Evolutionary mechanisms of virus variability
Alexander V. Moskalev , Boris Yu. Gumilevsky , Vasiliy Ya. Apchel , Vasiliy N. Tsygan
Bulletin of the Russian Military Medical Academy ›› 2023, Vol. 25 ›› Issue (2) : 301 -316.
Evolutionary mechanisms of virus variability
The evolutionary changes of viruses are primarily associated with the replication processes of viruses containing deoxyribonucleic and ribonucleic acids, which differ significantly. The genomes of most viruses containing ribonucleic acid are replicated with much less accuracy compared to the genomes of viruses containing deoxyribonucleic acid. Comparing the number of mutations in an infected cell reflects an inverse relationship between genome size and the frequency of mutations carried out by these two categories of viruses. Viruses with double-stranded deoxyribonucleic acid genomes have a low mutation rate compared to single-stranded genomes. The genome of viruses is not a stable unique structure, but rather an average, variable number of different amino acid sequences. It is in the virus population that a high mutation rate is maintained, and low variability is not beneficial for the preservation of viruses in nature. Some animal species may be intermediate hosts when new epidemic viruses appear. The introduction of non-viral nucleic acid into the viral genome can also contribute to the evolutionary changes of the virus, lead to the formation of defective genomes or to the emergence of hypervirulent strains. Viral genomes encode numerous molecules that modulate a wide range of protective immune mechanisms. The variability of viruses is also facilitated by the simultaneous integration of several proviral genomes into one cell, which activates the processes of recombination and genetic shift. An important evolutionary point may be the conversion of ribonucleic acid ribose into deoxyribose of deoxyribonucleic acid, which increases the stability of nucleic acids by more than 100 times. Horizontal gene transfer between viruses that infect different hosts is a central feature of the evolution of viruses containing ribonucleic acid. Eukaryote viruses with single-stranded deoxyribonucleic acid probably evolved from bacterial plasmids after they acquired capsid protein genes from the (+) ribonucleic acid chain of viruses. In addition to megaviruses and adenoviruses, polintons are likely precursors to bidnaviruses and virophages.
viruses / evolution of viruses / gene / proviral genomes / hypervirulent strains / immune system / mutations / nucleic acids / single-stranded deoxyribonucleic acid
| [1] |
Katze MG, Korth MJ, Law GL, et al. Viral pathogenesis: From basics to systems biology. San Diego: Academic Press, 2016. 422 p. |
| [2] |
Katze M.G., Korth M.J., Law G.L., et al. Viral pathogenesis: From basics to systems biology. San Diego: Academic Press, 2016. 422 p. |
| [3] |
Ahmad L, Mostowy S, Sancho-Shimizu S. Autophagy-virus interplay: From cell biology to human disease. Front Cell Dev Biol. 2018;19:155. DOI: 10.3389/fcell.2018.00155 |
| [4] |
Ahmad L., Mostowy S., Sancho-Shimizu S. Autophagy-virus interplay: From cell biology to human disease // Front Cell Dev Biol. 2018. Vol. 19. ID 155. DOI: 10.3389/fcell.2018.00155 |
| [5] |
Luoa LY, Hahnb WC. Oncogenic signaling adaptor proteins. J Genet Genomics. 2015;42(10):521–529. DOI: 10.1016/j.jgg.2015.09.001 |
| [6] |
Luoa L.Y., Hahnb W.C. Oncogenic signaling adaptor proteins // J Genet Genomics. 2015. Vol. 42, No. 10. P. 521–529. DOI: 10.1016/j.jgg.2015.09.001 |
| [7] |
Griffin DE. The immune response in measles: Virus control, clearance and protective immunity. Viruses. 2016;10(8):282–291. DOI: 10.3390/v8100282 |
| [8] |
Griffin D.E. The immune response in measles: Virus control, clearance and protective immunity // Viruses. 2016. Vol. 10, No. 8. P. 282–291. DOI: 10.3390/v8100282 |
| [9] |
Gong B-L, Mao R-Q, Xiao Y, et al. Improvement of enzyme activity and soluble expression of an alkaline protease isolated from oil-polluted mud flat metagenome by random mutagenesis. Enzyme Microb Technol. 2017;106:97–105. DOI: 10.1016/j.enzmictec.2017.06.015 |
| [10] |
Gong B.-L., Mao R.-Q., Xiao Y., et al. Improvement of enzyme activity and soluble expression of an alkaline protease isolated from oil-polluted mud flat metagenome by random mutagenesis // Enzyme Microb Technol. 2017. Vol. 106. P. 97–105. DOI: 10.1016/j.enzmictec.2017.06.015 |
| [11] |
Domingo E, Perales C. Quasispecies and virus. Eur Biophys J. 2018;4(47):443–457. DOI:10.1007/s00249-018-1282-6 |
| [12] |
Domingo E., Perales C. Quasispecies and virus // Eur Biophys J. 2018. Vol. 4, No. 47. P. 443–457. DOI:10.1007/s00249-018-1282-6 |
| [13] |
Guo Y-J, Pan W-W, Liu S-B, et al. ERK/MAPK signaling pathway and tumorigenesis. Exp Ther Med. 2020;19(3):1997–2007. DOI: 10.3892/etm.2020.8454 |
| [14] |
Guo Y.-J., Pan W.-W., Liu S.-B., et al. ERK/MAPK signaling pathway and tumorigenesis // Exp Ther Med. 2020. Vol. 19, No. 3. P. 1997–2007. DOI: 10.3892/etm.2020.8454 |
| [15] |
Takata MA, Gonçalves-Carneiro D, Zang TM, et al. CG dinucleotide suppression enables antiviral defence targeting non-self RNA. Nature. 2017;550(7674):124–127. DOI: 10.1038/nature24039 |
| [16] |
Takata M.A., Gonçalves-Carneiro D., Zang T.M., et al. CG dinucleotide suppression enables antiviral defence targeting non-self RNA // Nature. 2017. Vol. 550, No. 7674. P. 124–127. DOI: 10.1038/nature24039 |
| [17] |
Thapa RJ, Ingram JP, Ragan KB, et al. DAI senses influenza a virus genomic RNA and activates RIPK3-Dependent cell death. Cell Host Microbe. 2016;20(5):674–681. DOI: 10.1016/j.chom.2016.09.014 |
| [18] |
Thapa R.J., Ingram J.P., Ragan K.B., et al. DAI senses influenza a virus genomic RNA and activates RIPK3-Dependent cell death // Cell Host Microbe. 2016. Vol. 20, No. 5. P. 674–681. DOI: 10.1016/j.chom.2016.09.014 |
| [19] |
Hemann EA, Green R, Turnbull JB, et al. Interferon-λ modulates dendritic cells to facilitate T cell immunity ion with influenza A virus. Nat Immunol. 2019;20:1035–1045. DOI: 10.1038/s41590-019-0408-z |
| [20] |
Hemann E.A., Green R., Turnbull J.B., et al. Interferon-λ modu lates dendritic cells to facilitate T cell immunity ion with influenza A virus // Nat Immunol. 2019. Vol. 20. P. 1035–1045. DOI: 10.1038/s41590-019-0408-z |
| [21] |
Stecca B, Rovida E. Impact of ERK5 on the hallmarks of cancer. Int J Mol Sci. 2019;20(6):1426. DOI: 10.3390/ijms20061426 |
| [22] |
Stecca B., Rovida E. Impact of ERK5 on the hallmarks of cancer // Int J Mol Sci. 2019. Vol. 20, No. 6. ID 1426. DOI: 10.3390/ijms20061426 |
| [23] |
Yang L, Shi P, Zhao G, et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther. 2020;5(8):8. DOI: 10.1038/s41392-020-0110-5 |
| [24] |
Yang L., Shi P., Zhao G., et al. Targeting cancer stem cell pathways for cancer therapy // Signal Transduct Target Ther. 2020. Vol. 5, No. 8. ID 8. DOI: 10.1038/s41392-020-0110-5 |
| [25] |
Burrell C, Howard C, Murphy F. Fenner and White’s medical virology. 5th edition. San Diego: Academic Press, 2016. 454 p. |
| [26] |
Burrell C., Howard C., Murphy F. Fenner and White’s medical virology. 5th edition. San Diego: Academic Press, 2016. 454 p. |
| [27] |
Nash A, Dalziel R, Fitzgerald J. Mims’ pathogenesis of infectious disease. 6th edition. San Diego: Academic Press; 2015. 348 p. |
| [28] |
Nash A., Dalziel R., Fitzgerald J. Mims’ pathogenesis of infectious disease. 6th edition. San Diego: Academic Press, 2015. 348 p. |
| [29] |
Maillard PV, van der Veen AG, Poirier EZ, et al. Slicing and dicing viruses: antiviral RNA interference in mammals. EMBO J. 2019;38(8):e100941. DOI: 10.15252/embj.2018100941 |
| [30] |
Maillard P.V., van der Veen A.G., Poirier E.Z., et al. Slicing and dicing viruses: antiviral RNA interference in mammals // EMBO J. 2019. Vol. 38, No. 8. ID e100941. DOI: 10.15252/embj.2018100941 |
| [31] |
Hayward A. Origin of the retroviruses: when, where, and how? Curr Opin Virol. 2017;25:23–27. DOI:10.1016/j.coviro.2017.06.006 |
| [32] |
Hayward A. Origin of the retroviruses: when, where, and how? // Curr Opin Virol. 2017. Vol. 25. P. 23–27. DOI:10.1016/j.coviro.2017.06.006 |
| [33] |
Krupovic M, Koonin EV. Multiple origins of viral capsid proteins from cellular ancestors. PNAS USA. 2017;114(12):E2401–E2410. DOI: 10.1073/pnas.1621061114 |
| [34] |
Krupovic M., Koonin E.V. Multiple origins of viral capsid proteins from cellular ancestors // PNAS USA. 2017. Vol. 114, No. 12. P. E2401–E2410. DOI: 10.1073/pnas.1621061114 |
| [35] |
Lee S, Liu H, Wilen CB, et al. A secreted viral nonstructural protein deters intestinal norovirus pathogenesis. Cell Host Microbe. 2019;25(6):179–187. DOI: 10.1016/j.chom.2019.04.005845–857 |
| [36] |
Lee S., Liu H., Wilen C.B., et al. A secreted viral nonstructural protein deters intestinal norovirus pathogenesis // Cell Host Microbe. 2019. Vol. 25, No. 6. P. 179–187. DOI: 10.1016/j.chom.2019.04.005845–857 |
| [37] |
Horie M. The biological significance of bornavirus-derived genes in mammals. Curr Opin Virol. 2017;25:1–6. DOI: 10.1016/j.coviro.2017.06.004 |
| [38] |
Horie M. The biological significance of bornavirus-derived genes in mammals // Curr Opin Virol. 2017. Vol. 25. P. 1–6. DOI: 10.1016/j.coviro.2017.06.004 |
| [39] |
Hadjidj R, Badis A, Mechri S, et al. Purification, biochemical, and molecular characterization of novel protease from Bacillus licheniformis strain K7A. Int J Biol Macromol. 2018;114:1033–1048. DOI: 10.1016/j.ijbiomac.2018.03.167 |
| [40] |
Hadjidj R., Badis A., Mechri S., et al. Purification, biochemical, and molecular characterization of novel protease from Bacillus licheniformis strain K7A // Int J Biol Macromol. 2018. Vol. 114. P. 1033–1048. DOI: 10.1016/j.ijbiomac.2018.03.167 |
| [41] |
Jeong YJ, Baek SC, Kim H. Cloning and characterization of a novel intracellular serine protease (IspK) from Bacillus megaterium with a potential additive for detergents. Int J Biol Macromol. 2018;108:808–816. DOI: 10.1016/j.ijbiomac.2017.10.173 |
| [42] |
Jeong Y.J., Baek S.C., Kim H. Cloning and characterization of a novel intracellular serine protease (IspK) from Bacillus megaterium with a potential additive for detergents // Int J Biol Macromol. 2018. Vol. 108. P. 808–816. DOI: 10.1016/j.ijbiomac.2017.10.173 |
| [43] |
Ashraf NM, Krishnagopal A, Hussain A, et al. Engineering of serine protease for improved thermostability and catalytic activity using rational design. Int J Biol Macromol. 2019;126:229–237. DOI: 10.1016/j.ijbiomac.2018.12.218 |
| [44] |
Ashraf N.M., Krishnagopal A., Hussain A., et al. Engineering of serine protease for improved thermostability and catalytic activity using rational design // Int J Biol Macromol. 2019. Vol. 126. P. 229–237. DOI: 10.1016/j.ijbiomac.2018.12.218 |
| [45] |
Ashraf NM, Krishnagopal A, Hussain A, et al. Engineering of serine protease for improved thermo stability and catalytic activity using rational design. Int J Biol Macromol. 2019;126:229–237. DOI: 10.1016/j.ijbiomac.2018 |
| [46] |
Ashraf N.M., Krishnagopal A., Hussain A., et al. Engineering of serine protease for improved thermo stability and catalytic activity using rational design // Int J Biol Macromol. 2019. Vol. 126. P. 229–237. DOI: 10.1016/j.ijbiomac.2018 |
| [47] |
Ho SYW, Lanfear R, Bromham L, et al. Time-dependent rates of molecular evolution. Mol Ecol. 2011;20(15):3087–3101. DOI: 10.1111/j.1365-294X.2011.05178.x |
| [48] |
Ho S.Y.W., Lanfear R., Bromham L., et al. Time-dependent rates of molecular evolution // Mol Ecol. 2011. Vol. 20, No. 15. P. 3087–3101. DOI: 10.1111/j.1365-294X.2011.05178.x |
| [49] |
Katzourakis A, Gifford RJ. Endogenous viral elements in animal genomes. PLoS Genet. 2010;11(6):e1001191. DOI: 10.1371/journal.pgen.1001191 |
| [50] |
Katzourakis A., Gifford R.J. Endogenous viral elements in animal genomes // PLoS Genet. 2010. Vol. 11, No. 6. ID e1001191. DOI: 10.1371/journal.pgen.1001191 |
| [51] |
Aiewsakun P, Katzourakis A. Endogenous viruses: Connecting recent and ancient viral evolution. Virology. 2015;479-480:26–37. DOI: 10.1016/j.virol.2015.02.011 |
| [52] |
Aiewsakun P., Katzourakis A. Endogenous viruses: Connecting recent and ancient viral evolution // Virology. 2015. Vol. 479-480. P. 26–37. DOI: 10.1016/j.virol.2015.02.011 |
| [53] |
Parrish NF, Tomonaga K. Endogenized viral sequences in mammals. Curr Opin Microbiol. 2016;31:176–183. DOI: 10.1016/j.mib.2016.03.002 |
| [54] |
Parrish N.F., Tomonaga K. Endogenized viral sequences in mammals // Curr Opin Microbiol. 2016. Vol. 31. P. 176–183. DOI: 10.1016/j.mib.2016.03.002 |
| [55] |
Frank JA, Feschotte C. Co-option of endogenous viral sequences for host cell function. Curr Opin Virol. 2017;25:81–89. DOI: 10.1016/j.coviro.2017.07.021 |
| [56] |
Frank J.A., Feschotte C. Co-option of endogenous viral sequences for host cell function // Curr Opin Virol. 2017. Vol. 25. P. 81–89. DOI: 10.1016/j.coviro.2017.07.021 |
| [57] |
Garcia-Sastre A. Ten strategies of interferon evasion by viruses. Cell Host Microbe. 2017;22(2):176–184. DOI: 10.1016/j.chom.2017.07.012 |
| [58] |
Garcia-Sastre A. Ten strategies of interferon evasion by viruses // Cell Host Microbe. 2017. Vol. 22, No. 2. P. 176–184. DOI: 10.1016/j.chom.2017.07.012 |
| [59] |
Diner BA, Lum KK, Javitt A, et al. Interactions of the antiviral factor interferon gamma-inducible protein 16. NIFI16 mediate immune signaling and herpes simplex virus-1 immunosuppression. Mol Cell Proteomics. 2015;14(9):2341–2356. DOI: 10.1074/mcp.M114.047068 |
| [60] |
Diner B.A., Lum K.K., Javitt A., et al. Interactions of the antiviral factor interferon gamma-inducible protein 16. NIFI16 mediate immune signaling and herpes simplex virus-1 immunosuppression // Mol Cell Proteomics. 2015. Vol. 14, No. 9. P. 2341–2356. DOI: 10.1074/mcp.M114.047068 |
| [61] |
Stoye JP. Studies of endogenous retroviruses reveal a continuing evolutionary saga. Nat Rev Microbiol. 2012;6(10):395–406. DOI: 10.1038/nrmicro2783 |
| [62] |
Stoye J.P. Studies of endogenous retroviruses reveal a continuing evolutionary saga // Nat Rev Microbiol. 2012. Vol. 6, No. 10. P. 395–406. DOI: 10.1038/nrmicro2783 |
| [63] |
Hemann EA, Green R, Turnbull JB, et al. Interferon-λ modulates dendritic cells to facilitate T cell immunity ion with influenza A virus. Nat Immunol. 2019;20:1035–1045. DOI: 10.1038/s41590-019-0408-z |
| [64] |
Hemann E.A., Green R., Turnbull J.B., et al. Interferon-λ modulates dendritic cells to facilitate T cell immunity ion with influenza A virus // Nat Immunol. 2019. Vol. 20. P. 1035–1045. DOI: 10.1038/s41590-019-0408-z |
| [65] |
Enard D, Cai L, Gwennap C, Petrov DA. Viruses are a dominant driver of protein adaptation in mammals. Elife. 2016;5:e12469. DOI: 10.7554/eLife.12469 |
| [66] |
Enard D., Cai L., Gwennap C., Petrov D.A. Viruses are a dominant driver of protein adaptation in mammals // Elife. 2016. Vol. 5. ID e12469. DOI: 10.7554/eLife.12469 |
| [67] |
Xu X, Zhang M, Xu F, Jiang S. Wnt signaling in breast cancer: biological mechanisms, challenges and opportunities. Mol Cancer. 2020;19(165):165. DOI: 10.1186/s12943-020-01276-5 |
| [68] |
Xu X., Zhang M., Xu F., Jiang S. Wnt signaling in breast cancer: biological mechanisms, challenges and opportunities // Mol Cancer. 2020. Vol. 19, No. 165. ID 165. DOI: 10.1186/s12943-020-01276-5 |
| [69] |
Wang B, Li X, Liu L, Wang M. β-Catenin: oncogenic role and therapeutic target in cervical cancer. Biol Res. 2020;53:33. DOI: 10.1186/s40659-020-00301-7 |
| [70] |
Wang B., Li X., Liu L., Wang M. β-Catenin: oncogenic role and therapeutic target in cervical cancer // Biol Res. 2020. Vol. 53. ID 33. DOI: 10.1186/s40659-020-00301-7 |
| [71] |
Ma Z, Damania B. The cGAS-STING defense pathway and its counteraction by viruses. Cell Host Microbe. 2016;19(2):150–158. DOI: 10.1016/j.chom.2016.01.010 |
| [72] |
Ma Z., Damania B. The cGAS-STING defense pathway and its counteraction by viruses // Cell Host Microbe. 2016. Vol. 19, No. 2. P. 150–158. DOI: 10.1016/j.chom.2016.01.010 |
Eco-Vector
/
| 〈 |
|
〉 |