Dynamics of the content of immunoglobulin G to severe acute respiratory syndrome-2 in convalescents who have had a new coronavirus infection

Ivan V. Fateev , Timur V. SchÖfer , Sergey V. Chepur , Evgeniy V. Ivchenko , Timur I. Minnullin , Alla A. Shubina , Alexander V. Stepanov

Bulletin of the Russian Military Medical Academy ›› 2022, Vol. 24 ›› Issue (4) : 659 -666.

PDF
Bulletin of the Russian Military Medical Academy ›› 2022, Vol. 24 ›› Issue (4) : 659 -666. DOI: 10.17816/brmma108612
Original Study Article
research-article

Dynamics of the content of immunoglobulin G to severe acute respiratory syndrome-2 in convalescents who have had a new coronavirus infection

Author information +
History +
PDF

Abstract

The study investigated the dynamics of class G immunoglobulins to severe acute respiratory syndrome-2 coronavirus in the blood serum of convalescents who had a new coronavirus infection for 6 months after the polymerase chain reaction conversion. Among the most common symptoms, 30 (73.8%) convalescents had an increase in body temperature to 38°C, 32 (83.3%) had asthenia, 21 (59.5%) had cough, 29 (73.8%) had perversion or loss of sense of smell, pain, and throat discomfort. The duration of symptoms varied from 3–4 days to 3–4 weeks. Within a month after the end of the acute disease period, 8 (20%) patients had a decrease in working capacity, 13 (33%) had difficulty breathing, 9 (22%) had a cough, and 4 (10%) had pain and sore throat. During severe acute respiratory syndrome 2 infection, the virus activates the innate and adaptive immunity, resulting in the formation of specific class G immunoglobulins to the pathogens. After leveling the clinical manifestations, class G immunoglobulins were detected in the majority of convalescents (79%–90%) during the first 6 months, starting from day 14 from disease onset with a predominantly high (> 10 conl. units) positivity coefficient. Moreover, this pattern occurred in both men and women; however, in some studies, the levels of the positivity coefficient of class G immunoglobulins began to decrease by the fifth month of follow-up and sometimes at an earlier time (2 months). Perhaps, this is due to the different functional activities of the immune system of each convalescent, infecting dose of the pathogen, and peculiarities of its interaction with the macroorganism and its immune system. Nevertheless, the class G immunoglobulins identified in the study do not yet indicate the probability of reinfection of convalescents with the same pathogen. The protective titer of antibodies has yet to be investigated further.

Keywords

immunoglobulin G / new coronavirus infection / severe acute respiratory syndrome coronavirus-2 / convalescents / positivity coefficient / immuno- and vaccinoprophylaxis / specific immunity

Cite this article

Download citation ▾
Ivan V. Fateev, Timur V. SchÖfer, Sergey V. Chepur, Evgeniy V. Ivchenko, Timur I. Minnullin, Alla A. Shubina, Alexander V. Stepanov. Dynamics of the content of immunoglobulin G to severe acute respiratory syndrome-2 in convalescents who have had a new coronavirus infection. Bulletin of the Russian Military Medical Academy, 2022, 24(4): 659-666 DOI:10.17816/brmma108612

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Phelan AL, Katz R, Gostin LO. The novel coronavirus originating in Wuhan, China: challenges for global health governance. JAMA. 2020;323(8):709–710. DOI: 10.1001/jama.2020.1097

[2]

Phelan A.L., Katz R., Gostin L.O. The novel coronavirus originating in Wuhan, China: challenges for global health governance // JAMA. 2020. Vol. 323, No. 8. P. 709–710. DOI: 10.1001/jama.2020.1097

[3]

Marik PE, Iglesias J, Varon J, et al. A scoping review of the pathophysiology of COVID-19. Int J Immunopathol Pharmacol. 2021;35. DOI: 10.1177/20587384211048026

[4]

Marik P.E., Iglesias J., Varon J., et al. A scoping review of the pathophysiology of COVID-19 // Int J Immunopathol Pharmacol. 2021. Vol. 35. DOI: 10.1177/20587384211048026

[5]

Machhi J, Herskovitz J, Senan AM, et al. The natural history, pathobiology, and clinical manifestations of SARS-CoV-2 infections. J Neuroimmune Pharmacol. 2020;15(3):359–386. DOI: 10.1007/s11481-020-09944-5

[6]

Machhi J., Herskovitz J., Senan A.M., et al. The natural history, pathobiology, and clinical manifestations of SARS-CoV-2 infections // J Neuroimmune Pharmacol. 2020. Vol. 15, No. 3. Р. 359–386. DOI: 10.1007/s11481-020-09944-5

[7]

Elrobaa IH, New KJ. COVID-19: Pulmonary and extra pulmonary manifestations. Front Public Health. 2021;9:711616. DOI: 10.3389/fpubh.2021.711616

[8]

Elrobaa I.H., New K.J. COVID-19: Pulmonary and extra pulmonary manifestations // Front Public Health. 2021. Vol. 9. Р. 711616. DOI: 10.3389/fpubh.2021.711616

[9]

Zaitsev AA, Golukhova EZ, Mamalyga ML, et al. Efficacy of methylprednisolone pulse therapy in patients with COVID-19. Clinical Microbiology and Antimicrobial Chemotherapy. 2020;22(2):88–91. (In Russ.). DOI: 10.36488/cmac.2020.2.88-91

[10]

Зайцев, А.А., Голухова Е.З., Мамалыга М.Л., и др. Эффективность пульс-терапии метилпреднизолоном у пациентов с СOVID-19 // Клиническая микробиология и антимикробная химиотерапия. 2020. Т. 22, № 2. С. 88–91. DOI: 10.36488/cmac.2020.2.88-91

[11]

Chen L, Xiong J, Bao L, et al. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect Dis. 2020;20(4):398–400. DOI: 10.1016/S1473-3099(20)30141-9

[12]

Chen L., Xiong J., Bao L., et al. Convalescent plasma as a potential therapy for COVID-19 // Lancet Infect Dis. 2020. Vol. 20, No. 4. Р. 398–400. DOI: 10.1016/S1473-3099(20)30141-9

[13]

Kryukov EV, Salukhov VV, Kotiv BN, et al. Factors affecting the content of IgG antibodies to SARS-CoV-2 S-protein in the blood of reconvalescents after a new coronavirus infection (COVID-19). Medical Advice. 2022;16(4):51–65. (In Russ.). DOI: 10.21518/2079-701Х-2022-16-4-51-65

[14]

Крюков Е.В., Сaлухов В.В., Котив Б.Н., и др. Факторы, влияющие на содержание IgG-антител к S-белку SARS-CoV-2 в крови у реконвалесцентов после новой коронавирусной инфекции (COVID-19) // Медицинский совет. 2022. Т. 16, № 4. С. 51–65. DOI: 10.21518/2079-701X-2022-16-4-51-65

[15]

Li Х, Zhang Y, He L, et al Immune response and potential therapeutic strategies for the SARS-CoV-2 associated with the COVID-19 pandemic. Int J Biol Sci. 2022;18(5):1865–1877. DOI: 10.7150/ijbs.66369

[16]

Li Х., Zhang Y., He L., et al Immune response and potential therapeutic strategies for the SARS-CoV-2 associated with the COVID-19 pandemic // Int J Biol Sci. 2022. Vol. 18, No. 5. Р. 1865–1877. DOI: 10.7150/ijbs.66369

[17]

Merad M, Blish CA, Sallusto F, et al. The immunology and immunopathology of COVID-19. Science. 2022;375(6585):1122–1127. DOI: 10.1126/science.abm8108

[18]

Merad M., Blish C.A., Sallusto F., et al. The immunology and immunopathology of COVID-19 // Science. 2022. Vol. 375, No. 6585. Р. 1122–1127. DOI: 10.1126/science.abm8108

[19]

Moss P. The T cell immune response against SARS-CoV-2. Nat Immunol. 2022;23(2):186–193. DOI: 10.1038/s41590-021-01122-w

[20]

Moss P. The T cell immune response against SARS-CoV-2 // Nat Immunol. 2022. Vol. 23, No. 2. Р. 186–193. DOI: 10.1038/s41590-021-01122-w

[21]

Jamal M, Bangash HI, Habiba M, et al. Immune dysregulation and system pathology in COVID-19. Virulence. 2021;12(1):918–936. DOI: 10.1080/21505594.2021.1898790

[22]

Jamal M., Bangash H.I., Habiba M., et al. Immune dysregulation and system pathology in COVID-19 // Virulence. 2021. Vol. 12, No. 1. Р. 918–936. DOI: 10.1080/21505594.2021.1898790

[23]

Gusev E, Sarapultsev A, Solomatina L, et al. SARS-CoV-2-Specific immune response and the pathogenesis of COVID-19. Int J Mol Sci. 2022;23(3):1716. DOI: 10.3390/ijms23031716

[24]

Gusev E., Sarapultsev A., Solomatina L., et al. SARS-CoV-2-specific immune response and the pathogenesis of COVID-19 // Int J Mol Sci. 2022. Vol. 23, No. 3. Р. 1716. DOI: 10.3390/ijms23031716

[25]

Primorac D, Vrdoljak K, Brlek P, et al. Adaptive immune responses and immunity to SARS-CoV-2. Front Immunol. 2022;13:848582. DOI: 10.3389/fimmu.2022.848582

[26]

Primorac D., Vrdoljak K., Brlek P., et al. Adaptive immune responses and immunity to SARS-CoV-2 // Front Immunol. 2022. Vol. 13. Р. 848582. DOI: 10.3389/fimmu.2022.848582

[27]

Rybkina K, Davis-Porada J, Farber DL. Tissue immunity to SARS-CoV-2: Role in protection and immunopathology. Immunol Rev. 2022;309(1):25–39. DOI: 10.1111/imr.13112

[28]

Rybkina K., Davis-Porada J., Farber D.L. Tissue immunity to SARS-CoV-2: Role in protection and immunopathology // Immunol Rev. 2022. Vol. 309, No. 1. Р. 25–39. DOI: 10.1111/imr.13112

[29]

Jiang HW, Li Y, Zhang H, et al. SARS-CoV-2 proteome microarray for global profiling of COVID-19 specific IgG and IgM responses. Nat Commun. 2020;11:3581. DOI: 10.1038/s41467-020-17488-8

[30]

Jiang, H.W., LiY., Zhang H., et al. SARS-CoV-2 proteome microarray for global profiling of COVID-19 specific IgG and IgM responses // Nat Commun. 2020. Vol. 11, No. 3581. DOI: 10.1038/s41467-020-17488-8

[31]

Choudhary HR, Parai D, Dash GC, et al. IgG antibody response against nucleocapsid and spike protein post-SARS-CoV-2 infection. Infection. 2021;49(5):1045–1048. DOI: 10.1007/s15010-021-016514

[32]

Choudhary H.R., Parai D., Dash G.C., et al. IgG antibody response against nucleocapsid and spike protein post-SARS-CoV-2 infection // Infection. 2021. Vol. 49, No. 5. Р. 1045–1048. DOI: 10.1007/s15010-021-016514

[33]

Ivanov A, Semenova E. Long-term monitoring of the development and extinction of IgA and IgG responses to SARS-CoV-2 infection. J Med Virol. 2021;93(10):5953–5960. DOI: 10.1002/jmv.27166

[34]

Ivanov A., Semenova E. Long-term monitoring of the development and extinction of IgA and IgG responses to SARS-CoV-2 infection // J Med Virol. 2021. Vol. 93, No. 10. Р. 5953–5960. DOI: 10.1002/jmv.27166

[35]

Xiao DAT, Gao DC, ZhangDS. Profile of specific antibodies to SARS-CoV-2: The first report. J Infect. 2020;81(1):147–178. DOI: 10.1016/j.jinf.2020.03.012

[36]

Xiao D.A.T., Gao D.C., Zhang D.S. Profile of specific antibodies to SARS-CoV-2: The first report // J Infect. 2020. Vol. 81, No. 1. Р. 147–178. DOI: 10.1016/j.jinf.2020.03.012

[37]

Amanat F, Stadbauer D, Strohmeier S, et al. A serological assay to detect SARS-CoV-2 seroconversion in humans. Nature Medicine. 2020;26:1033–1036. DOI: 10.1101/2020.03.17.20037713

[38]

Amanat F., Stadbauer D., Strohmeier S., et al. A serological assay to detect SARS-CoV-2 seroconversion in humans // Nature Medicine. 2020. Vol. 26. Р. 1033–1036. DOI: 10.1101/2020.03.17.20037713

[39]

Smetanina SV, Isaeva AN, Isaeva OO, et al. Change in anti-SARS-CoV-2 IgG antibodies (COVID-19) among the population of the Russian Federation regions and in convalescents in dynamics. Consilium Medicum. 2020;22(11):47–50. (In Russ.). DOI: 10.26442/20751753.2020.11.200417

[40]

Сметанина С.В., Исаев А.Н., Исаева Ю.О. Изменение уровня антител класса IgG к коронавирусу SARS-CoV-2 (COVID-19) у населения регионов Российской Федерации и в динамике у реконвалесцентов // Consilium Medicum. 2020. Т. 22, № 11. С. 47–50. DOI: 10.26442/20751753.2020.11.200417

[41]

Szymczak A, Jędruchniewicz N, Torelli A, et al. Antibodies specific to SARS-CoV-2 proteins N, S and E in COVID-19 patients in the normal population and in historical samples J Gen Virol. 2021;102(11):001692. DOI: 10.1099/jgv.0.001692

[42]

Szymczak A., Jędruchniewicz N., Torelli A., et al. Antibodies specific to SARS-CoV-2 proteins N, S and E in COVID-19 patients in the normal population and in historical samples // J Gen Virol. 2021. Vol. 102, No. 11. Р. 001692. DOI: 10.1099/jgv.0.001692

[43]

Barchuk A, Skougarevskiy D, Kouprianov A, et al. COVID-19 pandemic in Saint Petersburg, Russia: Combining surveillance and populationbased serological study data in May, 2020–April, 2021. Medrxiv. 2021:1–9. DOI: 10.1101/2021.07.31.21261428

[44]

Barchuk A., Skougarevskiy D., Kouprianov A., et al. COVID-19 pandemic in Saint Petersburg, Russia: combining surveillance and populationbased serological study data in May, 2020–April, 2021 // MedRxiv. 2021. Р. 1–9. DOI: 10.1101/2021.07.31.21261428

RIGHTS & PERMISSIONS

Fateev I.V., SchÖfer T.V., Chepur S.V., Ivchenko E.V., Minnullin T.I., Shubina A.A., Stepanov A.V.

AI Summary AI Mindmap
PDF

64

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/