Objectification of latent narcological pathology in a potential military contingent using special magnetic resonance imaging techniques

D. A. Tarumov , A. A. Marchenko , V. N. Malahovskiy , V. L. Ushakov , A. Yu. Goncharenko , E. M. Mavrenkov , A. G. Trufanov , B. S. Litvintsev , A. V. Lobachev , D. N. Ishakov , I. S. Zheleznyak , V. K. Shamrey , A. Ya. Fisun

Bulletin of the Russian Military Medical Academy ›› 2019, Vol. 21 ›› Issue (3) : 13 -25.

PDF
Bulletin of the Russian Military Medical Academy ›› 2019, Vol. 21 ›› Issue (3) : 13 -25. DOI: 10.17816/brmma20662
Clinical Trials
research-article

Objectification of latent narcological pathology in a potential military contingent using special magnetic resonance imaging techniques

Author information +
History +
PDF

Abstract

The possibilities of special magnetic resonance imaging techniques in the diagnosis of opioid and alcohol dependence syndrome in people of military age are considered with a view to solving expert issues related to military service. It is known that alcoholism and opioid addiction are the leading problems of modern narcology. Despite the fact that research on the neurobiological effects of psychoactive substances is increasing every year, the pathogenetic aspects of addiction are still not completely clear, and the criteria for setting and withdrawing a narcological diagnosis are blurred and caused by the multiplicity of classifications and approaches. Of particular importance is the adoption of expert decisions when calling in special units. Special techniques of magnetic resonance imaging allow us to evaluate the functional and microstructural connectivity of distant parts of the brain and bring insight into the mechanisms of the development of addictive disorders in general. In patients suffering from opioid dependence and alcoholism, the neural default mode network was analyzed. It was established that, compared with the control group, all patients suffering from addiction showed a weakening of the functional connections of all network structures of brain default mode network (p<0,05). Compared with the control group, patients suffering from drug addiction and alcoholism, there was a microstructural deformation between the cortical and subcortical structures, especially between the amygdala and the hippocampus. The weakening of functional and microstructural links in the network of the passive mode of the brain in groups of drug addicts indicates that they have violated the processes of control, thinking and the right decision making. The data obtained can form the basis for creating biomarkers for patients suffering from opioid and alcohol dependence, which can be used to examine, guide and evaluate the treatment of this pathology.

Keywords

neuroimaging / brain default mode network / dependence / connectivity / opioids / alcohol / resting state functional magnetic resonance imaging / tractography / morphometry / connectom

Cite this article

Download citation ▾
D. A. Tarumov, A. A. Marchenko, V. N. Malahovskiy, V. L. Ushakov, A. Yu. Goncharenko, E. M. Mavrenkov, A. G. Trufanov, B. S. Litvintsev, A. V. Lobachev, D. N. Ishakov, I. S. Zheleznyak, V. K. Shamrey, A. Ya. Fisun. Objectification of latent narcological pathology in a potential military contingent using special magnetic resonance imaging techniques. Bulletin of the Russian Military Medical Academy, 2019, 21(3): 13-25 DOI:10.17816/brmma20662

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Алексеев, В.К. Мониторинг аддиктивного поведения военнослужащих: опыт использования методов химико-токсикологического исследования / В.В. Алексеев [и др.] // Воен.-мед. журн. – 2016. – Т. 337, № 3. – С. 14–21.

[2]

Бахтин, И.С. Личностные детерминанты аддиктивного поведения у курсантов военно-морских вузов / И.С. Бахтин, А.Ю. Егоров // Обозрение психиатрии и медицинской психологии. – 2014. – № 1. – С. 34–40.

[3]

Головко, А.И. Токсикологические проблемы современной наркологии / А.И. Головко [и др.] // Наркология. – 2010. – № 9. – С. 52–62.

[4]

Гончаренко, А.Ю. Система мониторинга психического здоровья военнослужащих, проходящих военную службу по контракту: дис. … д-ра. мед. Наук / А.Ю. Гончаренко. – СПб.: ВМА, 2017. – 350 с.

[5]

Звартау, Э.Э. Функционирование «системы награды» у больных с зависимостью от психоактивных веществ / Э.Э. Звартау [и др.] // Обозрение психиатрии и медицинской психологии им. В.М. Бехтерева. – 2009. – №1. – С. 83–88.

[6]

Кувшинов, К.Э. Прогнозирование отклоняющегося поведения у военнослужащих, проходящих военную службу по призыву / К.Э. Кувшинов [и др.] // Воен.-мед. журн. – 2017. – Т. 338, № 9. – С. 4–10.

[7]

Литвинцев, С.В. Наркологическая ситуация в Вооруженных силах Российской Федерации / С.В. Литвинцев // Воен.-мед. журн. – 2002. – Т. 332, № 6. – С. 4–10.

[8]

Сиволап, Ю.П. Злоупотребление опиоидами и опиоидная зависимость / Ю.П. Сиволап, В.А. Савченков. – М.: Медицина, 2005. – 304 с.

[9]

Фисун, А.Я. Профилактика наркоманий в Вооруженных силах: организация и проведение скрининговых обследований / А.Я. Фисун [и др.] // Воен.-мед. журн. – 2014. – Т. 335, № 3. – С. 4–12.

[10]

Харабет, К.В. Аддиктивное поведение в дореволюционной русской армии / К.В. Харабет // Наркология. – 2007. – № 9. – С. 52–57.

[11]

Шамрей, В.К. Перспективы объективного мониторинга и прогноза психического здоровья военнослужащих / В.К. Шамрей [и др.] // Доктор.Ру – 2018. – № 1 (145). – С. 27–33.

[12]

Fareed, A. Effect of heroin use on changes of brain functions as measured by functional magnetic resonance imaging, a systematic review / A. Fareed [et al.] // Journal of Addictive Diseases – 2017. – Vol. 36, № 2. – P. 105–116.

[13]

Pessoa, L. Dynamic Networks in the Emotional Brain / L. Pessoa, B. McMenamin // Neuroscientist – 2016. – Vol. 23, № 4. – P. 383–396.

[14]

Zhai, T. Nature of functional links in valuation networks differentiates impulsive behaviors between abstinent heroin-dependent subjects and nondrug-using subjects / T. Zhai [et al.] // NeuroImage – 2015. – Vol. 115. – P. 76–84.

RIGHTS & PERMISSIONS

Tarumov D.A., Marchenko A.A., Malahovskiy V.N., Ushakov V.L., Goncharenko A.Yu., Mavrenkov E.M., Trufanov A.G., Litvintsev B.S., Lobachev A.V., Ishakov D.N., Zheleznyak I.S., Shamrey V.K., Fisun A.Ya.

AI Summary AI Mindmap
PDF

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/