Blood coagulation system in experimental acute lung injury and its treatment with dexamethasone
Nikita I. Voloshin , Evgeny O. Chuchalin , Victoria A. Pugach , Vladimir V. Salukhov , Mikhail A. Tyunin , Mikhail A. Kharitonov , Yuri V. Rudakov , Alexey A. Minakov , Yuriy B. Goverdovskiy , Tatyana A. Belyakova , Viktoriya V. Kochukova
Bulletin of the Russian Military Medical Academy ›› 2023, Vol. 25 ›› Issue (4) : 545 -556.
Blood coagulation system in experimental acute lung injury and its treatment with dexamethasone
The effects of short- and long-term administrations of dexamethasone on survival, severity of pulmonary edema, and hemostasis on experimental lipopolysaccharide-induced acute lung injury in rats were analyzed. Acute lung injury in rats was modeled by the intratracheal injection of lipopolysaccharide from the Salmonella enterica cell wall. White male rats were randomly divided into nine groups: the intact group consisted of 10 animals; two control groups of 20 animals each, in which acute lung injury was simulated without further treatment and removed from the experiment on day 3 or 7; six comparison groups of 20 animals each, in which, 3 h after modeling of acute lung injury and then once a day for 3 days (short mode of administration) or 7 days (long mode of administration), dexamethasone solution was administered intraperitoneally in the following doses: 0. 52 (equivalent to 6 mg/day for humans), 1. 71 (20 mg/day for humans), and 8 mg/kg/day (94 mg/day, pulse therapy for humans). On days 3 and 7, the survival rate, coagulogram values (active partial thromboplastin time, prothrombin time, activity of antithrombin, and soluble fibrin monomer complexes), and low-frequency piezotromboelastography data were assessed in the surviving animals. The results revealed that dexamethasone reduces mortality in acute lung injury and has a dose-dependent effect on the hemostasis system: with an increase in the dose administered, blood clotting processes increase and fibrinolysis is inhibited. Low-frequency piezothromboelastography with a conventional coagulogram allows for a comprehensive assessment of the hemostasis system, identifying violations, and timely drug correction.
biomodelling / glucocorticosteroids / dose-dependent effect / acute lung injury / coagulogram / low-frequency piezothromboelastography / short and long regimens of dexamethasone / fibrinolysis
| [1] |
Ivchenko EV, Kotiv BN, Ovchinnikov DV, et al. Results of the work of the Military medical academy research institute of novel coronavirus infection problems through 2020–2021. Bulletin of the Russian Military Medical Academy. 2021;23(4):93–104. (In Russ.). DOI: 10.17816/brmma83094 |
| [2] |
Ивченко Е.В., Котив Б.Н., Овчинников Д.В., и др. Результаты работы научно-исследовательского института проблем новой коронавирусной инфекции Военно-медицинской академии за 2020–2021 гг. // Вестник Российской военно-медицинской академии. 2021. Т. 23, № 4. C. 93–104. DOI: 10.17816/brmma83094 |
| [3] |
Andreenko AA, Andreichuk YuV, Arsent’ev VG, et al. Infektsiya, vyzvannaya SARS-COV-2. Kryukova EV, ed. Saint Petersburg. 2023. 260 p. (In Russ.). |
| [4] |
Андреенко А.А., Андрейчук Ю.В., Арсентьев В.Г., и др. Инфекция, вызванная SARS-COV-2 / под ред. Е.В. Крюкова. Санкт-Петербург. 2023. 260 с. |
| [5] |
Bucenko SA, Sergoventsev AA, Kuznetsova RY, et al. Factors contributing to the new coronavirus infection, increased risk of complications and death from it in the armed forces of the Russian Federation. Bulletin of the Russian Military Medical Academy. 2023;25(1):121–132. (In Russ.). DOI: 10.17816/brmma112377 |
| [6] |
Буценко С.А., Серговенцев А.А., Кузнецова Р.Ю., и др. Факторы, способствующие заражению новой коронавирусной инфекцией, повышению риска осложнений и смерти от нее в Вооруженных силах Российской Федерации // Вестник Российской военно-медицинской академии. 202 Т. 25, № 1. С. 121–132. DOI: 10.17816/brmma112377 |
| [7] |
Salukhov VV, Kharitonov MA, Kryukov EV, et al. Topical issues of diagnostics, examination and treatment of patients with COVID-19-associated pneumonia in different countries and continents. Medical Council. 2020;21:96–102. (In Russ.). DOI: 10.21518/2079-701X-2020-21-96-102 |
| [8] |
Салухов В.В., Харитонов М.А., Крюков Е.В., и др. Актуальные вопросы диагностики, обследования и лечения больных с COVID-19-ассоциированной пневмонией в различных странах и континентах // Медицинский Совет. 2020. Т. 21. С. 96–102. DOI: 10.21518/2079-701X-2020-21-96-102 |
| [9] |
Makarova EV, Tyurikova LV, Lyubavina NA. The use of systemic corticosteroids in a new coronavirus infection (from the standpoint of international and Russian recommendations. Medical Almanac. 2021;1(66):74–82. (In Russ.). |
| [10] |
Макарова Е.В., Тюрикова Л.В., Любавина Н.А. Применение системных кортикостероидов при новой коронавирусной инфекции (с позиций международных и российских рекомендаций) // Медицинский альманах. 2021. Т. 1, № 66. С. 74–82. |
| [11] |
Opal SM. Phylogenetic and functional relationships between coagulation and the innate immune response. Crit Care Med. 2000;28(9):S77–S80. DOI: 10.1097/00003246-200009001-00017 |
| [12] |
Opal S.M. Phylogenetic and functional relationships between coagulation and the innate immune response // Crit Care Med. 2000. Vol. 28, No. 9. P. S77–S80. DOI: 10.1097/00003246-200009001-00017 |
| [13] |
Chapman HA. Plasminogen activators, integrins, and the coordinated regulation of cell adhesion and migration. Curr Opin Cell Biol. 1997;9(5):714–724. DOI: 10.1016/s0955-0674(97)80126-3 |
| [14] |
Chapman H.A. Plasminogen activators, integrins, and the coordinated regulation of cell adhesion and migration // Curr Opin Cell Biol. 1997. Vol. 9, No. 5. P. 714–724. DOI: 10.1016/s0955-0674(97)80126-3 |
| [15] |
Miller DL. Extrinsic coagulation blockade attenuates lung injury and proinflammatory cytokine release after intratracheal lipopolysaccharide. Am J Respir Cell Mol Biol. 2002;26(6):650–658. DOI: 10.1165/ajrcmb.26.6.4688 |
| [16] |
Miller D.L. Extrinsic coagulation blockade attenuates lung injury and proinflammatory cytokine release after intratracheal lipopolysaccharide // Am J Respir Cell Mol Biol. 2002. Vol. 26, No. 6. P. 650–658. DOI: 10.1165/ajrcmb.26.6.4688 |
| [17] |
Okajima K. Antithrombin prevents endotoxin-induced pulmonary vascular injury by inhibiting leukocyte activation. Blood Coagul Fibrinolysis.1998;9:S25–S37. |
| [18] |
Okajima K. Antithrombin prevents endotoxin-induced pulmonary vascular injury by inhibiting leukocyte activation // Blood Coagul Fibrinolysis.1998. Vol. 9. P. S25–S37. |
| [19] |
Idell S. Endothelium and disordered fibrin turnover in the injured lung: newly recognized pathways. Crit Care Med. 2002;30(5): S274–S280. DOI: 10.1097/00003246-200205001-00017 |
| [20] |
Idell S. Endothelium and disordered fibrin turnover in the injured lung: newly recognized pathways // Crit Care Med. 2002. Vol. 30, No. 5. P. S274–S280. DOI: 10.1097/00003246-200205001-00017 |
| [21] |
Morange PE, Aubert J, Peiretti F, et al. Glucocorticoids and insulin promote plasminogen activator inhibitor 1 production by human adipose tissue. Diabetes. 1999;48(4):890–895. DOI: 10.2337/diabetes.48.4.890 |
| [22] |
Morange P.E., Aubert J., Peiretti F., et al. Glucocorticoids and insulin promote plasminogen activator inhibitor 1 production by human adipose tissue // Diabetes. 1999. Vol. 48, No. 4. Р. 890–895. DOI: 10.2337/diabetes.48.4.890 |
| [23] |
Yaroshetskiy AI, Gritsan AI, Avdeev SN, et. al. Diagnostics and intensive therapy of acute respiratory distress syndrome (clinical guidelines of the federation of anesthesiologists and reanimatologists of Russia). Russian Journal of Anаеsthesiology and Reanimatology. 2020;(2):5–39. (In Russ.). DOI: 10.17116/anaesthesiology20200215 |
| [24] |
Ярошецкий А.И., Грицан А.И., Авдеев С.Н., и др. Диагностика и интенсивная терапия острого респираторного дистресс-синдрома. // Анестезиология и реаниматология. 2020. № 2. С. 5–39. DOI: 10.17116/anaesthesiology20200215 |
| [25] |
Fan E, Del Sorbo L, Goligher EC, et al. American Thoracic Society, European Society of Intensive Care Medicine, and Society of Critical Care Medicine. An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med. 2017;195(9):1253–1263. DOI: 10.1164/rccm.201703-0548ST |
| [26] |
Fan E., Del Sorbo L., Goligher E.C., et al. American Thoracic Society, European Society of Intensive Care Medicine, and Society of Critical Care Medicine. An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome // Am J Respir Crit Care Med. 2017. Vol. 195, No. 9. P. 1253–1263. DOI: 10.1164/rccm.201703-0548ST |
| [27] |
Majoor CJ, Sneeboer MM, de Kievit A, et al. The influence of corticosteroids on hemostasis in healthy subjects. J Thromb Haemost. 2016;14(4):716–723. DOI: 10.1111/jth.13265 |
| [28] |
Majoor C.J., Sneeboer M.M., de Kievit A., et al. The influence of corticosteroids on hemostasis in healthy subjects // J Thromb Haemost. 2016. Vol. 14, No. 4. P. 716–723. DOI: 10.1111/jth.13265 |
| [29] |
Heaton JH, Nebes VL, O’Dell LG, et al. Glucocorticoid and cyclic nucleotide regulation of plasminogen activator and plasminogen activator-inhibitor gene expression in primary cultures of rat hepatocyte. Mol Endocrinol. 1989;3(1):185–192. DOI: 10.1210/mend-3-1-185 |
| [30] |
Heaton J.H., Nebes V.L., O’Dell L.G., et al. Glucocorticoid and cyclic nucleotide regulation of plasminogen activator and plasminogen activator-inhibitor gene expression in primary cultures of rat hepatocyte // Mol Endocrinol. 1989. Vol. 3, No. 1. P. 185–192. DOI: 10.1210/mend-3-1-185 |
| [31] |
Stolz E, Klötzsch C, Schlachetzki F, et al. High-dose corticosteroid treatment is associated with an increased risk of developing cerebral venous thrombosis. Eur Neurol. 2003;49(4):24–78. DOI: 10.1159/000070197 |
| [32] |
Stolz E., Klötzsch C., Schlachetzki F., et al. High-dose corticosteroid treatment is associated with an increased risk of developing cerebral venous thrombosis // Eur Neurol. 2003. Vol. 49, No. 4. Р. 24–78. DOI: 10.1159/000070197 |
| [33] |
Edalatifard M, Akhtari M, Salehi M, et al. Intravenous methylprednisolone pulse as a treatment for hospitalised severe COVID-19 patients: results from a randomised controlled clinical trial. Eur Respir J. 2020;56(6):2002808. DOI: 10.1183/13993003.02808-2020 |
| [34] |
Edalatifard M., Akhtari M., Salehi M., et al. Intravenous methylprednisolone pulse as a treatment for hospitalised severe COVID-19 patients: results from a randomised controlled clinical trial // Eur Respir J. 2020. Vol. 56, No. 6. Р. 2002808. DOI: 10.1183/13993003.02808-2020 |
| [35] |
Munch MW, Myatra SN, Vijayaraghavan B, et al. Effect of 12 mg vs 6 mg of dexamethasone on the number of days alive without life support in adults with COVID-19 and severe hypoxemia: The COVID STEROID 2 Randomized Trial. JAMA. 2021;326(18):1807–1817. DOI: 10.1001/jama.2021.18295 |
| [36] |
Munch M.W., Myatra S.N., Vijayaraghavan B., et al. Effect of 12 mg vs 6 mg of Dexamethasone on the Number of Days Alive Without Life Support in Adults With COVID-19 and Severe Hypoxemia: The COVID STEROID 2 Randomized Trial // JAMA. 2021. Vol. 326, No. 18. Р. 1807–1817. DOI: 10.1001/jama.2021.18295 |
| [37] |
Majoor CJ, Sneeboer MM, de Kievit A, et al. The influence of corticosteroids on hemostasis in healthy subjects. J Thromb Haemost. 2016;14(4):716–723. DOI: 10.1111/jth.13265 |
| [38] |
Majoor C.J., Sneeboer M.M., de Kievit A., et al. The influence of corticosteroids on hemostasis in healthy subjects // J Thromb Haemost. 2016. Vol. 14, No. 4. Р. 716–723. DOI: 10.1111/jth.13265 |
| [39] |
Maxwell M, Moots S, Kendall R. Corticosteroids: Do they damage the cardiovascular system? Postgrad Med J. 1995;70(830):863–870. DOI: 10.1136/pgmj.70.830.863 |
| [40] |
Maxwell M., Moots S., Kendall R. Corticosteroids: Do they damage the cardiovascular system? // Postgrad Med J. 1995. Vol. 70, No. 830. Р. 863–870. DOI:10.1136/pgmj.70.830.863 |
| [41] |
Matute-Bello G, Downey G, Moore BB, et al. Acute Lung Injury in Animals Study Group. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol. 2011;44(5):725–738. DOI: 10.1165/rcmb.2009-0210ST |
| [42] |
Matute-Bello G., Downey G., Moore B.B., et. al. Acute Lung Injury in Animals Study Group. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals // Am J Respir Cell Mol Biol. 2011. Vol. 44, No. 5. Р. 725–738. DOI: 10.1165/rcmb.2009-0210ST |
| [43] |
Pugach VA, Strokina EI, Isaeva AA, et al. Pokazateli plazmennogo gemostaza v eksperimental’noi modeli ostrogo respiratornogo distress-sindroma Aktual’nye problemy biomeditsiny In: Collection of abstracts of the XXVI All-Russian Conference of Young Scientists with International participation “Aktual’nye problemy biomeditsiny”. Saint Petersburg; 2020. P. 152–154. (In Russ.). |
| [44] |
Пугач В.А., Строкина Е.И., Исаева А.А., и др. Показатели плазменного гемостаза в экспериментальной модели острого респираторного дистресс-синдрома // Сборник тезисов XXVI Всероссийской конференции молодых ученых с международным участием «Актуальные проблемы биомедицины». Санкт-Петербург, 2020. С. 152–154. |
| [45] |
Salukhov VV, Voloshin NI, Shperling MI. Effectiveness of various regimens of systemic anti-inflammatory therapy with glucocorticoids in the development of acute LPS-induced lung damage in the experiment. Russian Military Medical Academy Reports. 2022;41(2):111–116. (In Russ.). DOI: 10.17816/rmmar104619 |
| [46] |
Салухов В.В., Волошин Н.И., Шперлинг М.И. Эффективность применения различных схем системной противовоспалительной терапии глюкокортикоидами при развитии острого ЛПС-индуцированного повреждения легких в эксперименте // Известия Российской военно-медицинской академии. 2022. Т. 41, № 2. С. 111–116. DOI: 10.17816/rmmar104619 |
| [47] |
European Convention for the Protection of Vertebrate Animals used for Experimental or other Scientific Purposes. Introduction 03.18.1986. Strasburg, 1986. 13 p. |
| [48] |
Европейская конвенция о защите позвоночных животных, используемых для экспериментов или в иных научных целях. Введ. 18.03.1986. Страсбург, 1986. 13 с. |
| [49] |
Directive of the European Parliament and of the Council of the European Union on the protection of animals used for scientific purposes (complies with the requirements of the European Economic Area) № 2010/63/eu. Intr. 01.01.2013. Strasbourg, 2010. 48 p. |
| [50] |
Директива европейского парламента и совета европейского союза по охране животных, используемых в научных целях (соответствует требованиям европейской экономической зоны) № 2010/63/eu. Введ. 01.01.2013. Страсбург, 2010. 48 с. |
| [51] |
Shekunova EV, Kovaleva MA, Makarova MN, et al. The choice of dose of the drug for preclinical studies: interspecies transfer of doses. Vedomosti Nauchnogo tsentra ekspertizy sredstv meditsinskogo primeneniya. 2020;10(1):19–28 (In Russ.). DOI: 10.30895/1991-2919-2020-10-1-19-28 |
| [52] |
Шекунова Е.В., Ковалева М.А., Макарова М.Н., и др. Выбор дозы препарата для доклинического исследования: межвидовой перенос доз. Ведомости Научного центра экспертизы средств медицинского применения. 2020. Т. 10, № 1. C. 19–28. DOI: 10.30895/1991-2919-2020-10-1-19-28 |
Eco-Vector
/
| 〈 |
|
〉 |