem cell-derived cardiomyocytes. Stem Cells. 2017;35(10):2138–2149. doi: 10.1002/stem.2669

[161]

Lee W.H., Chen W.-Y., Shao N.-Y., et al. Comparison of non-coding RNAs in exosomes and functional efficacy of human embryonic stem cell-versus induced pluripotent stem cell-derived cardiomyocytes // Stem Cells. 2017. Vol. 35, N. 10. Р. 2138–2149. doi: 10.1002/stem.2669

[162]

Lee WH, Chen W-Y, Shao N-Y, et al. Comparison of non-coding RNAs in exosomes and functional efficacy of human embryonic stem cell-versus induced pluripotent stem cell-derived cardiomyocytes. Stem Cells. 2017;35(10):2138–2149. doi: 10.1002/stem.2669

[163]

Kenneweg F, Bang C, Xiao K, et al. Long noncoding RNA-enriched vesicles secreted by hypoxic cardiomyocytes drive cardiac fibrosis. Mol Ther Nucleic Acids. 2019;18:363–374. doi: 10.1016/j.omtn.2019.09.003

[164]

Kenneweg F., Bang C., Xiao K., et al. Long noncoding RNA-enriched vesicles secreted by hypoxic cardiomyocytes drive cardiac fibrosis // Mol Ther Nucleic Acids. 2019. Vol. 18. Р. 363–374. doi: 10.1016/j.omtn.2019.09.003

[165]

Kenneweg F, Bang C, Xiao K, et al. Long noncoding RNA-enriched vesicles secreted by hypoxic cardiomyocytes drive cardiac fibrosis. Mol Ther Nucleic Acids. 2019;18:363–374. doi: 10.1016/j.omtn.2019.09.003

[166]

Agarwal U, George A, Bhutani S, et al. Experimental, systems, and computational approaches to understanding the microRNA-mediated reparative potential of cardiac progenitor cell–derived exosomes from pediatric patients. Circ Res. 2017;120(4):701–712. doi: 10.1161/CIRCRESAHA.116.309935

[167]

Agarwal U., George A., Bhutani S., et al. Experimental, systems, and computational approaches to understanding the microRNA-mediated reparative potential of cardiac progenitor cell–derived exosomes from pediatric patients // Circ Res. 2017. Vol. 120, N. 4. Р. 701–712. doi: 10.1161/CIRCRESAHA.116.309935

[168]

Agarwal U, George A, Bhutani S, et al. Experimental, systems, and computational approaches to understanding the microRNA-mediated reparative potential of cardiac progenitor cell–derived exosomes from pediatric patients. Circ Res. 2017;120(4):701–712. doi: 10.1161/CIRCRESAHA.116.309935

[169]

Qiao L, Hu S, Zhang H, et al. microRNA-21-5p dysregulation in exosomes derived from heart failure patients impairs regenerative potential. J Clin Investig. 2019;129(6):2237–2250. doi: 10.1172/JCI123135

[170]

Qiao L., Hu S., Zhang H., et al. microRNA-21-5p dysregulation in exosomes derived from heart failure patients impairs regenerative potential // J Clin Investig. 2019. Vol. 129, N. 6. Р. 2237–2250. doi: 10.1172/JCI123135

[171]

Qiao L, Hu S, Zhang H, et al. microRNA-21-5p dysregulation in exosomes derived from heart failure patients impairs regenerative potential. J Clin Investig. 2019;129(6):2237–2250. doi: 10.1172/JCI123135

[172]

Davidson SM, Riquelme JA, Takov K, et al. Cardioprotection mediated by exosomes is impaired in the setting of type II diabetes but can be rescued by the use of non-diabetic exosomes in vitro. J Cell Mol Med. 2018;22(1):141–151. doi: 10.1111 /jcmm.13302

[173]

Davidson S.M., Riquelme J.A., Takov K., et al. Cardioprotection mediated by exosomes is impaired in the setting of type II diabetes but can be rescued by the use of non-diabetic exosomes in vitro // J Cell Mol Med. 2018. Vol. 22, No. 1. Р. 141–151. doi: 10.1111 /jcmm.13302

[174]

Davidson SM, Riquelme JA, Takov K, et al. Cardioprotection mediated by exosomes is impaired in the setting of type II diabetes but can be rescued by the use of non-diabetic exosomes in vitro. J Cell Mol Med. 2018;22(1):141–151. doi: 10.1111 /jcmm.13302

[175]

Kim H, Yun N, Mun D, et al. Cardiac-specific delivery by cardiac tissue-targeting peptide-expressing exosomes. Biochem Biophys Res Commun. 2018;499(4):803–808. doi: 10.1016/j.bbrc.2018.03.227

[176]

Kim H., Yun N., Mun D., et al. Cardiac-specific delivery by cardiac tissue-targeting peptide-expressing exosomes // Biochem Biophys Res Commun. 2018. Vol. 499, N. 4. Р. 803–808. doi: 10.1016/j.bbrc.2018.03.227

[177]

Kim H, Yun N, Mun D, et al. Cardiac-specific delivery by cardiac tissue-targeting peptide-expressing exosomes. Biochem Biophys Res Commun. 2018;499(4):803–808. doi: 10.1016/j.bbrc.2018.03.227

[178]

Ciullo A, Biemmi V, Milano G, et al. Exosomal expression of CXCR4 targets cardioprotective vesicles to myocardial infarction and improves outcome after systemic administration. Int J Mol Sci. 2019;20(3):468. doi: 10.3390/ijms20030468

[179]

Ciullo A., Biemmi V., Milano G., et al. Exosomal expression of CXCR4 targets cardioprotective vesicles to myocardial infarction and improves outcome after systemic administration // Int J Mol Sci. 2019. Vol. 20, N. 3. ID 468. doi: 10.3390/ijms20030468

[180]

Ciullo A, Biemmi V, Milano G, et al. Exosomal expression of CXCR4 targets cardioprotective vesicles to myocardial infarction and improves outcome after systemic administration. Int J Mol Sci. 2019;20(3):468. doi: 10.3390/ijms20030468

[181]

Cheng Y, Zeng Q, Han Q, et al. Effect of pH, temperature and freezing-thawing on quantity changes and cellular uptake of exosomes. Protein Cell. 2019;10(4):295–299. doi: 10.1007/s13238-018-0529-4

[182]

Cheng Y., Zeng Q., Han Q., et al. Effect of pH, temperature and freezing-thawing on quantity changes and cellular uptake of exosomes // Protein Cell. 2019. Vol. 10, N. 4. Р. 295–299. doi: 10.1007/s13238-018-0529-4

[183]

Cheng Y, Zeng Q, Han Q, et al. Effect of pH, temperature and freezing-thawing on quantity changes and cellular uptake of exosomes. Protein Cell. 2019;10(4):295–299. doi: 10.1007/s13238-018-0529-4

[184]

Sokolov AV, Kostin NN, Ovchinnikova LA, et al. Targeted drug delivery in lipid-like nanocages and extracellular vesicles. Acta Naturae. 2019;11(2):28–41. EDN: XDCTRD doi: 10.32607/20758251-2019-11-2-28-41

[185]

Соколов А.В., Костин Н.Н., Овчинникова Л.А., и др. Направленный транспорт лекарственных препаратов в липидоподобных наноконтейнерах и внеклеточных везикулах // Acta Naturae. 2019. Т. 11, №. 2. С. 28–41. EDN: XDCTRD doi: 10.32607/20758251-2019-11-2-28-41

[186]

Sokolov AV, Kostin NN, Ovchinnikova LA, et al. Targeted drug delivery in lipid-like nanocages and extracellular vesicles. Acta Naturae. 2019;11(2):28–41. EDN: XDCTRD doi: 10.32607/20758251-2019-11-2-28-41

[187]

Bunggulawa EJ, Wang W, Yin T, et al. Recent advancements in the use of exosomes as drug delivery systems. J Nanobiotechnol. 2018;16:81. doi: 10.1186/s12951-018-0403-9

[188]

Bunggulawa E.J., Wang W., Yin T., et al. Recent advancements in the use of exosomes as drug delivery systems // J Nanobiotechnol. 2018. Vol. 16. ID 81. doi: 10.1186/s12951-018-0403-9

[189]

Bunggulawa EJ, Wang W, Yin T, et al. Recent advancements in the use of exosomes as drug delivery systems. J Nanobiotechnol. 2018;16:81. doi: 10.1186/s12951-018-0403-9

[190]

Sawada S-I, Sato YT, Kawasaki R, et al. Nanogel hybrid assembly for exosome intracellular delivery: Effects on endocytosis and fusion by exosome surface polymer engineering. Biomater Sci. 2020;8: 619–630. doi: 10.1039/c9bm01232j

[191]

Sawada S.-I., Sato Y.T., Kawasaki R., et al. Nanogel hybrid assembly for exosome intracellular delivery: Effects on endocytosis and fusion by exosome surface polymer engineering // Biomater Sci. 2020. Vol. 8. P. 619–630. doi: 10.1039/c9bm01232j

[192]

Sawada S-I, Sato YT, Kawasaki R, et al. Nanogel hybrid assembly for exosome intracellular delivery: Effects on endocytosis and fusion by exosome surface polymer engineering. Biomater Sci. 2020;8: 619–630. doi: 10.1039/c9bm01232j

[193]

Sedykh SE, Timofeeva AM, Kuleshova AE, Nevinskiy GA. Milk exosomes as delivery agents for therapy of cancer diseases. Advances in Molecular Oncology. 2022;9(2):23–31. EDN: XOBUYO doi: 10.17650/2313-805X-2022-9-2-23-31

[194]

Седых С.Е., Тимофеева А.М., Куликова А.Е., Невинский Г.А. Экзосомы молока в качестве агентов доставки терапевтически значимых препаратов при онкологических заболеваниях // Успехи молекулярной онкологии. 2022. Т. 9, № 2. С. 23–31. EDN: XOBUYO doi: 10.17650/2313-805X-2022-9-2-23-31

[195]

Sedykh SE, Timofeeva AM, Kuleshova AE, Nevinskiy GA. Milk exosomes as delivery agents for therapy of cancer diseases. Advances in Molecular Oncology. 2022;9(2):23–31. EDN: XOBUYO doi: 10.17650/2313-805X-2022-9-2-23-31

[196]

Andriolo G, Provasi E, Lo Cicero V, et al. Exosomes from human cardiac progenitor cells for therapeutic applications: development of a GMP-grade manufacturing method. Front Physiol. 2018;9:1169. doi: 10.3389/fphys.2018.01169

[197]

Andriolo G., Provasi E., Lo Cicero V., et al. Exosomes from human cardiac progenitor cells for therapeutic applications: development of a GMP-grade manufacturing method // Front Physiol. 2018. Vol. 9. ID 1169. doi: 10.3389/fphys.2018.01169

[198]

Andriolo G, Provasi E, Lo Cicero V, et al. Exosomes from human cardiac progenitor cells for therapeutic applications: development of a GMP-grade manufacturing method. Front Physiol. 2018;9:1169. doi: 10.3389/fphys.2018.01169

[199]

Matsumoto A, Takahashi Y, Chang H-Y, et al. Blood concentrations of small extracellular vesicles are determined by a balance between abundant secretion and rapid clearance. J Extracell Vesicles. 2020;9(1):1696517. doi: 10.1080/20013078.2019.1696517

[200]

Matsumoto A., Takahashi Y., Chang H.-Y., et al. Blood concentrations of small extracellular vesicles are determined by a balance between abundant secretion and rapid clearance // J Extracell Vesicles. 2020. Vol. 9, N. 1. ID 1696517. doi: 10.1080/20013078.2019.1696517

[201]

Matsumoto A, Takahashi Y, Chang H-Y, et al. Blood concentrations of small extracellular vesicles are determined by a balance between abundant secretion and rapid clearance. J Extracell Vesicles. 2020;9(1):1696517. doi: 10.1080/20013078.2019.1696517

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/