Possibilities of improving the technique of controlled transosseous osteosynthesis in the conditions of anatomical experiment

Alexander I. Lapynin , Andrey M. Guryanov , Valery I. Kim , Dmitry A. Lapynin

Bulletin of the Russian Military Medical Academy ›› 2023, Vol. 25 ›› Issue (1) : 71 -76.

PDF
Bulletin of the Russian Military Medical Academy ›› 2023, Vol. 25 ›› Issue (1) : 71 -76. DOI: 10.17816/brmma115206
Original Study Article
research-article

Possibilities of improving the technique of controlled transosseous osteosynthesis in the conditions of anatomical experiment

Author information +
History +
PDF

Abstract

The possibilities of improving controlled transosseous osteosynthesis in anatomical experiment by changing the design of the external fixation apparatus by individualizing the design of the apparatus, ensuring accurate dynamic reposition of bone fragments, and establishing more effective X-ray control using X-ray transparent elements of the external fixation apparatus design are considered. The study was performed under wet preparations of an isolated femur of ten rabbits with a bone diaphysis fracture created. The original compression–distraction apparatus of external fixation developed was experimentally approved. In all experiments, an accurate comparison of bone fragments was obtained by dynamic reposition owing to the use of autonomous hinge modules and the presence of an individualized base module located in the pathological focus of the bone structure. The study showed the need to individualize the size of the design of the elements of the device. This is because the damaged limb does not have the correct cylindrical shape, unlike the shape of the apparatus. Changing the morphometric parameters of the damaged limb segment during osteosynthesis requires a specific individual geometry of the base module. The individualization of the shape and size of the base module should provide for the possibility of implementing the stages of moving fragments of bone structures, individual in each case. The dimensions of the X-ray transparent plastic ring or the shape of the hinge module close to the ring should correspond to the geometric dimensions of the limb segment at the fracture site and subsequently when correcting the position of bone fragments in each individual case. The most often optimal is the distance from the supports of the device to the surface of the limb segment of 5 cm, which determines the geometric dimensions of the individualized base module. In general, the directions of further improvement of the hardware of the technique of controlled transosseous osteosynthesis are determined. The effectiveness of X-ray control owing to the use of X-ray transparent structural elements of the device is shown. It has been revealed that in the conditions of anatomical experiment, controlled transosseous osteosynthesis may be more effective by improving the hardware owing to the individualization of the structural elements of the apparatus in combination with the use of autonomous hinge modules.

Keywords

osteosynthesis / compression-distraction apparatus / fragments of bone structures / bone fragments reposition / bone regeneration / X-ray transparent ring / hinge module / anatomical experiment

Cite this article

Download citation ▾
Alexander I. Lapynin, Andrey M. Guryanov, Valery I. Kim, Dmitry A. Lapynin. Possibilities of improving the technique of controlled transosseous osteosynthesis in the conditions of anatomical experiment. Bulletin of the Russian Military Medical Academy, 2023, 25(1): 71-76 DOI:10.17816/brmma115206

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shapovalov VM, Khominets VV, Brizhan LK, et al. Current state and improvement of traumatologic and orthopedic aid to the wounded with limb trauma. Russian military medical journal. 2018;339(10): 20–27. (In Russ.). DOI: 10.17816/RMMJ73098

[2]

Шаповалов В.М., Хоминец В.В., Брижань Л.К., и др. Современное состояние и совершенствование травматолого-ортопедической помощи раненным в конечности // Военно-медицинский журнал. 2018. Т. 339, № 10. С. 20–27. DOI: 10.17816/RMMJ73098

[3]

Trishkin DV, Fisun AYa, Kryukov EV, Vertii BD. Voennaya meditsina i sovremennye voiny: opyt istorii i prognozy, chto zhdat’ i k chemu gotovit’sya. Proceedings of the III All-Russian science and practice conferences «Sostoyanie i perspektivy razvitiya sovremennoi nauki po napravleniyu «Biotekhnicheskie sistemy i tekhnologii». Anapa, 2021. P. 8–16. (In Russ.).

[4]

Тришкин Д.В., Фисун А.Я., Крюков Е.В., Вертий Б.Д. Военная медицина и современные войны: опыт истории и прогнозы, что ждать и к чему готовиться // Сборник статей III Всероссийской научно-технической конференции «Состояние и перспективы развития современной науки по направлению «Биотехнические системы и технологии». Анапа, 2021. С. 8–16.

[5]

Shevtsov VI, Mazukidis FA. Nouvel appareil fonctionnel de Shevtsov-Mazukidis. 25eme Congres National de la SOTCOT: progr. and abstr. Tunis, 2009. P. 132.

[6]

Shevtsov V.I., Mazukidis F.A. Nouvel appareil fonctionnel de Shevtsov-Mazukidis // 25eme Congres National de la SOTCOT: progr. and abstr. Tunis, 2009. P. 132.

[7]

Patent RUS № 2663636/ 08.07.2018. Byul. № 21/ 08.07.2018. Novikov IK, Litvinov BI, Borzunov DYu, Novikova OS. Apparat vneshnei fiksatsii detskii dlya chreskostnogo osteosinteza. (In Russ.).

[8]

Патент РФ № 2663636/ 08.07.2018. Бюл. № 21/ 08.07.2018. Новиков И.К., Литвинов Б.И., Борзунов Д.Ю., Новикова О.С. Аппарат внешней фиксации детский для чрескостного остеосинтеза.

[9]

Khodzhaev RR, Karimov MU. Use of the Ilizarov fixator modulus for treatment of humeral proximal end fractures in children. Orthopedics genius. 2011;(1):8–12. (In Russ.).

[10]

Ходжаев Р.Р., Каримов М.У. Применение модуля аппарата Илизарова при лечении переломов проксимального конца плечевой кости у детей // Гений ортопедии. 2011. № 1. С. 8–12.

[11]

Rokhoev SA, Chugaev DV, Solomin LN. Treatment of Extension Knee Contractures with Ilizarov Apparatus Versus Orthopedic Hexapod Ortho-SUV Frame. Traumatology and Orthopedics of Russia. 2022;28(2):7–19. (In Russ.) DOI: 10.17816/2311-2905-1756

[12]

Рохоев С.А., Чугаев Д.В., Соломин Л.Н. Сравнительная оценка результатов использования аппарата Илизарова и ортопедического гексапода Орто-СУВ при лечении разгибательных контрактур коленного сустава // Травматология и ортопедия России. 2022. Т. 28, № 2. С. 7–19. DOI: 10.17816/2311-2905-1756

[13]

Adam P, Clavert P. Recent progress in limb traumatology. Orthop Traumatol Surg Res. 2022;108(5):103371. DOI: 10.1016/j.otsr.2022.103371

[14]

Adam P., Clavert P. Recent progress in limb traumatology // Orthop Traumatol Surg Res. 2022. Vol. 108, No. 5. ID 103371. DOI: 10.1016/j.otsr.2022.103371

[15]

Kryukov EV, Khominets VV, Samokhvalov IM, et al. Sovremennyi podkhod v lechenii ranenykh s ognestrel’nymi raneniyami kostei konechnostei. Proceedings of the II All-Russian congress on traumatology with international participation: «Meditsinskaya pomoshch’ pri travmakh: novoe v organizatsii i tekhnologiyakh». 2017. P. 48. (In Russ.).

[16]

Крюков Е.В., Хоминец В.В., Самохвалов И.М., и др. Современный подход в лечении раненых с огнестрельными ранениями костей конечностей // Второй Всероссийский конгресс по травматологии с международным участием: «Медицинская помощь при травмах: новое в организации и технологиях». 2017. С. 48.

[17]

Kryukov EV, Brizhan’ LK, Davydov DV, et al. Primenenie sovremennykh otechestvennykh komplektov dlya lecheniya ranenykh i postradavshikh s boevoi patologiei oporno-dvigatel’noi sistemy. Proceedings of the III Asia-Pacific Congress on Military Medicine. 2016. P. 80–81. (In Russ.).

[18]

Крюков Е.В., Брижань Л.К., Давыдов Д.В., и др. Применение современных отечественных комплектов для лечения раненых и пострадавших с боевой патологией опорно-двигательной системы // 3-й Азиатско-Тихоокеанский конгресс по военной медицине: материалы конгресса. 2016. С. 80–81.

[19]

Brizhan’ LK, Davydov DV, Khominets VV, et al. The use of the military-field rod kit (MFRK) for two-staged consecutive osteosynthesis in wounded persons with gunshot fractures of limb bones. Orthopedics genius. 2015;(3):26–30. (In Russ.).

[20]

Брижань Л.К., Давыдов Д.В., Хоминец В.В., и др. Применение комплекта стержневого военно-полевого (ксвп) в двухэтапном последовательном остеосинтезе у раненых с огнестрельными переломами костей конечностей // Гений ортопедии. 2015. № 3. С. 26–30.

[21]

Kubatbekov AA. Ispol’zovanie chreskostnogo osteosinteza apparatom Ilizarova v lechenii ehksperimental’nykh ognestrel’nykh perelomov trubchatykh kostei. Dostizheniya nauki i obrazovaniya. 2016;(10):61–65. (In Russ.).

[22]

Кубатбеков А.А. Использование чрескостного остеосинтеза аппаратом Илизарова в лечении экспериментальных огнестрельных переломов трубчатых костей // Достижения науки и образования. 2016. № 10. С. 61–65.

[23]

Patent RUS № 202506/ 19.02.2021. Byul. № 21/ 19.02.2021. Lapynin DA, Lapynin AI, Safronov AA, et al. Kompressionno-distraktsionnyi apparat dlya ustraneniya smeshcheniya otlomkov kosti. (In Russ.).

[24]

Патент РФ № 202506/ 19.02.2021. Бюл. № 21/ 19.02.2021. Лапынин Д.А., Лапынин А.И., Сафронов А.А., и др. Компрессионно-дистракционный аппарат для устранения смещения отломков кости.

[25]

Cooperstein R, Holzworth M, O’Brien A. Intra-andstand test for anatomic leg length inequality. Chir J Australia. 2017;45(2): 1184–1195.

[26]

Cooperstein R., Holzworth M., O’Brien A. Intra-andstand test for anatomic leg length inequality // Chir J Australia. 2017. Vol. 45, No. 2. P. 1184–1195.

[27]

Trishkin DV, Kryukov EV, Chuprina AP, et al. The evolution of the concept of medical care for the wounded and injured with injuries of the musculoskeletal system. Russian military medical journal. 2020;341(2):4–11. (In Russ.). DOI: 10.17816/RMMJ82214

[28]

Тришкин Д.В., Крюков Е.В., Чуприна А.П., и др. Эволюция концепции оказания медицинской помощи раненым и пострадавшим с повреждениями опорно-двигательного аппарата // Военно-медицинский журнал. 2020. Т. 341, № 2. С. 4–11. DOI: 10.17816/RMMJ82214

[29]

Alt V, Van Lieshout Esther MM, Miclau T. New Technologies in Orthopaedic Traumatology. Injury. 2022;53(S3):S1. DOI: 10.1016/j.injury.2022.10.001

[30]

Alt V., Van Lieshout Esther M.M., Miclau T. New Technologies in Orthopaedic Traumatology // Injury. 2022. Vol. 53, No. S3. P. S1. DOI: 10.1016/j.injury.2022.10.001

[31]

Moya D, Gobbato B, Valente S, Roca R. Use of preoperative planning and 3D printing in orthopedics and traumatology: entering a new era. Acta Ortop Mex. 2022;36(1):39–47. DOI: 10.35366/106758

[32]

Moya D., Gobbato B., Valente S., Roca R. Use of preoperative planning and 3D printing in orthopedics and traumatology: entering a new era // Acta Ortop Mex. 2022. Vol. 36, No. 1. P. 39–47. DOI: 10.35366/106758

[33]

Baecker H, Frieler S, Schildhauer TA, et al. Fracture-related infections in traumatology: Current standards and new developments in diagnostics and treatment. Orthopade. 2020;49(8):702–709. DOI: 10.1007/s00132-020-03948-y

[34]

Baecker H., Frieler S., Schildhauer T.A., et al. Fracture-related infections in traumatology: Current standards and new developments in diagnostics and treatment // Orthopade. 2020. Vol. 49, No. 8. P. 702–709. DOI: 10.1007/s00132-020-03948-y

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

63

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/