A new look at the immunopathogenesis of infection caused by the human immunodeficiency virus
Alexander V. Moskalev , Boris Yu. Gumilevsky , Vasiliy Ya. Apchel , Vasiliy N. Cygan
Bulletin of the Russian Military Medical Academy ›› 2023, Vol. 25 ›› Issue (4) : 665 -680.
A new look at the immunopathogenesis of infection caused by the human immunodeficiency virus
Thanks to the achievements of biotechnology and genetics, numerous features of reproduction of the human immunodeficiency virus and its immunopathogenesis have been established. Genetic studies have called into question the African origin of the virus. Thus, the number of individuals with mutational changes in the CCR5∆32 allele among the population providing genetic protection against human immunodeficiency virus is decreasing from north to south. The probability of adaptation of the great ape virus in the human population is characterized. New biological effects and their influence on the immunopathogenesis of infection of the well-known human immunodeficiency virus genes Gag (structural proteins), Pol (enzymes) and Env (envelope glycoproteins), the proteins encoded by them, as well as a number of additional proteins have been discovered. Thus, the main task of the Tat gene is to stimulate the transcription of proviral deoxyribonucleic acid and the transport of ribonucleic acid from the nucleus to the cytoplasm of the cell. Rev promotes the synthesis of viral structural proteins and enzymes, ensures the availability of full-sized genomic ribonucleic acid for inclusion in the reproduced viral progeny. Viruses with the absence of the vif gene are about 1000 times less virulent compared to wild strains. The APOBEC3G factor inhibits the reproduction of lentiviruses in primates, but in humans it is characterized by polymorphism of biological effects. Viral protein R affects the rate of reproduction of the virus in T-lymphocytes, contributes to their destruction. It also promotes proteasomal degradation and protein modification. Vpr targets may be a structurally specific endonuclease subunit SLX4, uracil-deoxynucleoacid glycosylase 2, and a helicase-like transcription factor. Vpu is a powerful inhibitor of teterin by type 1 immunodeficiency viruses of group M, and in group N viruses it shows low activity. Vpu, Nef, and Env proteins of most lentiviruses are characterized by higher tropicity to the CD4 receptor compared to teterin, serine incorporation proteins. These proteins are incorporated into viral particles and reduce their infectivity by inhibiting fusion with target cells. The protein containing the tripartite motif 5a, the protein of mixovirus activity 2/B constitute an ancient system of protection against retroviruses and are extremely variable in their effectiveness to disrupt the reproduction of viruses.
human immunodeficiency virus / viruses / acquired immune deficiency syndrome / lymphocyte / immunopathogenesis / nucleic acids / proteasomal degradation / mixovirus activity
| [1] |
Nash A, Dalziel R, Fitzgerald J. Mims’ Pathogenesis of Infectious Disease, 6th ed. 2015. Academic Press, San Diego, CA. 348 p. |
| [2] |
Nash A., Dalziel R., Fitzgerald J. Mims’ Pathogenesis of Infectious Disease, 6th ed. 2015. Academic Press, San Diego, CA. 348 p. |
| [3] |
Sergiev VP. Hypothesis of the formation of human immunodeficiency virus immunity. Hygiene and Sanitation. 2010;(5):12–16. |
| [4] |
Сергиев В.П. Гипотеза формирования невосприимчивости человека к вирусу иммунодефицита // Гигиена и санитария. 2010. № 5. С. 12–16. |
| [5] |
Katze MG, Korth MJ, Law GL, et al. Viral Pathogenesis: From Basics to Systems Biology. 2016. Academic Press, San Diego, CA. 422 p. |
| [6] |
Katze M.G., Korth M.J., Law G.L., et al. Viral Pathogenesis: From Basics to Systems Biology. 2016. Academic Press, San Diego, CA. 422 p. |
| [7] |
Hayward A. Origin of the retroviruses: when, where, and how? Curr Opin Virol. 2017;25:23–27. DOI: 10.1016/j.coviro.2017.06.006 |
| [8] |
Hayward A. Origin of the retroviruses: when, where, and how? // Curr Opin Virol. 2017. Vol. 25. P. 23–27. DOI: 10.1016/j.coviro.2017.06.006 |
| [9] |
Sengupta S, Siliciano RF. Targeting the latent reservoir for HIV-1. Immunity. 2018;48:872–895. DOI: 0.1016/j.immuni.2018.04.030 |
| [10] |
Sengupta S., Siliciano R.F. Targeting the latent reservoir for HIV-1 // Immunity. 2018. Vol. 48. P. 872–895. DOI: 0.1016/j.immuni.2018.04.030 |
| [11] |
Burrell C, Howard C, Murphy F. Fenner and White’s Medical Virology, 5th ed. 2016. Academic Press, San Diego, CA. 454 p. |
| [12] |
Burrell C., Howard C., Murphy F. Fenner and White’s Medical Virology, 5th ed. 2016. Academic Press, San Diego, CA. 454 p. |
| [13] |
Tubita А, Lombardi Z. Beyond Kinase Activity: ERK5 Nucleo-cytoplasmic shuttling as a novel target for anticancer therapy. Int J Mol Sci. 2020;(21):1–17. DOI: 10.3390/ijms21030938 |
| [14] |
Tubita A., Lombardi Z. Beyond Kinase Activity: ERK5 Nucleo-cytoplasmic shuttling as a novel target for anticancer therapy // Int J Mol Sci. 2020. No. 21. P. 1–17. DOI: 10.3390/ijms21030938 |
| [15] |
Freed EO. HIV-1 assembly, release and maturation. Nat Rev Microbio. 2015;13:484–496. DOI: 10.1038/nrmicro3490 |
| [16] |
Freed E.O. HIV-1 assembly, release and maturation // Nat Rev Microbio. 2015. Vol. 13. P. 484–496. DOI: 10.1038/nrmicro3490 |
| [17] |
Maillard PV, van der Veen AG, Poirier EZ, et al. Slicing and dicing viruses: antiviral RNA interference in mammals. EMBO J. 2019;38(8):e100941. DOI: 10.15252/embj.2018100941 |
| [18] |
Maillard P.V., van der Veen A.G., Poirier E.Z., et al. Slicing and dicing viruses: antiviral RNA interference in mammals // EMBO J. 2019. Vol. 38, No. 8. P. e100941. DOI: 10.15252/embj.2018100941 |
| [19] |
Domingo E, Perales C. Quasispecies and virus. Eur Biophys J. 2018;4(47):443–457. DOI: 10.1007/s00249-018-1282-6 |
| [20] |
Domingo E., Perales C. Quasispecies and virus // Eur Biophys J. 2018. Vol. 4, No. 47. P. 443–457. DOI: 10.1007/s00249-018-1282-6 |
| [21] |
Guo YJ, Pan WW, Liu SB. ERK/MAPK signaling pathway and tumorigenesis. Experimental and therapeutic medicine. 2020;19(3):1997–2007. DOI: 10.3892/etm.2020.8454 |
| [22] |
Guo Y.J., Pan W.W., Liu S.B. ERK/MAPK signaling pathway and tumorigenesis // Experimental and therapeutic medicine. 2020. Vol. 19, No. 3. P. 1997–2007. DOI: 10.3892 / etm.2020.8454 |
| [23] |
Ashraf NM, Krishnagopal A, Hussain A, et al. Engineering of serine protease for improved thermo stability and catalytic activity using rational design. Int J Biol Macromol. 2019;126:229–237. DOI: 10.1016/j.ijbiomac.2018 |
| [24] |
Ashraf N.M., Krishnagopal A., Hussain A., et al. Engineering of serine protease for improved thermo stability and catalytic activity using rational design // Int J Biol Macromol. 2019. Vol. 126. P. 229–237. DOI: 10.1016/j.ijbiomac.2018 |
| [25] |
Parrish NF, Tomonaga K. Endogenized viral sequences in mammals. Curr Opin Microbiol. 2016;31:176–183. DOI: 10.1016/j.mib.2016.03.002 |
| [26] |
Parrish N.F., Tomonaga K. Endogenized viral sequences in mammals // Curr Opin Microbiol. 2016. Vol. 31. P. 176–183. DOI: 10.1016/j.mib.2016.03.002 |
| [27] |
Garcia-Sastre A. Ten strategies of interferon evasion by viruses. Cell Host Microbe. 2017;22:176–184. DOI: 10.1016/j.it.2014.05.004 |
| [28] |
Garcia-Sastre A. Ten strategies of interferon evasion by viruses // Cell Host Microbe. 2017. Vol. 22. P. 176–184. DOI: 10.1016/j.it.2014.05.004 |
| [29] |
Katzourakis A, Gifford RJ. Endogenous viral elements in animal genomes. PLoS Genet. 2010;11(6):e1001191. DOI: 10.1371/journal.pgen.1001191 |
| [30] |
Katzourakis A., Gifford R.J. Endogenous viral elements in animal genomes // PLoS Genet. 2010. Vol. 11, No. 6. Р. e1001191. DOI: 10.1371/journal.pgen.1001191 |
| [31] |
Pashkov EA, Faizuloev EB, Korchevaya ER, et al. Knockdown of flt4, nup98, and nup205 cellular genes as a suppressor for the viral activity of influenza a/wsn/33 (h1n1) in a549 cell culture. Fine Chemical Technologies. 2021;16(6):476–489. DOI: 10.32362/2410-6593-2021-16-6-476-489 |
| [32] |
Пашков Е.А., Файдулаев Е.Б., Корчевая Е.Р., и др. Нокдаун клеточных генов FLTA4, Nup98 и Nup205 как супрессор вирусной активности гриппа A/WSN/33(H1N1) в культуре клеток А549 // Тонкие химические технологии. 2021. Т. 16, № 6. С. 476–489. DOI: 10.32362/2410-6593-2021-16-6-476-489 |
| [33] |
Enard D, Cai L, Gwennap C, Petrov DA. Viruses are a dominant driver of protein adaptation in mammals. Elife. 2016;(5):e12469. DOI: 10.7554/eLife.12469 |
| [34] |
Enard D., Cai L., Gwennap C., Petrov D.A. Viruses are a dominant driver of protein adaptation in mammals // Elife. 2016. № 5. Р. e12469. DOI: 10.7554/eLife.12469 |
| [35] |
Krupovic M, Koonin EV. Multiple origins of viral capsid proteins from cellular ancestors. Proc Natl Acad Sci USA. 2017;12(114): e2401–e2410. DOI: 10.1073/pnas.1621061114 |
| [36] |
Krupovic M., Koonin E.V. Multiple origins of viral capsid proteins from cellular ancestors // Proc Natl Acad Sci USA. 2017. Vol. 12. No. 114. Р. e2401–e2410. DOI: 10.1073/pnas.1621061114 |
| [37] |
Chikaev AN. HIV-1 mimic peptides recognized by broad-spectrum neutralizing antibodies [dissertation]. Kolcovo; 2015. 118 p. |
| [38] |
Чикаев А.Н. Пептиды-имитаторы ВИЧ-1, узнаваемых нейтрализующими антителами широкого спектра действия: дис. … канд. биол. наук. Кольцово, 2015. 118 с. |
| [39] |
Klyuchnikova AA. Recoding of proteins in the central nervous system of model organisms and humans due to editing messenger RNA by adenosidesaminases [dissertation]. Moscow; 2021. 24 p. |
| [40] |
Ключникова А.А. Перекодирование белков в центральной нервной системе модельных организмов и человека вследствие редактирования матричной РНК аденозидезаминазами: автореф. дис. … канд. биол. наук. Москва, 2021. 24 с. |
| [41] |
Golovin EV, Mustafin IG, Galeev OR. Et al. Safe model of HIV infection to assess antiretroviral activity of medical drugs. Clinical Medicine. 2012;1:55–60. |
| [42] |
Головин Е.В., Мустафин Е.Г., Мартынова Е.В. и др. Безопасная модель ВИЧ-инфекции для оценки антиретровирусной активности лекарственных препаратов // Клиническая медицина. 2012. № 1. С. 55–60. |
| [43] |
Gladkova DV, Vetchinova AS, Bogoslovskaya EV, et al. Suppression of human CCR5 receptor gene expression using artificial microRNAs. Molecular Biology. 2013;47(3):475–485. DOI: 10.7868/S002689841303004X |
| [44] |
Гладкова Д.В., Ветчинова А.С., Богословская Е.В., и др. Подавление экспрессии гена CCR5-рецептора человека с помощью искусственных микроРНК // Молекулярная биология. 2013. Т. 47, № 3. С. 475–485. DOI: 10.7868/S002689841303004X |
| [45] |
Stepanova VV, Gelfand MS. RNA editing: classical cases and outlook of new technologies. Molecular biology. 2014;48(1):15–21. DOI: 10.7868/S0026898414010157 |
| [46] |
Степанова В.В., Гельфанд М.С. Редактирование РНК. Классические примеры и перспективы новых технологий // Молекулярная биология. 2014. Т. 48, № 1. С. 15–21. DOI: 10.7868/S0026898414010157 |
| [47] |
Vzorov AN, Kompans RV. VLP vaccines and effects of hiv-1 env protein modifications on their antigenic properties. Molecular Biology. 2016;50(3):406–415. DOI: 10.7868/S0026898416030113 |
| [48] |
Взоров А.Н., Компанс Р.В. Вакцины против ВИЧ на основе вирусоподобных частиц и влияние модификаций в белке Env на их антигенные свойства // Молекулярная биология. 2016. Т. 50, № 3. С. 406–415. DOI: 10.7868/S0026898416030113 |
| [49] |
Petrichuk SV, Radygina TV, Kuptsova DG, et al. Evaluation of anti-tnf treatment efficiency in children with immune-dependent diseases by means of testing the NF-κB activity in lymphocyte populations. Russian Journal of Immunological Studies. 2022;25(4):491–498. DOI: 10.46235/1028-7221-1191-EOA |
| [50] |
Петричук С.В., Радыгина Т.В., Купцова Д.Г., и др. Оценка эффективности анти-TNF терапии у детей с иммунозависимыми заболеваниями по активности NF-kB в популяциях лимфоцитов // Российский иммунологический журнал. 2022. Т. 25, № 4. С. 491–498. DOI: 10.46235/1028-7221-1191-EOA |
| [51] |
Wang B, Li X, Liu L, Wang M. β-Catenin: oncogenic role and therapeutic target in cervical cancer. Biol Res. 2020;53(33):1–11. DOI: 10.1186/s40659-020-00301-7 |
| [52] |
Wang B., Li X., Liu L., Wang M. β-Catenin: oncogenic role and therapeutic target in cervical cancer // Biol Res. 2020. Vol. 53, No. 33. P. 1–11. DOI: 10.1186 s40659-020-00301-7 |
| [53] |
Stecca B, Rovida E. Impact of ERK5 on the Hallmarks of Cancer. Int J Mol Sci. 2019;20(6):1–22. DOI: 10.3390/ijms20061426 |
| [54] |
Stecca B., Rovida E. Impact of ERK5 on the Hallmarks of Cancer // Int. J. Mol. Sci. 2019. Vol. 20, No. 6. P. 1–22. DOI: 10.3390/ijms20061426 |
| [55] |
Yang L, Shi P, Zhao G, et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduction and Targeted Therapy. 2020;5(8):1–35. DOI: 10.1038/s41392-020-0110-5 |
| [56] |
Yang L., Shi P., Zhao G., et al. Targeting cancer stem cell pathways for cancer therapy // Signal Transduction and Targeted Therapy. 2020. Vol. 5, No. 8. P. 1–35. DOI: 10.1038/s41392-020-0110-5 |
| [57] |
Xu X, Zhang M, Jiang S. Wnt signaling in breast cancer: biological mechanisms, challenges and opportunities. Molecular Cancer. 2020;19(165):1–35 DOI: 10.1186/s12943-020-01276-5 |
| [58] |
Xu X., Zhang M., Jiang S. Wnt signaling in breast cancer: biological mechanisms, challenges and opportunities // Molecular Cancer. 2020. Vol. 19, No. 165. P. 1–35. DOI: 10.1186/s12943-020-01276-5 |
| [59] |
Luoa LY, Hahnb WC. Oncogenic Signaling Adaptor Proteins. J Genet Genomics. 2015;42(10):521–529. DOI: 10.1016/j.jgg.2015.09.001 |
| [60] |
Luoa L.Y., Hahnb W.C. Oncogenic Signaling Adaptor Proteins // J. Genet Genomics. 2015. Vol. 42, No. 10. P. 521–529. DOI: 10.1016/j.jgg.2015.09.001 |
| [61] |
Diner BA, Lum KK, Javitt A, et al. Interactions of the Antiviral Factor Interferon Gamma-Inducible Protein 16. NIFI16 Mediate Immune Signaling and Herpes Simplex Virus-1 Immunosuppression. Mol Cell Proteomics. 2015;14(9):2341–2356. DOI: 10.1074/mcp.M114.047068 |
| [62] |
Diner B.A., Lum K.K., Javitt A., et al. Interactions of the Antiviral Factor Interferon Gamma-Inducible Protein 16. NIFI16 Mediate Immune Signaling and Herpes Simplex Virus-1 Immunosuppression // Mol Cell Proteomics. 2015. Vol. 14, No. 9. P. 2341–2356. DOI: 10.1074/mcp.M114.047068 |
| [63] |
Kalinina AA. Hematopoietic, immunomodulatory and antitumor properties of recombinant human cyclophilin A [dissertation]. Moscow; 2019. 194 p. |
| [64] |
Калинина А.А. Гемопоэтические, иммуномодулирующие и противоопухолевые свойства рекомбинантного циклофилина А человека: дис. … канд. биол. наук. Москва, 2019. 194 с. |
| [65] |
Belyakov NA, Medvedev SV, Trofimova TK, et al. Mechanisms of cerebral damage in patients with hiv-infection. Bulletin of the Russian Academy of Medical Sciences. 2012;(9):4–12. |
| [66] |
Беляков Н.А., Медведев С.В., Трофимова Т.К., и др. Механизмы поражения головного мозга при ВИЧ-инфекции // Вестник РАМН. 2012. № 9. С. 4–12. |
| [67] |
Shelomov AS. Clinical, immunological, virological characteristics of lesions of the central nervous system in HIV infection: [dissertation]. Saint Petersburg; 2018. 135 p. |
| [68] |
Шеломов А.С. Клиническая, иммунологическая, вирусологическая характеристика поражений центральной нервной системы при ВИЧ-инфекции: дис. … канд. мед. наук. Санкт-Петербург, 2018. 135 с. |
| [69] |
Reizis B. Plasmacytoid Dendritic Cells: Development, Regulation, and Function. Immunity. 2019;50(1):37–50. DOI: 10.1016/j.immuni.2018.12.027 |
| [70] |
Reizis B. Plasmacytoid Dendritic Cells: Development, Regulation, and Function // Immunity. 2019. Vol. 50, No. 1. P. 37–50. DOI: 10.1016/j.immuni.2018.12.027 |
| [71] |
Hemann EA, Green R, Turnbull JB, et al. Interferon-λ modulates dendritic cells to facilitate T cell immunity ion with influenza A virus. Nat Immunol. 2019;20:1035–1045. DOI: 10.1038/s41590-019-0408-z |
| [72] |
Hemann E.A., Green R., Turnbull J.B., et al. Interferon-λ modulates dendritic cells to facilitate T cell immunity ion with influenza A virus // Nat Immunol. 2019. Vol. 20. P. 1035–1045. DOI: 10.1038/s41590-019-0408-z |
| [73] |
Azovtseva OV. Coinfection: HIV infection, tuberculosis, chronic viral hepatitis: [dissertation]. Saint Petersburg; 2021. 197 p. |
| [74] |
Азовцева О.В. Коинфекция: ВИЧ-инфекция, туберкулез, хронический вирусный гепатит: дис. … д-ра мед. наук. Санкт-Петербург, 2021. 197 с. |
| [75] |
Jharullaeva AS. Role associated stimulations TOLL and NOD-like receptors of congenital immunity in formation of reactions of the adaptive immune answer: [dissertation]. Moscow; 2022. 171 p. |
| [76] |
Джаруллаева А.Ш. Роль сочетанной стимуляции TOLL и NOD-подобных рецепторов врожденного иммунитета в формировании реакций адаптивного иммунного ответа: дис. … канд. биол. наук. Москва, 2022. 171 с. |
| [77] |
Griffin DE. The Immune Response in Measles: Virus Control, Clearance and Protective Immunity. Viruses. 2016;10(8):282–291. DOI: 10.3390/v8100282 |
| [78] |
Griffin D.E. The Immune Response in Measles: Virus Control, Clearance and Protective Immunity // Viruses. 2016. Vol. 10, No. 8. P. 282–291. DOI: 10.3390/v8100282 |
| [79] |
Kwong PD, Mascola JR, Nabel GJ. Broadly neutralizing antibodies and the search for an HIV-1 vaccine: the end of the beginning. Nat Rev Immunol. 2013;13:693–701. DOI: 10.1038/nri3516 |
| [80] |
Kwong P.D., Mascola J.R., Nabel G.J. Broadly neutralizing antibodies and the search for an HIV-1 vaccine: the end of the beginning // Nat Rev Immunol. 2013. Vol. 13. P. 693–701. DOI: 10.1038/nri3516 |
| [81] |
van Gent M, Braem SG, de Jong A, et al. Epstein-Barr virus large tegument protein BPLF1 contributes to innate immune evasion through interference with toll-like receptor signaling. PLoS Pathog. 2014;10(2):e1003960. DOI: 10.1371/journal.ppat.1003960 |
| [82] |
van Gent M., Braem S.G., de Jong A., et al. Epstein-Barr virus large tegument protein BPLF1 contributes to innate immune evasion through interference with toll-like receptor signaling // PLoS Pathog. 2014. Vol. 10, No. 2. P. e1003960. DOI: 10.1371/journal.ppat.1003960 |
| [83] |
Behzadi P, García-Perdomo HA, Karpiński TM. Toll-Like Receptors: General Molecular and Structural Biology. Journal of Immunology Research. 2021;2021:9914854. DOI: 10.1155/2021/9914854 |
| [84] |
Behzadi P., García-Perdomo H.A., Karpiński T.M. Toll-Like Receptors: General Molecular and Structural Biology // Journal of Immunology Research. 2021. Vol. 2021. Р. 9914854. DOI: 10.1155/2021/9914854 |
Eco-Vector
/
| 〈 |
|
〉 |