The possibility of using perfluorocarbon compounds for virus-associated pneumonia treatment

Genrikh A. Sofronov , Elena V. Murzina , Diana Yu. Lazarenko , Lyudmila V. Buryakova , Tat'yana G. Krylova

Bulletin of the Russian Military Medical Academy ›› 2022, Vol. 24 ›› Issue (3) : 567 -580.

PDF
Bulletin of the Russian Military Medical Academy ›› 2022, Vol. 24 ›› Issue (3) : 567 -580. DOI: 10.17816/brmma109689
Review
review-article

The possibility of using perfluorocarbon compounds for virus-associated pneumonia treatment

Author information +
History +
PDF

Abstract

The issues of practicality in using perfluorocarbon gas transport emulsions (or pure perfluorocarbons) in severe virus-associated pneumonia treatment were considered, including those caused by coronavirus infection. Perfluorocarbons are fully fluorinated carbon compounds, on the basis of which artificial blood substitutes have been developed — gas transport perfluorocarbon emulsions for medical purposes. Perfluorocarbon emulsions were widely used in the treatment of patients in critical conditions of various genesis at the end of the last–the beginning of this century, accompanied by hypoxia, disorders of rheological properties and microcirculation of blood, perfusion of organs and tissues, intoxication, and inflammation. Large-scale clinical trials have shown a domestic plasma substitute advantage based on perfluorocarbons (perfluoroan) over foreign analogues. It is quite obvious that the inclusion of perfluorocarbon emulsions in the treatment regimens of severe virus-associated pneumonia can significantly improve this category’s treatment results after analyzing the accumulated experience. A potentially useful area of therapy for acute respiratory distress syndrome is partial fluid ventilation with the use of perfluorocarbons as respiratory fluids as shown in the result of many studies on animal models and existing clinical experience. There is no gas-liquid boundary in the alveoli, as a result of which, there is an improvement in gas exchange in the lungs and a decrease in pressure in the respiratory tract when using this technique, due to the unique physicochemical properties of liquid perfluorocarbons. A promising strategy for improving liquid ventilation effectiveness using perfluorocarbon compounds is a combination with other therapeutic methods, particularly with moderate hypothermia. Antibiotics, anesthetics, vasoactive substances, or exogenous surfactant can be delivered to the lungs during liquid ventilation with perfluorocarbons, including to the affected areas, which will enhance the drugs accumulation in the lung tissues and minimize their systemic effects. However, the indications and the optimal technique for conducting liquid ventilation of the lungs in patients with acute respiratory distress syndrome have not been determined currently. Further research is needed to clarify the indications, select devices, and determine the optimal dosage regimens for perfluorocarbons, as well as search for new technical solutions for this technique.

Keywords

perfluorocarbons / artificial blood substitutes / partial liquid ventilation / surfactant / intra-pulmonary drug delivery / virus-associated pneumonia / new coronavirus infection / acute respiratory distress syndrome

Cite this article

Download citation ▾
Genrikh A. Sofronov, Elena V. Murzina, Diana Yu. Lazarenko, Lyudmila V. Buryakova, Tat'yana G. Krylova. The possibility of using perfluorocarbon compounds for virus-associated pneumonia treatment. Bulletin of the Russian Military Medical Academy, 2022, 24(3): 567-580 DOI:10.17816/brmma109689

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Salukhov VV, Kharitonov MA, Kryukov EV, et al. Topical issues of diagnostics, examination and treatment of patients with COVID-19-associated pneumonia in different countries and continents. Medical Council. 2020;(21):96–102. (In Russ.). DOI: 10.21518/2079-701X-2020-21-96-102

[2]

Салухов В.В., Харитонов М.А., Крюков Е.В., и др. Актуальные вопросы диагностики, обследования и лечения больных с COVID-19-ассоциированной пневмонией в различных странах и континентах // Медицинский Совет. 2020. № 21. С. 96–102. DOI: 10.21518/2079-701X-2020-21-96-102

[3]

Ministerstvo Zdravookhraneniya RF. Vremennye metodicheskie rekomendatsii. Profilaktika, diagnostika i lechenie novoi koronavirusnoi infektsii (COVID-19). Versiya 15 (22.02.2022). Moscow: MZ RF, 2022. 245 p. (In Russ.).

[4]

Министерство Здравоохранения РФ. Временные методические рекомендации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 15 (22.02.2022). Москва: МЗ РФ, 2022. 245 с.

[5]

Minnullin TI, Stepanov AV, Chepur SV, et al. Immunological aspects of SARS-CoV-2 coronavirus damage. Bulletin of the Russian Military Medical Academy. 2021;74(2):187–198. (In Russ.). DOI: 10.17816/brmma72051

[6]

Миннуллин Т.И., Степанов А.В., Чепур С.В., и др. Иммунологические аспекты поражения коронавирусом SARS-CoV-2 // Вестник Российской военно-медицинской академии. 2021. Т. 74, № 2. С. 187–198. DOI: 10.17816/brmma72051

[7]

Salukhov VV, Kryukov EV, Chugunov AA, et al. The role and place of glucocorticosteroids in treatment of COVID-19 pneumonia without hypoxemia. Medical Council. 2021;(12):162–172. (In Russ.). DOI: 10.21518/2079-701X-2021-12-162-172

[8]

Салухов В.В., Крюков Е.В., Чугунов А.А., и др. Роль и место глюкокортикостероидов в терапии пневмоний, вызванных COVID-19, без гипоксемии // Медицинский Совет. 2021. № 12. С. 162–172. DOI: 10.21518/2079-701X-2021-12-162-172

[9]

Davydov DV, Chernetsov VA, Chernov SA, et al. Oxygenotherapy and respiratory support in patients with COVID-19 in the N.N. Burdenko Main military clinical hospital of the ministry of defense of the Russia Federation. Prakticheskaya pul’monologiya. 2021;(1): 3–12. (In Russ.).

[10]

Давыдов Д.В., Чернецов В.А., Чернов С.А., и др. Проведение оксигенотерапии и респираторной поддержки у пациентов с новой коронавирусной инфекцией в Главном военном клиническом госпитале им. акад. Н.Н. Бурденко // Практическая пульмонология. 2021. № 1. С. 3–12.

[11]

Maevsky E, Ivanitsky G, Bogdanova L, et al. Clinical results of Perftoran application: present and future. Artif Cells Blood Substit Immobil Biotechnol. 2005;33(1):37–46. DOI: 10.1081/bio-200046654

[12]

Maevsky E., Ivanitsky G., Bogdanova L., et al. Clinical results of Perftoran application: present and future // Artif Cells Blood Substit Immobil Biotechnol. 2005. Vol. 33, No 1. P. 37–46. DOI: 10.1081/bio-200046654

[13]

Latson GW. Perftoran (Vidaphor) – introduction to western medicine. Shock. 2019;52(15):65–69. DOI: 10.1097/SHK.0000000000001063

[14]

Latson G.W. Perftoran (Vidaphor) – introduction to western medicine // Shock. 2019. Vol. 52, No. 15. P. 65–69. DOI: 10.1097/SHK.0000000000001063

[15]

Wang C, Hornby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet. 2020;395(10223):470–473. DOI: 10.1016/S0140-6736(20)30185-9

[16]

Wang C., Hornby P.W., Hayden F.G., Gao G.F. A novel coronavirus outbreak of global health concern // Lancet. 2020. Vol. 395, No. 10223. P. 470–473. DOI: 10.1016/S0140-6736(20)30185-9

[17]

Lai C-C, Liu Y-H, Wang C-Y, et al. Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Facts and myths. J Microbiol Immunol Infect. 2020;53(3):404–412. DOI: 10.1016/j.jmii.2020.02.012

[18]

Lai C.-C., Liu Y.-H., Wang C.-Y., et al. Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Facts and myths // J Microbiol Immunol Infect. 2020. Vol. 53, No. 3. P. 404–412. DOI: 10.1016/j.jmii.2020.02.012

[19]

Aleksandrova NP. Pathogenesis of respiratory failure in coronavirus disease (COVID-19). Integrative Physiology. 2020;1(4):285–293. (In Russ.). DOI: 10.33910/2687-1270-2020-1-4-285-293

[20]

Александрова Н.П. Патогенез дыхательной недостаточности при коронавирусной болезни (COVID-19) // Интегративная физиология. 2020. Т. 1, № 4. С. 285–293. DOI: 10.33910/2687-1270-2020-1-4-285-293

[21]

Bazykina EA, Trotsenko OE. Peculiarities of community acquired pneumonia triggered by novel coronavirus SARS-CoV-2 (review). Bulletin Physiology and Pathology of Respiration. 2020;(78):135–146. (In Russ.). DOI: 10.36604/1998-5029-2020-78-135-146

[22]

Базыкина Е.А., Троценко О.Е. Особенности пневмоний, вызванных новым коронавирусом SARS-CoV-2 (обзор литературы) // Бюллетень физиологии и патологии дыхания. 2020. № 78. С. 135–146. DOI: 10.36604/1998-5029-2020-78-135-146

[23]

González-Ruiz FJ, Lazcano-Díaz EA, Baeza Herrera LA, et al. Endotheliitis, shunts, and ventilation-perfusion mismatch in coronavirus disease 2019: a literature review of disease mechanisms. Ann Med Surg. 2022;78:103820. DOI: 10.1016/j.amsu.2022.103820

[24]

González-Ruiz F.J., Lazcano-Díaz E.A., Baeza Herrera L.A., et al. Endotheliitis, shunts, and ventilation-perfusion mismatch in coronavirus disease 2019: a literature review of disease mechanisms // Ann Med Surg. 2022. Vol. 78. ID 103820. DOI: 10.1016/j.amsu.2022.103820

[25]

Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. DOI: 10.1016/s140-6736(20)30183-5

[26]

Huang C., Wang Y., Li X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China // Lancet. 2020. Vol. 395, No. 10223. P. 497–506. DOI: 10.1016/s140-6736(20)30183-5

[27]

Kobylyansky VI. Morphofunctional changes in the conducting and respiratory parts of the bronchopulmonary system in COVID-19 (analytical review). Infectious Diseases: News, Opinions, Training. 2021;10(2):6 9–77. (In Russ.). DOI: 10.33029/2305-3496-2021-10-2-69-77

[28]

Кобылянский В.И. Морфофункциональные изменения в проводящих и респираторных отделах бронхолегочной системы при COVID-19 (аналитический обзор) // Инфекционные болезни: новости, мнения, обучение. 2021. Т. 10, № 2. С. 69–77. DOI: 10.33029/2305-3496-2021-10-2-69-77

[29]

Ciceri F, Beretta L, Scandroglio AM, et al. Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): an atypical acute respiratory distress syndrome working hypothesis. Crit Care Resusc. 2020;22(2):95–97. DOI: 10.51893/2020.2.pov2

[30]

Ciceri F., Beretta L., Scandroglio A.M., et al. Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): an atypical acute respiratory distress syndrome working hypothesis // Crit Care Resusc. 2020. Vol. 22, No. 2. P. 95–97. DOI: 10.51893/2020.2.pov2

[31]

Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med. 2020;383(2):120–128. DOI: 10.1056/NEJMoa2015432

[32]

Ackermann M., Verleden S.E., Kuehnel M., et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19 // N Engl J Med. 2020. Vol. 383, No. 2. P. 120–128. DOI: 10.1056/NEJMoa2015432

[33]

Lax SF, Skok K, Zechner P, et al. Pulmonary arterial thrombosis in COVID-19 with fatal outcome: results from a prospective, single-center, clinicopathologic case series. Ann of Intern Med. 2020;173(5):350–361. DOI: 10.7326/M20-2566

[34]

Lax S.F., Skok K., Zechner P., et al. Pulmonary arterial thrombosis in COVID-19 with fatal outcome: results from a prospective, single-center, clinicopathologic case series // Ann of Intern Med. 2020. Vol. 173, No. 5. P. 350–361. DOI: 10.7326/M20-2566

[35]

Bikdeli B, Madhavan MV, Jimenez D, et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up: JACC state-of-the-art review. J Am Coll Cardiol. 2020;75(23):2950–2973. DOI: 10.1016/j.jacc.2020.04.031

[36]

Bikdeli B., Madhavan M.V., Jimenez D., et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up: JACC state-of-the-art review // J Am Coll Cardiol. 2020. Vol. 75, No. 23. P. 2950–2973. DOI: 10.1016/j.jacc.2020.04.031

[37]

Klok FA, Kruip MJHA, van der Meer NJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020;191:145–147. DOI: 10.1016/j. thromres.2020.04.013

[38]

Klok F.A., Kruip M.J.H.A., van der Meer N.J.M., et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19 // Thromb Res. 2020. Vol. 191. P. 145–147. DOI: 10.1016/j. thromres.2020.04.013

[39]

Conti P, Ronconi G, Caraffa A, et al. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVID-19 or SARS-CoV-2): anti-inflammatory strategies. J Biol Regul Homeost Agents. 2020;34(2):327–331. DOI: 10.23812/CONTI-E

[40]

Conti P., Ronconi G., Caraffa A., et al. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVID-19 or SARS-CoV-2): anti-inflammatory strategies // J Biol Regul Homeost Agents. 2020. Vol. 34, No. 2. P. 327–331. DOI: 10.23812/CONTI-E

[41]

Karyakin NN, Kostina OV, Galova EA, et al. Disorders of the erythrocytes rheological properties in patients with COVID-19. Medical Almanac. 2020;(3):52–56. (In Russ.).

[42]

Карякин Н.Н., Костина О.В., Галова Е.А., и др. Нарушения реологических свойств эритроцитов у пациентов с COVID-19 // Медицинский альманах. 2020. № 3. С. 52–56.

[43]

Murphy P, Glavey S, Quinn J. Anemia and red blood cell abnormalities in COVID-19. Leuk Lymphoma. 2021;62(2):1539. DOI: 10.1080/10428194.2020.1869967

[44]

Murphy P., Glavey S., Quinn J. Anemia and red blood cell abnormalities in COVID-19 // Leuk Lymphoma. 2021. Vol. 62, Nо. 2. ID 1539. DOI: 10.1080/10428194.2020.1869967

[45]

Clark L, Golian F. Survival of mammals breathing organic liquids equilibrated with oxygen at atmospheric pressure. Science. 1966;152(3730):1752–1755. DOI: 10.1126/science.152.3730.1755

[46]

Clark L., Golian F. Survival of mammals breathing organic liquids equilibrated with oxygen at atmospheric pressure // Science. 1966. Vol. 152, No. 3730. P. 1752–1755. DOI: 10.1126/science.152.3730.1755

[47]

Geyer R, Monroe R, Taylor K. Survival of rats totally perfused with a fluorocarbon — detergent preparation. In: Norman JC, Folkman J, editors. Organ perfusion and preservation. New York: 1968. P. 85–96.

[48]

Geyer R., Monroe R., Taylor K. Survival of rats totally perfused with a fluorocarbon — detergent preparation. In: Norman J.C., Folkman J., editors. Organ perfusion and preservation. New York: 1968. P. 85–96.

[49]

Hill SE. Perfluorocarbons: knowledge gained from clinical trials. Shock. 2019;52(15):60–64. DOI: 10.1097/SHK.0000000000001045

[50]

Hill S.E. Perfluorocarbons: knowledge gained from clinical trials // Shock. 2019. Vol. 52, No. 15. P. 60–64. DOI: 10.1097/SHK.0000000000001045

[51]

Jahr JS, Guinn NR, Lowery DR, et al. Blood Substitutes and oxygen therapeutics: a review. Anesth Analg. 2021;132(1):119–129. DOI: 10.1213/ANE.0000000000003957

[52]

Jahr J.S., Guinn N.R., Lowery D.R., et al. Blood Substitutes and oxygen therapeutics: a review // Anesth Analg. 2021. Vol. 132, No. 1. P. 119–129. DOI: 10.1213/ANE.0000000000003957

[53]

Jägers J, Wrobeln A, Ferenz KB. Perfluorocarbon-based oxygen carriers: from physics to physiology. Pflügers Arch. 2021;473(2): 139–150. DOI: 10.1007/s00424-020-02482-2

[54]

Jägers J., Wrobeln A., Ferenz K.B. Perfluorocarbon-based oxygen carriers: from physics to physiology // Pflügers Arch. 2021. Vol. 473, No. 2. P. 139–150. DOI: 10.1007/s00424-020-02482-2

[55]

Wrobeln A, Laudien J, Groß-Heitfeld Ch, et al. Albumin-derived perfluorocarbon-based artificial oxygen carriers: A physico-chemical characterization and first in vivo evaluation of biocompatibility. Eur J Pharm Biopharm. 2017;115:52–64. DOI: 10.1016/j.ejpb.2017.02.015

[56]

Wrobeln A., Laudien J., Groß-Heitfeld Ch., et al. Albumin-derived perfluorocarbon-based artificial oxygen carriers: A physico-chemical characterization and first in vivo evaluation of biocompatibility // Eur J Pharm Biopharm. 2017. Vol. 115. P. 52–64. DOI: 10.1016/j.ejpb.2017.02.015

[57]

Wrobeln A, Jägers J, Quinting T, et al. Albumin-derived perfluorocarbon-based artificial oxygen carriers can avoid hypoxic tissue damage in massive hemodilution. Sci Rep. 2020;10(1):11950. DOI: 10.1038/s41598-020-68701-z

[58]

Wrobeln A., Jägers J., Quinting T., et al. Albumin-derived perfluorocarbon-based artificial oxygen carriers can avoid hypoxic tissue damage in massive hemodilution // Sci Rep. 2020. Vol. 10, No. 1. ID 11950. DOI: 10.1038/s41598-020-68701-z

[59]

Hester S, Ferenz KB, Eitner S, Langer K. Development of a lyophilization process for long-term storage of albumin-based perfluorodecalin-filled artificial oxygen carriers. Pharmaceutics. 2021;13(4):584. DOI: 10.3390/pharmaceutics13040584

[60]

Hester S., Ferenz K.B., Eitner S., Langer K. Development of a lyophilization process for long-term storage of albumin-based perfluorodecalin-filled artificial oxygen carriers // Pharmaceutics. 2021. Vol. 13, No. 4. ID 584. DOI: 10.3390/pharmaceutics13040584

[61]

Zhuang J, Ying M, Spiekermann K, et al. Biomimetic nanoemulsions for oxygen delivery in vivo. Adv Mater. 2018;30(49):e1804693. DOI: 10.1002/adma.201804693

[62]

Zhuang J., Ying M., Spiekermann K., et al. Biomimetic nanoemulsions for oxygen delivery in vivo // Adv Mater. 2018. Vol. 30, No. 49. ID e1804693. DOI: 10.1002/adma.201804693

[63]

Stanin DM, Tsarev AV, Dudukina SA, Oreshnikov KP. Perftoran v komplekse intensivnoi terapii. Sindrom ostrogo legochnogo povrezhdeniya/ostryi respiratornyi distress-sindrom (SOLP/ORDS). Perftororganicheskie soedineniya v biologii i meditsine. Pushchino, 2001. P. 167–170. (In Russ.).

[64]

Станин Д.М., Царев А.В., Дудукина С.А., Орешников К.П. Перфторан в комплексе интенсивной терапии. Синдром острого легочного повреждения/острый респираторный дистресс-синдром (СОЛП/ОРДС). В кн: Перфторорганические соединения в биологии и медицине. Пущино, 2001. С. 167–170.

[65]

Kovelenov AYu, Lobzin YuV. Perftoruglerodnye soedineniya kak novoe napravlenie patogeneticheskoi terapii tyazhelykh form virusnykh gepatitov. Clinical Medicine (Russian Journal). 2003;81(5):47–51. (In Russ.).

[66]

Ковеленов А.Ю., Лобзин Ю.В. Перфторуглеродные соединения как новое направление патогенетической терапии тяжелых форм вирусных гепатитов // Клиническая медицина. 2003. Т. 81, № 5. С. 47–51.

[67]

Kovelenov AYu, Voitenkov BO, Maevskii EI, Pushkin SYu. Perspektivy lechebnogo primeneniya perftoruglerodnykh soedinenii pri VICH-infektsii. Rossiiskii biomeditsinskii zhurnal Medline.ru. 2004;5:214–216. (In Russ.).

[68]

Ковеленов А.Ю., Войтенков Б.О., Маевский Е.И., Пушкин С.Ю. Перспективы лечебного применения перфторуглеродных соединений при ВИЧ-инфекции // Российский биомедицинский журнал. 2004. Т. 5. С. 214–216.

[69]

Moroz VV, Chernysh AM, Kozlova EK. Coronavirus SARS-CoV-2: Hypotheses of Impact on the Circulatory System, Prospects for the Use of Perfluorocarbon Emulsion, and Feasibility of Biophysical Research Methods. General Reanimatology. 2020;16(3):4–13. (In Russ.). DOI: 10.15360/1813-9779-2020-3-0-1

[70]

Мороз В.В., Черныш А.М., Козлова Е.К. Коронавирус SАRS-CoV-2: гипотезы влияния на кровеносную систему, перспективы использования перфторуглеродной эмульсии, возможности биофизических методов исследования // Общая реаниматология. 2020. Т. 16, № 3. С. 4–13. DOI: 10.15360/1813-9779-2020-3-0-1

[71]

Hamilton M, Peek GJ, Dux A. Partial liquid ventilation. Pediatr Radiol. 2005;35(11):1152–1156. DOI: 10/1007/s00247-005-1548-x

[72]

Hamilton M., Peek G.J., Dux A. Partial liquid ventilation // Pediatr Radiol. 2005. Vol. 35, No. 11. P. 1152–1156. DOI: 10/1007/s00247-005-1548-x

[73]

Sarkar S, Paswan A, Prakas S. Liquid ventilation. Anesth Essays Res. 2014;8(3):277–282. DOI: 10.4103/0259-1162.143109

[74]

Sarkar S., Paswan A., Prakas S. Liquid ventilation // Anesth Essays Res. 2014. Vol. 8, No. 3. P. 277–282. DOI: 10.4103/0259-1162.143109

[75]

Moroz VV, Vlasenko AV, Golubev AM, et al. Differentiated Treatment for Acute Respiratory Distress Syndrome Induced by Direct and Indirect Etiological Factors. General Reanimatology. 2011;7(4):5–15. (In Russ.). DOI: 10.15360/1813-9779-2011-4-5

[76]

Мороз В.В., Власенко А.В., Голубев А.М., и др. Дифференцированное лечение острого респираторного дистресс-синдрома, обусловленного прямыми и непрямыми этиологическими факторами // Общая реаниматология. 2011. Т. 7, № 4. С. 5–15. DOI: 10.15360/1813-9779-2011-4-5

[77]

Korepanov AL, Shunevych OB, Vasilenko IYu. Liquid breathing. Total liquid ventilation of the lungs (message two). Vestnik fizioterapii i kurortologii. 2018;24(4):86–93. (In Russ.).

[78]

Корепанов А.Л., Шуневич О.Б., Василенко И.Ю. Жидкостное дыхание. Тотальная жидкостная вентиляция легких (сообщение второе) // Вестник физиотерапии и курортологии. 2018. Т. 24, № 4. С. 86–93.

[79]

Kohlhauer M, Boissady E, Lidouren F, et al. A new paradigm for lung-conservative total liquid ventilation. EBioMedicine. 2020;52:102365. DOI: 10.1016/j.ebiom.2019.08.026

[80]

Kohlhauer M., Boissady E., Lidouren F., et al. A new paradigm for lung-conservative total liquid ventilation // EBioMedicine. 2020. Vol. 52. ID 102365. DOI: 10.1016/j.ebiom.2019.08.026

[81]

Korepanov AL. Liquid breathing. Partial fluid ventilation of the lungs (first message). Vestnik fizioterapii i kurortologii. 2018;24(2): 62–70. (In Russ.).

[82]

Корепанов А.Л. Жидкостное дыхание. Частичная жидкостная вентиляция легких (сообщение первое) // Вестник физиотерапии и курортологии. 2018. Т. 24, № 2. С. 62–70.

[83]

Hirschl RB, Pranikoff T, Gauger P, et al. Liquid ventilation in adults, children, and full-term neonates. Lancet. 1995;346(8984):1201–1202. DOI: 10.1016/s0140-6736(95)92903-7

[84]

Hirschl R.B., Pranikoff T., Gauger P., et al. Liquid ventilation in adults, children, and full-term neonates // Lancet. 1995. Vol. 346, No. 8984. P. 1201–1202. DOI: 10.1016/s0140-6736(95)92903-7

[85]

Leach CL, Greenspan JS, Rubenstein SD, et al. Partial liquid ventilation with perflubron in premature infants with severe respiratory distress syndrome. The LiquiVent Study Group. N Engl J Med. 1996;335(11):761–767. DOI: 10.1056/NEJM199609123351101

[86]

Leach C.L., Greenspan J.S., Rubenstein S.D., et al. Partial liquid ventilation with perflubron in premature infants with severe respiratory distress syndrome. The LiquiVent Study Group // N Engl J Med. 1996. Vol. 335, No. 11. P. 761–767. DOI: 10.1056/NEJM199609123351101

[87]

Hirschl RB, Conrad S, Kaiser R, et al. Partial liquid ventilation in adult patients with ARDS: a multicenter phase I–II trial. Adult PLV Study Group. Ann Surg. 1998;228(5):692–700. DOI: 10.1097/00000658-199811000-00009

[88]

Hirschl R.B., Conrad S., Kaiser R., et al. Partial liquid ventilation in adult patients with ARDS: a multicenter phase I–II trial. Adult PLV Study Group // Ann Surg. 1998. Vol. 228, No. 5. P. 692–700. DOI: 10.1097/00000658-199811000-00009

[89]

Hirschl RB, Croce M, Gore D, et al. Prospective, randomized, controlled pilot study of partial liquid ventilation in adult acute respiratory distress syndrome. Am J Respir. Crit Care Med. 2002;165(6):781–787. DOI: 10.1164/ajrccm.165.6.2003052

[90]

Hirschl R.B., Croce M., Gore D., et al. Prospective, randomized, controlled pilot study of partial liquid ventilation in adult acute respiratory distress syndrome // Am J Respir. Crit Care Med. 2002. Vol. 165, No. 6. P. 781–787. DOI: 10.1164/ajrccm.165.6.2003052

[91]

Poptsov VN, Balandyuk AE. Pervyi klinicheskii opyt ispol’zovaniya chastichnoi zhidkostnoi ventilyatsii na osnove ehndobronkhial’nogo vvedeniya perftorana v kompleksnoi terapii respiratornogo distress-sindroma. Biomeditsinskii zhurnal Medline.ru. 2004;5:173–174. (In Russ.).

[92]

Попцов В.Н., Баландюк А.Е. Первый клинический опыт использования частичной жидкостной вентиляции на основе эндобронхиального введения перфторана в комплексной терапии респираторного дистресс-синдрома // Биомедицинский журнал Medline.ru. 2004. Т. 5. С. 173–174.

[93]

Moroz VV, Ostapchenko DA, Vlasenko AV, et al. Endotracheal Use of Perfluorane in Patients with Acute Respiratory Distress Syndrome Under Artificial Ventilation. General Reanimatology. 2005;1(2):5–11. (In Russ.). DOI: 10.15360/1813-9779-2005-2-5-11

[94]

Мороз В.В., Остапченко Д.А., Власенко А.В., и др. Эндотрахеальное применение перфторана в условиях ИВЛ у больных с острым респираторным дистресс-синдромом // Общая реаниматология. 2005. Т. 1, № 2. С. 5–11. DOI: 10.15360/1813-9779-2005-2-5-11

[95]

Klyuchevsky VV, Vvedensky VP. Effectiveness of endobronchial therapy of aspiration pneumonia in combinative trauma. Bulletin of the Ivanovo State Medical Academy. 2012;17(3):43–47. (In Russ.).

[96]

Ключевский В.В., Введенский В.П. Эффективность эндобронхиальной терапии аспирационных пневмоний при сочетанной травме // Вестник Ивановской медицинской академии. 2012. Т. 17, № 3. С. 43–47.

[97]

Golubev AM, Kuzovlev AN, Sundukov DV, Golubev MA. Morphological Characteristics of the Lung during Lipopolysaccharide and Perfluorane Inhalation. General Reanimatology. 2015;11(1):6–13. (In Russ.). DOI: 10.15360/1813-9779-2015-1-6-13

[98]

Голубев А.М., Кузовлев А.Н., Сундуков Д.В., Голубев М.А. Морфологическая характеристика легких при ингаляции липополисахарида и перфторана // Общая реаниматология. 2015. Т. 11, № 1. С. 6–13. DOI: 10.15360/1813-9779-2015-1-6-13

[99]

Giraudeau C, Flament J, Marty B, et al. A new paradigm for high-sensitivity 19F magnetic resonance imaging of perfluorooctylbromide. Magn Reson Med. 2010;63(4):1119–1124. DOI: 10.1002/mrm.22269

[100]

Giraudeau C., Flament J., Marty B., et al. A new paradigm for high-sensitivity 19F magnetic resonance imaging of perfluorooctylbromide // Magn Reson Med. 2010. Vol. 63, No. 4. P. 1119–1124. DOI: 10.1002/mrm.22269

[101]

Gerber F, Krafft MP, Vandamme TF, et al. Potential use of fluorocarbons in lung surfactant therapy. Artif Cells Blood Substit Immobil Biotechnol. 2007;35(2):211–220. DOI: 10.1080/10731190601188307

[102]

Gerber F., Krafft M.P., Vandamme T.F., et al. Potential use of fluorocarbons in lung surfactant therapy // Artif Cells Blood Substit Immobil Biotechnol. 2007. Vol. 35, No. 2. P. 211–220. DOI: 10.1080/10731190601188307

[103]

Inci I, Arni S, Iskender I, et al. Functional, metabolic and morphologic results of ex vivo donor lung perfusion with a perfluorocarbon-based oxygen carrier nanoemulsion in a large animal transplantation model. Cells. 2020;9(11):2501. DOI: 10.3390/cells9112501

[104]

Inci I., Arni S., Iskender I., et al. Functional, metabolic and morphologic results of ex vivo donor lung perfusion with a perfluorocarbon-based oxygen carrier nanoemulsion in a large animal transplantation model // Cells. 2020. Vol. 9, No. 11. ID 2501. DOI: 10.3390/cells9112501

[105]

Chang H, Li M-H, Chen C-W, et al. Intravascular FC-77 attenuates phorbol myristate acetate-induced acute lung injury in isolated rat lungs. Crit Care Med. 2008;36(4):1222–1229. DOI: 10.1097/CCM.0b013e31816a04d3

[106]

Chang H., Li M.-H., Chen C.-W., et al. Intravascular FC-77 attenuates phorbol myristate acetate-induced acute lung injury in isolated rat lungs // Crit Care Med. 2008. Vol. 36, No. 4. P. 1222–1229. DOI: 10.1097/CCM.0b013e31816a04d3

[107]

Chu S-J, Huang K-L, Wu S-Y, et al. Systemic administration of FC-77 dampens ischemia–reperfusion-induced acute lung injury in rats. Inflammation. 2013;36:1383–1392. DOI: 10.1007/s10753-013-9678-z

[108]

Chu S.-J., Huang K.-L., Wu S.-Y., et al. Systemic administration of FC-77 dampens ischemia–reperfusion-induced acute lung injury in rats // Inflammation. 2013. Vol. 36. P. 1383–1392. DOI: 10.1007/s10753-013-9678-z

[109]

Galvin IM, Steel A, Pinto R, et al. Partial liquid ventilation for preventing death and morbidity in adults with acute lung injury and acute respiratory distress syndrome. Cochrane Database Syst Rev. 2013;2013(7):CD003707. DOI: 10.1002/14651858.CD003707.pub3

[110]

Galvin I.M., Steel A., Pinto R., et al. Partial liquid ventilation for preventing death and morbidity in adults with acute lung injury and acute respiratory distress syndrome // Cochrane Database Syst Rev. 2013. Vol. 2013, No. 7. ID CD003707. DOI: 10.1002/14651858.CD003707.pub3

[111]

Lehmler H-J. Perfluorocarbon compounds as vehicles for pulmonary drug delivery. Expert Opin Drug Deliv. 2007;4(3):247–262. DOI: 10.1517/17425247.4.3.247

[112]

Lehmler H.-J. Perfluorocarbon compounds as vehicles for pulmonary drug delivery // Expert Opin Drug Deliv. 2007. Vol. 4, No. 3. P. 247–262. DOI: 10.1517/17425247.4.3.247

[113]

Sieswerda E, de Boer MG, Bonten MM, et al. Recommendations for antibacterial therapy in adults with COVID-19 – an evidence-based guideline. Clin Microbiol Infect. 2021;27(1):61–66. DOI: 10.1016/j.cmi.2020.09.041

[114]

Sieswerda E., de Boer M.G., Bonten M.M., et al. Recommendations for antibacterial therapy in adults with COVID-19 – an evidence-based guideline // Clin Microbiol Infect. 2021. Vol. 27, No. 1. P. 61–66. DOI: 10.1016/j.cmi.2020.09.041

[115]

Garcia-Vidal C, Sanjuan G, Moreno-García E, et al. Incidence of co-infections and superinfections in hospitalized patients with COVID-19: a retrospective cohort study. Clin Microbiol Infect. 2021;27(1):83–88. DOI: 10.1016/j.cmi.2020.07.041

[116]

Garcia-Vidal C., Sanjuan G., Moreno-García E., et al. Incidence of co-infections and superinfections in hospitalized patients with COVID-19: a retrospective cohort study // Clin Microbiol Infect. 2021. Vol. 27, No. 1. P. 83–88. DOI: 10.1016/j.cmi.2020.07.041

[117]

Beloborodova NV, Zuev EV, Zamyatin MN, Gusarov VG. Causal Therapy of COVID-19: Critical Review and Prospects. General Reanimatology. 2020;16(6):65–90. (In Russ.). DOI: 10.15360/1813-9779-2020-4-0-1

[118]

Белобородова Н.В., Зуев Е.В., Замятин М.Н., Гусаров В.Г. Этиотропная терапия COVID-19: критический анализ и перспективы // Общая реаниматология. 2020. Т. 16, № 6. С. 65–90. DOI: 10.15360/1813-9779-2020-4-0-1

[119]

Franz AR, Rőhlke W, Franke RP, et al. Pulmonary administration of perfluorodecaline-gentamicin and perfluorodecaline-vancomycin emulsions. Am J Respir Crit Care Med. 2001;164(9):1595–1600. DOI: 10.1164/ajrccm.164.9.214088

[120]

Franz A.R., Rőhlke W., Franke R.P., et al. Pulmonary administration of perfluorodecaline-gentamicin and perfluorodecaline-vancomycin emulsions // Am J Respir Crit Care Med. 2001. Vol. 164, No. 9. P. 1595–1600. DOI: 10.1164/ajrccm.164.9.214088

[121]

Jeng M-J, Soong W-J, Chiou S-Y, et al. Efficacy of intratracheal instillation of a meropenem/perfluorochemical suspension in acute lung injury. Pediatr Pulmonol. 2012;47(2):189–198. DOI: 10.1002/ppul.21523

[122]

Jeng M.-J., Soong W.-J., Chiou S.-Y., et al. Efficacy of intratracheal instillation of a meropenem/perfluorochemical suspension in acute lung injury // Pediatr Pulmonol. 2012. Vol. 47, No. 2. P. 189–198. DOI: 10.1002/ppul.21523

[123]

Dickson EW, Doern GV, Trevino L, et al. Prevention of descending pneumonia in rats with perflubron-delivered tobramycin. Acad Emerg Med. 2003;10(10):1019–1023. DOI: 10.1197/S1069-6563(03)00335-X

[124]

Dickson E.W., Doern G.V., Trevino L., et al. Prevention of descending pneumonia in rats with perflubron-delivered tobramycin // Acad Emerg Med. 2003. Vol. 10, No. 10. P. 1019–1023. DOI: 10.1197/S1069-6563(03)00335-X

[125]

Orizondo RA, Babcock CI, Fabiilli ML, et al. Characterization of a reverse-phase perfluorocarbon emulsion for the pulmonary delivery of tobramycin. J Aerosol Med. Pulm Drug Deliv. 2014;27(5):392–399. DOI: 10.1089/jamp.2013.1058

[126]

Orizondo R.A., Babcock C.I., Fabiilli M.L., et al. Characterization of a reverse-phase perfluorocarbon emulsion for the pulmonary delivery of tobramycin // J Aerosol Med. Pulm Drug Deliv. 2014. Vol. 27, No. 5. P. 392–399. DOI: 10.1089/jamp.2013.1058

[127]

Orizondo RA, Fabiilli ML, Morales MA, Cook KE. Effects of emulsion composition on pulmonary tobramycin delivery during antibacterial perfluorocarbon ventilation. J Aerosol Med. Pulm Drug Deliv. 2016;29(3):251–259. DOI: 10.1089/jamp.2015.1235

[128]

Orizondo R.A., Fabiilli M.L., Morales M.A., Cook K.E. Effects of emulsion composition on pulmonary tobramycin delivery during antibacterial perfluorocarbon ventilation // J Aerosol Med. Pulm Drug Deliv. 2016. Vol. 29, No. 3. P. 251–259. DOI: 10.1089/jamp.2015.1235

[129]

Kimless-Garber DB, Wolfson MR, Carlsson C, Shaffer TH. Halothane administration during liquid ventilation. Respir Med. 1997;91(5):255–262. DOI: 10.1016/s0954-6111(97)90028-7

[130]

Kimless-Garber D.B., Wolfson M.R., Carlsson C., Shaffer T.H. Halothane administration during liquid ventilation // Respir Med. 1997. Vol. 91, No. 5. P. 255–262. DOI: 10.1016/s0954-6111(97)90028-7

[131]

Burkhardt W, Kraft S, Ochs M, et al. Persurf, a new method to improve surfactant delivery: a study in surfactant depleted rats. PLoS One. 2012;7(10):e47923. DOI: 10.1371/journal.pone.0047923

[132]

Burkhardt W., Kraft S., Ochs M., et al. Persurf, a new method to improve surfactant delivery: a study in surfactant depleted rats // PLoS One. 2012. Vol. 7, No. 10. ID e47923. DOI: 10.1371/journal.pone.0047923

[133]

Ferguson SK, Pak DI, Hopkins JL, et al. Pre-clinical assessment of a water-in-fluorocarbon emulsion for the treatment of pulmonary vascular diseases. Drug Deliv. 2019;26(1):147–157. DOI: 10.1080/10717544.2019.1568621

[134]

Ferguson S.K., Pak D.I., Hopkins J.L., et al. Pre-clinical assessment of a water-in-fluorocarbon emulsion for the treatment of pulmonary vascular diseases // Drug Deliv. 2019. Vol. 26, No. 1. P. 147–157. DOI: 10.1080/10717544.2019.1568621

[135]

Wei F, Wen S, Wu H, et al. Partial liquid ventilation-induced mild hypothermia improves the lung function and alleviates the inflammatory response during acute respiratory distress syndrome in canines. Biomed Pharmacother. 2019;118:109344. DOI: 10.1016/j.biopha.2019.109344

[136]

Wei F., Wen S., Wu H., et al. Partial liquid ventilation-induced mild hypothermia improves the lung function and alleviates the inflammatory response during acute respiratory distress syndrome in canines // Biomed Pharmacother. 2019. Vol. 118. ID 109344. DOI: 10.1016/j.biopha.2019.109344

[137]

Wei F, Hu Y, Jiang M, et al. Effect of perfluorocarbon partial liquid ventilation-induced hypothermia on dogs with acute lung injury. Ann Palliat Med. 2020;9(4):2141–2151. DOI: 10.21037/apm-20-1275

[138]

Wei F., Hu Y., Jiang M., et al. Effect of perfluorocarbon partial liquid ventilation-induced hypothermia on dogs with acute lung injury // Ann Palliat Med. 2020. Vol. 9, No. 4. P. 2141–2151. DOI: 10.21037/apm-20-1275

[139]

Sage M, Nadeau M, Kohlhauer M, et al. Effect of ultra-fast mild hypothermia using total liquid ventilation on hemodynamics and respiratory mechanics. Cryobiology. 2016;73(1):99–101. DOI: 10.1016/j.cryobiol.2016.05.009

[140]

Sage M., Nadeau M., Kohlhauer M., et al. Effect of ultra-fast mild hypothermia using total liquid ventilation on hemodynamics and respiratory mechanics // Cryobiology. 2016. Vol. 73, No. 1. P. 99–101. DOI: 10.1016/j.cryobiol.2016.05.009

[141]

Rambaud J, Lidouren F, Sage M, et al. Hypothermic total liquid ventilation after experimental aspiration-associated acute respiratory distress syndrome. Ann Intensive Care. 2018;8:57. DOI: 10.1186/s13613-018-0404-8

[142]

Rambaud J., Lidouren F., Sage M., et al. Hypothermic total liquid ventilation after experimental aspiration-associated acute respiratory distress syndrome // Ann Intensive Care. 2018. Vol. 8. ID 57. DOI: 10.1186/s13613-018-0404-8

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

315

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/