Evaluation of the effectiveness of wound dressings based on bacterial cellulose with fucoidan for skin burns

E. V. Zinovyev , S. A. Lukyanov , V. N. Tsygan , A. A. Kulminskaya , I. M. Lapina , E. V. Zhurishkina , I. M. Lopatin , M. S. Asadulaev , I. V. Artsimovich , D. V. Kostyakov , M. B. Paneyakh , A. S. Shabunin , V. V. Zubov , A. A. Zhilin , L. A. Davletova , E. A. Stekolshchikova

Bulletin of the Russian Military Medical Academy ›› 2019, Vol. 21 ›› Issue (1) : 148 -152.

PDF
Bulletin of the Russian Military Medical Academy ›› 2019, Vol. 21 ›› Issue (1) : 148 -152. DOI: 10.17816/brmma13055
Experimental trials
research-article

Evaluation of the effectiveness of wound dressings based on bacterial cellulose with fucoidan for skin burns

Author information +
History +
PDF

Abstract

Experimental evaluation of the effectiveness of wound coatings based on bacterial cellulose impregnated with fucoidan solution for deep skin burns is presented. Forty rats were involved in the experiments. Application of wound coatings based on bacterial cellulose with 2% fucoidan solution with a thickness of 0,5 to 1 mm and 1 to 2 mm was found to show a clear tendency to accelerate healing of wound defects by 54 and 47%, respectively (p<0,2), compared to the control group, on the 14th day. The use of the same coatings without impregnation with fucoidan was less effective and led to the reduction of wound defect only by 39% (p<0,2) compared to the control, by the end of the second week. Histological examination of wound biopsies revealed a significant acceleration of the formation and maturation of connective tissue due to intensive angiogenesis and increased proliferative activity of fibroblastic cells. It was shown that after 14 days the designed wound coatings based on bacterial cellulose with 2% fucoidan solution lost their sorption capacity and antibacterial effect. In this case, in the wound development of microbial inflammation and excess of wound exudation were detected. This circumstance served as an indication for the change and re-application of coatings during treatment and as the basis for the choice of the 14th day as an observation point (control date) to compare the results.

Keywords

deep skin burns / bacterial cellulose / fucoidan / skin regeneration / reparative regeneration / combustiology / surgical treatment / necrectomy / wound coatings

Cite this article

Download citation ▾
E. V. Zinovyev, S. A. Lukyanov, V. N. Tsygan, A. A. Kulminskaya, I. M. Lapina, E. V. Zhurishkina, I. M. Lopatin, M. S. Asadulaev, I. V. Artsimovich, D. V. Kostyakov, M. B. Paneyakh, A. S. Shabunin, V. V. Zubov, A. A. Zhilin, L. A. Davletova, E. A. Stekolshchikova. Evaluation of the effectiveness of wound dressings based on bacterial cellulose with fucoidan for skin burns. Bulletin of the Russian Military Medical Academy, 2019, 21(1): 148-152 DOI:10.17816/brmma13055

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Алексеев, А.А. Современные методы лечения ожогов и ожоговой болезни / А.А. Алексеев // Комбустиология. – 1999. – № 1. – С. 1–9.

[2]

Анощенко, Ю.Д. Медико-социальная характеристика больных с ожоговой травмой / Ю.Д. Анощенко // Комбустиология. – 1993. – № 8. – С. 16–17.

[3]

Попова, Л.Н. Как изменяются границы вновь образующегося эпидермиса при заживлении ран: автореф. дис. канд. мед. Наук / Л.Н. Попова. – Воронеж: Воронеж. мед. акад., 1942. – 16 с.

[4]

Журишкина, Е.В. Сравнительный анализ влияния фукоидана из водорослей Fucus vesiculosus и фракций, полученных из него с помощью анионообменной хроматографии, на клетки HeLa G-63, Hep G2 и Changliver / Е.В. Журишкина [и др.] // Цитология. – 2017. – № 2. – C. 148–154.

[5]

Фенчин, К.М. Заживление ран / К.М. Фенчин. – К.: Здоровье, 1979. – 167 с.

[6]

Хельсинкская декларация всемирной медицинской ассоциации // Морфологія. – 2010. – Т. ІV, № 2. – С. 69–72.

[7]

Backdahl, H. Mechanical properties of bacterial cellulose and interactions with smooth muscle cells / H. Backdahl [et al.] // Biomaterials. – 2006. – № 27. – P. 2141–2149.

[8]

Boateng, J.S. Wound healing dressings and drug delivery systems: a review / J.S. Boateng, [et al.] // Journal of Pharmaceutical Sciences. – 2008. – № 97. – P. 2892–2923.

[9]

Broughton, G. The basic science of wound healing / G. Broughton [et al.] // Plastic and Reconstructive surgery. – 2006. – № 117. – P. 12–34

[10]

Cho, M.L. Molecular characterization and immunomodulatory activity of sulfated fucans from Agarumcribrosum / M.L. Cho [et al.] // Carbohydrate Polymers. – 2014. – № 113. – P. 507–514.

[11]

Gelin, K. Characterization of water in bacterial cellulose using dielectric spectroscopy and electron microscopy / K. Gelin [et al.] // Polymer. – 2007. – № 48. – P. 7623–7631.

[12]

Gil, E.S. Functionalized silk biomaterials for wound healing / E.S. Gil [et al.] // Advanced Healthcare Materials. – 2013. – № 2. – P. 206–217.

[13]

Herndon, D.N. A comparison of conservative versus early excision. Therapies in severely burned patients / D.N. Herndon [et al.] // Ann. Surgery. – 1989. – № 209. – P. 547–552.

[14]

Hestrin, S. Synthesis of cellulose by Acetobacter xylinum: Preparation of freeze dried cells capable of polymerizing glucose to cellulose / S. Hestrin [et al.] // Biochem. J. – 1954. – Vol. 58. – P. 345–352.

[15]

Khalid, A. Bacterial Cellulose-Zinc Oxide Nanocomposites as a Novel Dressing System for Burn Wounds / A. Khalid [et al.] // Carbohydrate polymers. – 2017. – № 164. – P. 214–221.

[16]

Lee, A.R.C. Effect of topically applied silver sulfadiazine on fibroblast cell proliferation and biomechanical properties of the wound / A.R.C. Lee [et al.] //Archives of Pharmacal Research. – 2003. – № 26. – P. 855–860.

[17]

Li, X.J. Fucoidan reduces inflammatory response in a rat model of hepatic ischemia-reperfusion injury / X.J. Li [et al.] // Can. J. Physiol. Pharmacol. – 2015. – № 93. – P. 999–1005.

[18]

Marudhupandi, T. Antibacterial effect of fucoidan from Sargassumwightii against the chosen human bacterial pathogens / T. Marudhupandi, [et al.] // Int. CurrentPharm. J. – 2013. – № 2. – P. 156–158.

[19]

Moon, R.J. Cellulose nanomaterials review: structure, properties and nanocomposites / R.J. Moon [et al.] // Chem. Soc. Rev. – 2011. – № 40. – P. 3941–3994.

[20]

Morua, V.K. Algal fucoidan: structural and size-dependent bioactivities and their perspectives / V.K. Morua [et al.] // Appl. Microbiol. Biotechnol. – 2012. – № 93. – P. 71–82.

[21]

Pavliga, S.N. The experimental research (in vitro) of carrageenans and fucoidans to decrease activity of Hantavirus / S.N. Pavliga [et al.] // FoodEnviron. Virol. – 2016. – № 8. – P. 120–124.

[22]

Puppi, D. Polymeric materials for bone and cartilage repair / D. Puppi [et al.] // Progress in Polymer Science. – 2010. – № 35. – P. 403–440.

[23]

Shan, Y. Flexible Amoxicillin Grafted Bacterial Cellulose Sponges for Wound Dressing: in Vitro and in Vivo Evaluation / Y. Shan [et al.] // ACS Appl. Mater. Interfaces. – 2018. – № 10. – P.5862–5870.

[24]

Ullah, H. Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites / H. Ullah [et al.] // Carbohydrate Polymers. – 2016. – № 150. – P. 330–352.

[25]

Ullah, H. Applications of bacterial cellulose in food, cosmetics and drug delivery / H. Ullah [et al.] // Cellulose. – 2016. – № 23. – P. 2291–2314.

[26]

Yang, Y.-H. Topical application of fucoidan improves atopic dermatitis symptoms in NC/NGA mice / Y.-H. Yang // Phytotherapy Research. – 2012. – № 26. – P. 1898–1903.

[27]

Zhao, X. Antithrombotic activity of oral administered low molecular weight fucoidan from Laminaria Japonica / X. Zhao [et al.] // BMC Complement. Altern. Med. – 2016. – № 16. – P. 151–159.

RIGHTS & PERMISSIONS

Zinovyev E.V., Lukyanov S.A., Tsygan V.N., Kulminskaya A.A., Lapina I.M., Zhurishkina E.V., Lopatin I.M., Asadulaev M.S., Artsimovich I.V., Kostyakov D.V., Paneyakh M.B., Shabunin A.S., Zubov V.V., Zhilin A.A., Davletova L.A., Stekolshchikova E.A.

AI Summary AI Mindmap
PDF

75

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/