Features of the course of traumatic shock when using respiratory mixtures with a high content of inert gases
Artem M. Nosov , Vasiliy A. Petrov , Konstantin N. Demchenko , Nikolay A. Morgunov , Roman E. Lakhin , Natalya A. Zhirnova , Stanislav P. Kolvzan
Bulletin of the Russian Military Medical Academy ›› 2023, Vol. 25 ›› Issue (3) : 367 -376.
Features of the course of traumatic shock when using respiratory mixtures with a high content of inert gases
This study evaluated the efficiency of using gas mixtures with increased concentrations of inert gases on a hemorrhagic shock model in experimental animals. Massive blood loss is considered a trigger mechanism of severe pathophysiological reactions (impaired peripheral perfusion, acidosis, hemostasis system dysfunction, and multiple organ failure). Inert gases (helium, argon, and xenon) attract attention as potentially useful in various pathological conditions. The study was conducted on 15 same-sex pigs of the same breed, weighing 40–50 kg, randomized into three groups with five each: control group, inhalation of 100% oxygen; “agohhep” group, inhalation of the “Aroxxen” gas mixture: 35% argon, 58% oxygen, 0.2% xenon, and nitrogen as the rest of the volume; and “agohhep-krypto” group, inhalation of the gas mixture “Aroxxen-krypto”: 35% argon, 40% oxygen, 10% krypton, and nitrogen as the rest of the volume. Dynamic monitoring of vital signs and sampling of materials were conducted before blood loss, with blood loss of 20% and 45% of the volume of the circulating blood 60, 120, and 180 min after blood loss. The survival rate of animals and respiratory and circulatory states were evaluated by clinical and laboratory indicators. With blood loss of 45% of the circulating blood volume, no statistically significant differences in mortality were found between the groups. All animals survived for 180 min in the post-hemorrhagic period. In the aggohep-krypto group, average blood pressure values after blood loss and throughout the follow-up period were significantly higher than those in the control and aggohep groups (p < 0.05). During shock simulation as a result of blood loss, base deficiency gradually worsened in all groups. However, starting from the second hour of observation, base deficiency began to be compensated in the control and aggohep-krypto groups and the aggohep group, it continued to increase significantly (p < 0.01). During the follow-up after blood loss, the level of lactatemia significantly increased in the aggohep group (by 10 times at the end of the follow-up), which is significant different from those in the control and aggohep-krypto groups (p < 0.01). Thus, compared with the use of Arroxen gas, the use of Arroxen-krypto gas of the proposed composition in acute massive blood loss makes it possible to achieve a less pronounced attrition of the acid–base balance in experimental animals.
nitrogen / argon / respiratory mixtures / inert gases / oxygen / krypton / xenon / acute blood loss / traumatic shock
| [1] |
Trishkin DV, Kryukov EV, Chuprina AP, et al. Metodicheskie rekomendatsii po lecheniyu boevoi khirurgicheskoi travmy. Moscow: Main Military Medical Directorate of the Ministry of Defense of the Russian Federation; 2022. 372 р. (In Russ.). |
| [2] |
Тришкин Д.В., Крюков Е.В., Чуприна А.П., и др. Методические рекомендации по лечению боевой хирургической травмы. Москва: ГВМУ МО РФ, 2022. 372 с. |
| [3] |
Rossaint R, Afshari A, Bouillon B, et al. The European guideline on management of major bleeding and coagulopathy following trauma: sixth edition. Crit Care. 2023;27(1):80. DOI: 10.1186/s13054-023-04327-7 |
| [4] |
Rossaint R., Afshari A., Bouillon B., et al. The European guideline on management of major bleeding and coagulopathy following trauma: sixth edition // Crit Care. 2023. Vol. 27, Nо. 1. P. 80. DOI: 10.1186/s13054-023-04327-7 |
| [5] |
Convertino VA, Cardin S. Advanced medical monitoring for the battlefield: A review on clinical applicability of compensatory reserve measurements for early and accurate hemorrhage detection. J Trauma Acute Care Surg. 2022;93(Suppl 1):S147–S154. DOI: 10.1097/TA.0000000000003595 |
| [6] |
Convertino V.A., Cardin S. Advanced medical monitoring for the battlefield: A review on clinical applicability of compensatory reserve measurements for early and accurate hemorrhage detection // J Trauma Acute Care Surg. 2022. Vol. 93, Suppl 1. P. S147–S154. DOI: 10.1097/TA.0000000000003595 |
| [7] |
Bonanno FG. Management of Hemorrhagic Shock: Physiology Approach, Timing and Strategies. J Clin Med. 2022;12(1):260. DOI: 10.3390/JCM12010260 |
| [8] |
Bonanno F.G. Management of Hemorrhagic Shock: Physiology Approach, Timing and Strategies // J Clin Med. 2022. Vol. 12, No. 1. P. 260. DOI: 10.3390/JCM12010260 |
| [9] |
Savary G, Lidouren F, Rambaud J, et al. Argon attenuates multiorgan failure following experimental aortic cross–clamping. Br J Clin Pharmacol. 2018;84(6):1170–1179. DOI: 10.1111/BCP.13535 |
| [10] |
Savary G., Lidouren F., Rambaud J., et al. Argon attenuates multiorgan failure following experimental aortic cross–clamping // Br J Clin Pharmacol. 2018. Nо. 84, No. 6. P. 1170–1179. DOI: 10.1111/BCP.13535 |
| [11] |
Gardner AJ, Menon DK. Moving to human trials for argon neuroprotection in neurological injury: a narrative review. Br J Anaesth. 2018;20(3):453–468. DOI: 10.1016/J.BJA.2017.10.017 |
| [12] |
Gardner A.J. Menon D.K. Moving to human trials for argon neuroprotection in neurological injury: a narrative review // Br J Anaesth. 2018. Vol. 20, Nо. 3. P. 453–468. DOI: 10.1016/J.BJA.2017.10.017 |
| [13] |
Maze M, Laitio T. Neuroprotective Properties of Xenon. Mol Neurobiol. 2020;57(1):118–124. DOI: 10.1007/S12035-019-01761-Z/METRICS |
| [14] |
Maze M., Laitio T. Neuroprotective Properties of Xenon // Mol Neurobiol. 2020. Vol. 57, Nо. 1. P. 118–124. DOI: 10.1007/S12035-019-01761-Z/METRICS |
| [15] |
Maze M. Preclinical neuroprotective actions of xenon and possible implications for human therapeutics: a narrative review. Can J Anesth. 2015;63(2):212–226. DOI: 10.1007/S12630-015-0507-8 |
| [16] |
Maze M. Preclinical neuroprotective actions of xenon and possible implications for human therapeutics: a narrative review // Can J Anesth. 2015. Vol. 63, Nо. 2. P. 212–226. DOI: 10.1007/S12630-015-0507-8 |
| [17] |
Liang M, Ahmad F, Dickinson R. Neuroprotection by the noble gases argon and xenon as treatments for acquired brain injury: a preclinical systematic review and meta-analysis. Br J Anaesth. 2022;129(2):200–218. DOI: 10.1016/J.BJA.2022.04.016 |
| [18] |
Liang M., Ahmad F., Dickinson R. Neuroprotection by the noble gases argon and xenon as treatments for acquired brain injury: a preclinical systematic review and meta-analysis // Br J Anaesth. 2022. Vol. 129, Nо. 2. P. 200–218. DOI: 10.1016/J.BJA.2022.04.016 |
| [19] |
De Deken J, Rex S, Monbaliu D, et al. The efficacy of noble gases in the attenuation of ischemia reperfusion injury: a systematic review and meta-analyses. Crit Care Med. 2016;44(9):886–896. DOI: 10.1097/CCM.0000000000001717 |
| [20] |
De Deken J., Rex S., Monbaliu D., et al. The efficacy of noble gases in the attenuation of ischemia reperfusion injury: a systematic review and meta-analyses // Crit Care Med. 2016. Vol. 44, Nо. 9. P. 886–896. DOI: 10.1097/CCM.0000000000001717 |
| [21] |
Ryang YM, Fahlenkamp AV, Rossaint R, et al. Neuroprotective effects of argon in an in vivo model of transient middle cerebral artery occlusion in rats. Crit Care Med. 2011;39(6):1448–1453. DOI: 10.1097/CCM.0B013E31821209BE |
| [22] |
Ryang Y.M., Fahlenkamp A.V., Rossaint R., et al. Neuroprotective effects of argon in an in vivo model of transient middle cerebral artery occlusion in rats // Crit Care Med. 2011. Vol 39, Nо. 6. P. 1448–1453. DOI: 10.1097/CCM.0B013E31821209BE |
| [23] |
Höllig A, Weinandy A, Liu J, et al. Beneficial Properties of Argon After Experimental Subarachnoid Hemorrhage: Early Treatment Reduces Mortality and Influences Hippocampal Protein Expression. Crit Care Med. 2016;44(7):e520–e529. DOI: 10.1097/CCM.0000000000001561 |
| [24] |
Höllig A., Weinandy A., Liu J., et al. Beneficial Properties of Argon After Experimental Subarachnoid Hemorrhage: Early Treatment Reduces Mortality and Influences Hippocampal Protein Expression // Crit Care Med. 2016. Vol. 44, Nо. 7. P. e520–e529. DOI: 10.1097/CCM.0000000000001561 |
| [25] |
Brücken A, Cizen A, Fera C, et al. Argon reduces neurohistopathological damage and preserves functional recovery after cardiac arrest in rats. Br J Anaesth. 2013;110(Supple 1): i106–i112. DOI: 10.1093/BJA/AES509 |
| [26] |
Brücken A., Cizen A., Fera C., et al. Argon reduces neurohistopathological damage and preserves functional recovery after cardiac arrest in rats // Br J Anaesth. 2013. Vol. 110, Supple 1. P. i106–i112. DOI: 10.1093/BJA/AES509 |
| [27] |
Ristagno G, Fumagalli F, Russo I, et al. Postresuscitation treatment with argon improves early neurological recovery in a porcine model of cardiac arrest. Shock. 2014;41(1):72–78. DOI: 10.1097/SHK.0000000000000049 |
| [28] |
Ristagno G., Fumagalli F., Russo I., et al. Postresuscitation treatment with argon improves early neurological recovery in a porcine model of cardiac arrest // Shock. 2014. Vol. 41, Nо. 1. P. 72–78. DOI: 10.1097/SHK.0000000000000049 |
| [29] |
Zuercher P, Springe D, Grandgirard D, et al. A randomized trial of the effects of the noble gases helium and argon on neuroprotection in a rodent cardiac arrest model. BMC Neurol. 2016;16:43. DOI: 10.1186/S12883-016-0565-8 |
| [30] |
Zuercher P., Springe D., Grandgirard D., et al. A randomized trial of the effects of the noble gases helium and argon on neuroprotection in a rodent cardiac arrest model // BMC Neurol. 2016, Vol. 16. P. 43. DOI: 10.1186/S12883-016-0565-8 |
| [31] |
Broad KD, Fierens I, Fleiss B, et al. Inhaled 45–50 % argon augments hypothermic brain protection in a piglet model of perinatal asphyxia. Neurobiol Dis. 2016;87:29–38. DOI: 10.1016/J.NBD.2015.12.001 |
| [32] |
Broad K.D., Fierens I., Fleiss B., et al. Inhaled 45–50 % argon augments hypothermic brain protection in a piglet model of perinatal asphyxia // Neurobiol Dis. 2016. Vol. 87. P. 29–38. DOI: 10.1016/J.NBD.2015.12.001 |
| [33] |
Zhao H, Mitchell S, Ciechanowicz S, et al. Argon protects against hypoxic-ischemic brain injury in neonatal rats through activation of nuclear factor (erythroid-derived 2)-like 2. Oncotarget. 2016;7(18):25640–25651. DOI: 10.18632/ONCOTARGET.8241 |
| [34] |
Zhao H., Mitchell S., Ciechanowicz S., et al. Argon protects against hypoxic-ischemic brain injury in neonatal rats through activation of nuclear factor (erythroid-derived 2)-like 2 // Oncotarget. 2016. Vol. 7, Nо. 18. P. 25640–25651. DOI: 10.18632/ONCOTARGET.8241 |
| [35] |
Zhao H, Mitchell S, Koumpa S, et al. Heme Oxygenase-1 Mediates Neuroprotection Conferred by Argon in Combination with Hypothermia in Neonatal Hypoxia – Ischemia Brain Injury. Anesthesiology. 2016;125(1):180–192. DOI: 10.1097/ALN.0000000000001128 |
| [36] |
Zhao H., Mitchell S., Koumpa S., et al. Heme Oxygenase-1 Mediates Neuroprotection Conferred by Argon in Combination with Hypothermia in Neonatal Hypoxia – Ischemia Brain Injury // Anesthesiology. 2016. Vol. 125, Nо. 1. P. 180–192. DOI: 10.1097/ALN.0000000000001128 |
| [37] |
Pagel PS, Krolikowski JG, Shim YH, et al. Noble gases without anesthetic properties protect myocardium against infarction by activating prosurvival signaling kinases and inhibiting mitochondrial permeability transition in vivo. Anesth Analg. 2007;105(3):562–569. DOI: 10.1213/01.ANE.0000278083.31991.36 |
| [38] |
Pagel P.S., Krolikowski J.G., Shim Y.H., et al. Noble gases without anesthetic properties protect myocardium against infarction by activating prosurvival signaling kinases and inhibiting mitochondrial permeability transition in vivo // Anesth Analg. 2007. Vol. 105, Nо. 3. P. 562–569. DOI: 10.1213/01.ANE.0000278083.31991.36 |
| [39] |
Irani Y, Pype JL, Martin AR, et al. Noble gas (argon and xenon) – saturated cold storage solutions reduce ischemia – reperfusion injury in a rat model of renal transplantation. Nephron Extra. 2011;1(1): 272–282. DOI: 10.1159/000335197 |
| [40] |
Irani Y., Pype J.L., Martin A.R., et al. Noble gas (argon and xenon) – saturated cold storage solutions reduce ischemia – reperfusion injury in a rat model of renal transplantation // Nephron Extra. 2011. Vol. 1, Nо. 1. P. 272–282. DOI: 10.1159/000335197 |
Eco-Vector
/
| 〈 |
|
〉 |