Changes in the cerebral cortex and thyroid in the simulation of cerebral hypoperfusion and its combination with physical exercise
Ivan V. Gaivoronskii , Vladimir V. Chrishtop , Varvara G. Nikonorova , Aleksei A. Semenov
Bulletin of the Russian Military Medical Academy ›› 2023, Vol. 25 ›› Issue (3) : 423 -431.
Changes in the cerebral cortex and thyroid in the simulation of cerebral hypoperfusion and its combination with physical exercise
Cerebral hypoperfusion, as the main mechanism of age-associated diseases, is widespread, which leads to decreased work capacity in the most qualified segment of employees. The study aimed to analyze compensatory and adaptive reactions of the cerebral cortex, thyroid gland, and blood in cerebral hypoperfusion and its combination with short-term physical activity. Chronic cerebral hypoperfusion was modeled by permanent bilateral occlusion of the common carotid arteries. The study included 280 rats, of which 112 were subjected to daily short-term swimming as a model of rehabilitation measures. On days 1, 6, 8, 14, 21, 28, 35, 60, and 90 after surgery, the animals were subjected to the Morris water maze and open field tests. Histological sections of the brain and thyroid gland were examined. The concentrations of the active products of thiobarbituric acid, nitrites, and L-arginine in blood plasma were measured. The results showed that changes in the cerebral cortex and thyroid gland in the cerebral hypoperfusion model were characterized by a general stage: days 1–8, hypothyroid condition and death of cortical cells, cerebral hemispheres, predominantly neurons; weeks 2–3, stabilization, transition to the euthyroid condition, accompanied with thyrocyte desquamation, folliculogenesis, perifollicular hemocapillaries fullness, decreased functional activity of neurons, and astrocyte activation; weeks 4–5, incomplete adaptation, which is characterized by neurons approaching the vessels of the hemocirculatory channel and satellites sinking into the cytoplasm of neurons. Mosaicism of thyroid blood filling was also observed. After 3 months, degenerative changes in the cells of the cerebral cortex of the cerebral hemispheres appear, including a decrease in the numerical density of neurons and immunoreactive cells of glial fibrillar acid protein and a hyperthyroid state with signs of decompensation: plasmorrhagia and desquamation of the thyroid epithelium. Daily 15-min exercise with cerebral hypoperfusion demonstrated a neuroprotective effect, slowed down the progression of hypoxic and neurodegenerative changes, and reduced the concentration of nitrites and malondialdehyde in the blood and the levels of neuronal nitric oxide synthase in immunoreactive neurons.
cerebral hypoperfusion / physical activity / cerebral cortex / thyroid gland / occlusion of common carotid arteries / inter-organ integrations / hemocirculatory bed / neuroprotective effect / immunoreactive neurons / neuronal nitric oxide synthase
| [1] |
Auchter AM, Barrett DW, Monfils MH, Gonzalez-Lima F. Methylene blue preserves cytochrome oxidase activity and prevents neurodegeneration and memory impairment in rats with chronic cerebral hypoperfusion. Front Cell Neurosci. 2020;14:130. DOI: 10.3389/fncel.2020.00130 |
| [2] |
Auchter A.M., Barrett D.W., Monfils M.H., Gonzalez-Lima F. Methylene blue preserves cytochrome oxidase activity and prevents neurodegeneration and memory impairment in rats with chronic cerebral hypoperfusion // Front Cell Neurosci. 2020. Vol. 14. ID 130. DOI: 10.3389/fncel.2020.00130 |
| [3] |
Shilov VV, Judin MA, Nikonova SM, et al. Study of the effectiveness of drugs in experimental models of poisoning neuropathy in malathion. Russian Journal of Occupational Health and Industrial Ecology. 2013;(8):13–18. (In Russ.). |
| [4] |
Шилов В.В., Юдин М.А., Никонова С.М., и др. Изучение эффективности лекарственных средств на модели экспериментальной нейропатии при отравлении малатионом // Медицина труда и промышленная экология. 2013. № 8. С. 13–18. |
| [5] |
Wang X-X, Zhang B, Xia R, Jia Q-Y. Inflammation, apoptosis and autophagy as critical players in vascular dementia. Eur Rev Med Pharmacol Sci. 2020;24(18):9601–9614. DOI: 10.26355/eurrev_202009_23048 |
| [6] |
Wang X.-X., Zhang B., Xia R., Jia Q.-Y. Inflammation, apoptosis and autophagy as critical players in vascular dementia // Eur Rev Med Pharmacol Sci. 2020. Vol. 24, Nо. 18. P. 9601–9614. DOI: 10.26355/eurrev_202009_23048 |
| [7] |
Chrishtop V, Nikonorova V, Gutsalova A, et al. Systematic comparison of basic animal models of cerebral hypoperfusion. Tissue Cell. 2021;23:101715. DOI: 10.1016/j.tice.2021.101715 |
| [8] |
Chrishtop V., Nikonorova V., Gutsalova A., et al. Systematic comparison of basic animal models of cerebral hypoperfusion // Tissue Cell. 2021. Vol. 23. ID 101715. DOI: 10.1016/j.tice.2021.101715 |
| [9] |
Chrishtop VV, Tomilova IK, Rumyantseva TA, et al. The effect of short-term physical activity on the oxidative stress in rats with different stress resistance profiles in cerebral hypoperfusion. Mol Neurobiol. 2020;57(7):3014–3026. DOI: 10.1007/s12035-020-01930-5 |
| [10] |
Chrishtop V.V., Tomilova I.K., Rumyantseva T.A., et al. The effect of short-term physical activity on the oxidative stress in rats with different stress resistance profiles in cerebral hypoperfusion // Mol Neurobiol. 2020. Vol. 57, Nо. 7. P. 3014–3026. DOI: 10.1007/s12035-020-01930-5 |
| [11] |
Torshin IY, Gromova OA, Nazarenko AG. Chondroprotectors as modulators of neuroinflammation. Neurology, Neuropsychiatry, Psychosomatics. 2023;15(1):110–118. (In Russ.). DOI: 10.14412/2074-2711-2023-1-110-118 |
| [12] |
Торшин И.Ю., Громова О.А., Назаренко А.Г. Хондропротекторы как модуляторы нейровоспаления // Неврология, нейропсихиатрия, психосоматика. 2023. Т. 15, № 1. С. 110–118. DOI: 10.14412/2074-2711-2023-1-110-118 |
| [13] |
Rudakov VN. Razlichiya v polozhenii professorsko-prepodavatel’skogo sostava vuzov po vozrastnym gruppam. Shugal’ NB, editor. Monitoring ehkonomiki obrazovaniya v 2 t. T. 2. Moscow: HSE, 2021. 256 p. (In Russ.). |
| [14] |
Рудаков В.Н. Различия в положении профессорско-преподавательского состава вузов по возрастным группам. Мониторинг экономики образования в 2 т. Т. 2 / сост. Н.Б. Шугаль. Москва: НИУ ВШЭ, 2021. 256 с. |
| [15] |
Ivlieva AL, Petritskaya EN, Rogatkin DA, Demin VA. Metodicheskie osobennosti primeneniya vodnogo labirinta Morrisa dlya otsenki kognitivnykh funktsii u zhivotnykh. Journal of Evolutionary Biochemistry and Physiology. 2016;102(1):3–17. (In Russ.). |
| [16] |
Ивлиева А.Л., Петрицкая Е.Н., Рогаткин Д.А., Демин В.А. Методические особенности применения водного лабиринта Морриса для оценки когнитивных функций у животных // Российский физиологический журнал им. И.М. Сеченова. 2016. Т. 102, № 1. С. 3–17. |
| [17] |
Chepur SV, Bykov VN, Yudin MA, et al. Features of experimental modelling of somatic and neurologic diseases for estimation of medical products efficiency. Journal Biomed. 2012;1(1):16–28. (In Russ.). |
| [18] |
Чепур С.В., Быков В.Н., Юдин М.А., и др. Особенности экспериментального моделирования соматических и неврологических заболеваний для оценки эффективности лекарственных препаратов // Биомедицина. 2012. № 1. С. 16–28. |
| [19] |
Stepanov AS, Akulinin VA, Mysik AV, et al. Neuro-glio-vascular complexes of the brain after acute ischemia. General Reanimatology. 2017;13(6):6–17. (In Russ.). DOI: 10.15360/1813-9779-2017-6-6-17 |
| [20] |
Степанов А.С., Акулинин В.А., Мыцик А.В., и др. Нейро-глио-сосудистые комплексы головного мозга после острой ишемии // Общая реаниматология. 2017. Т. 13, № 6. С. 6–17. DOI: 10.15360/1813-9779-2017-6-6-17 |
| [21] |
Krishtop VV, Nikonorova VG, Rumyantseva TА. Changes in the cellular composition of the cerebral cortex in rats with different levels of cognitive functions under cerebral hypoperfusion. Journal of Anatomy and Histopathology. 2019;8(4):22–29. (In Russ.). DOI: 10.18499/2225-7357-2019-8-4-22-29 |
| [22] |
Криштоп В.В., Никонорова В.Г., Румянцева Т.А. Изменения клеточного состава коры головного мозга у крыс с разным уровнем когнитивных функций при церебральной гипоперфузии // Журнал анатомии и гистопатологии. 2019. T. 8, № 4. C. 22–29. DOI: 10.18499/2225-7357-2019-8-4-22-29 |
| [23] |
Farkas E, Luiten PGM, Bari F. Permanent, bilateral common carotid artery occlusion in the rat: A model for chronic cerebral hypoperfusion-related neurodegenerative diseases. Brain Res Rev. 2007;54(1):162–180. DOI: 10.1016/j.brainresrev.2007.01.003 |
| [24] |
Farkas E., Luiten P.G.M., Bari F. Permanent, bilateral common carotid artery occlusion in the rat: A model for chronic cerebral hypoperfusion-related neurodegenerative diseases // Brain Res Rev. 2007. Vol. 54, Nо. 1. P. 162–180. doi: 10.1016/j.brainresrev.2007.01.003 |
| [25] |
Samartsev IN, Zhivolupov SA. New prospects for drug treatment of chronic cerebral ischemia from the standpoint of neuroinflammation. Clinical pharmacology and therapy. 2022;31(3):4–8. (In Russ.). DOI: 10.32756/0869-5490-2022-3-4-8 |
| [26] |
Самарцев И.Н., Живолупов С.А. Новые перспективы медикаментозной терапии хронической ишемии головного мозга с позиций нейровоспаления // Клиническая фармакология и терапия. 2022. Т. 31, № 3. С. 4–8. DOI: 10.32756/0869-5490-2022-3-4-8 |
| [27] |
Liu M-X, Luo L, Fu J-H, et al. Exercise-induced neuroprotection against cerebral ischemia/reperfusion injury is mediated via alleviating inflammasome-induced pyroptosis. Exp Neurol. 2022;349:113952. DOI: 10.1016/j.expneurol.2021.113952 |
| [28] |
Liu M.-X., Luo L., Fu J.-H., et al. Exercise-induced neuroprotection against cerebral ischemia/reperfusion injury is mediated via alleviating inflammasome-induced pyroptosis // Exp Neurol. 2022. Vol. 349. ID 113952. DOI: 10.1016/j.expneurol.2021.113952 |
| [29] |
Qin C, Bian X-L, Wu H-Y, et al. Prevention of the return of extinguished fear by disrupting the interaction of neuronal nitric oxide synthase with its carboxy-terminal PDZ ligand. Mol Psychiatry. 2021;26(11):6506–6519. DOI: 10.1038/s41380-021-01118-w |
| [30] |
Qin C., Bian X.-L., Wu H.-Y., et al. Prevention of the return of extinguished fear by disrupting the interaction of neuronal nitric oxide synthase with its carboxy-terminal PDZ ligand // Mol Psychiatry. 2021. Vol. 26, Nо. 11. P. 6506–6519. DOI: 10.1038/s41380-021-01118-w |
| [31] |
Grochowski C, Litak J, Kamieniak P, Maciejewski R. Oxidative stress in cerebral small vessel disease. Role of reactive species. Free Radic Res. 2018;52(1):1–13. DOI: 10.1080/10715762.2017.1402304 |
| [32] |
Grochowski C., Litak J., Kamieniak P., Maciejewski R. Oxidative stress in cerebral small vessel disease. Role of reactive species // Free Radic Res. 2018. Vol. 52, Nо. 1. P. 1–13. DOI: 10.1080/10715762.2017.1402304 |
| [33] |
Sardinha VM, Guerra-Gomes S, Caetano I, et al. Astrocytic signaling supports hippocampal-prefrontal theta synchronization and cognitive function. Glia. 2017;65(12):1944–1960. DOI: 10.1002/glia.23205 |
| [34] |
Sardinha V.M., Guerra-Gomes S., Caetano I., et al. Astrocytic signaling supports hippocampal-prefrontal theta synchronization and cognitive function // Glia. 2017. Vol. 65, Nо. 12. P. 1944–1960. DOI: 10.1002/glia.23205 |
Eco-Vector
/
| 〈 |
|
〉 |