Polymorphisms of leukocyte genes human and congenital antigen immunity associated with different the severity of the course of the new coronavirus infections
Alexander M. Butusov , Olga V. Krusko , Petr K. Potapov , Dmitriy S. Derevyankin , Valentin D. Zagranichnov , Svyatoslav S. Malyshkin , Evgeniy A. Zhurbin
Bulletin of the Russian Military Medical Academy ›› 2022, Vol. 24 ›› Issue (3) : 547 -556.
Polymorphisms of leukocyte genes human and congenital antigen immunity associated with different the severity of the course of the new coronavirus infections
The most significant single nucleotide human leukocyte antigen genes polymorphisms and innate immunity genes associated with varying degrees of acute respiratory infection severity are considered–COVID-19 caused by the SARS-CoV-2 coronavirus. As data accumulated, it became clear that the SARS-CoV-2 virus exhibits significant regional, ethnic, and individual specificity. This is due to the population groups’ genetic characteristics. This is necessary to reliably know the human genotype relationship with the COVID-19 course severity (asymptomatic, mild, moderate, severe, and extremely severe up to fatal outcomes) for more successful therapy and vaccination. At the same time, it was also known that the innate immunity system is on the first line of defense against the pathogenic penetration into the body, and the human leukocyte antigen system encodes molecules of the same name on the surface of cells that present various antigens, including viral infection pathogens, and determine the severity of the course of many diseases; therefore, these systems’ genes. This approach makes it possible to assess the likelihood of a severe and extremely severe disease course in healthy and infected people, which in turn contributes to the correct therapy strategy, pharmacotherapy, and vaccination, as well as to create new antiviral therapeutic and preventive medicines. The genetically determined immune response heterogeneity to SARS-CoV-2 infection requires further study, since there is no unambiguous opinion about the leading mechanism that determines disease severity.
single nucleotide polymorphism / human leukocyte antigen genes / innate immunity genes / acute respiratory infection / immune response / pathogenic pathogens / population group
| [1] |
Ryu S, Chun BC. An interim review of the epidemiological characteristics of 2019 novel coronavirus. Epidemiology and Health. 2020;42:e2020006. DOI: 10.4178/epih.e2020006 |
| [2] |
Ryu S., Chun B.C. An interim review of the epidemiological characteristics of 2019 novel coronavirus // Epidemiology and Health. 2020. Vol. 42. ID e2020006. DOI: 10.4178/epih.e2020006 |
| [3] |
Moskalev AV, Gumilevskiy BY, Apchel VY, Cygan VN. Old new coronavirus. Bulletin of the Russian Military Medical Academy. 2020;22(2):182–188. (In Russ.). DOI: 10.17816/brmma50070 |
| [4] |
Москалев А.В., Гумилевский Б.Ю., Апчел В.Я., Цыган В.Н. Старый новый коронавирус // Вестник Российской военно-медицинской академии. 2020. Т. 22, № 2. С. 182–188. DOI: 10.17816/brmma50070 |
| [5] |
Zaykovskaya AV, Gladysheva AV, Kartashov MYu, et al. In vitro study of biological properties of SARS-CoV-2 coronavirus strains related to various genetic variants. Problems of Particularly Dangerous Infections. 2022;(1):94–100. (In Russ.). DOI: 10.21055/0370-1069-2022-1-94-100 |
| [6] |
Зайковская А.В., Гладышева А.В., Карташов М.Ю., и др. Изучение в условиях in vitro биологических свойств штаммов коронавируса SARS-CoV-2, относящихся к различным генетическим вариантам // Проблемы особо опасных инфекций. 2022. № 1. С. 94–100. DOI: 10.21055/0370-1069-2022-1-94-100 |
| [7] |
Saponaro F, Rutigliano G, Sestito S, et al. ACE2 in the era of SARS-CoV-2: Controversies and novel perspectives. Front Mol Biosci. 2020;7:e588618. DOI: 10.3389/fmolb.2020.588618 |
| [8] |
Saponaro F., Rutigliano G., Sestito S., et al. ACE2 in the era of SARS-CoV-2: Controversies and novel perspectives // Front Mol Biosci. 2020. Vol. 7. ID e588618. DOI: 10.3389/fmolb.2020.588618 |
| [9] |
Khanmohammadi S, Rezaei N. Role of Tol-like receptors in the pathogenesis of COVID-19. J Med Virol. 2021;93(5):2735–2739. DOI: 10.1002/jmv.26826 |
| [10] |
Khanmohammadi S., Rezaei N. Role of Toll-like receptors in the pathogenesis of COVID-19 // J Med Virol. 2021. Vol. 93, No. 5. P. 2735–2739. DOI: 10.1002/jmv.26826 |
| [11] |
Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol. 2004;5(10):987–995. DOI: 10.1038/ni1112 |
| [12] |
Iwasaki A., Medzhitov R. Toll-like receptor control of the adaptive immune responses // Nat Immunol. 2004. Vol. 5, No. 10. P. 987–995. DOI: 10.1038/ni1112 |
| [13] |
Moskalev AV, Gumilevsky BY, Apchel VY, Tsygan VN. Modern view on the role of pattern-recognition receptors and signaling pathways in the development of innate immunity in viral infections. Bulletin of the Russian Military Medical Academy. 2022;24(2): 381–389. (In Russ.). DOI: 10.17816/brmma91018 |
| [14] |
Москалев А.В., Гумилевский Б.Ю., Апчел А.В., Цыган В.Н. Паттерн-распознающие рецепторы и их сигнальные пути в реализации механизмов врожденного иммунитета при вирусных инфекциях // Вестник Российской военно-медицинской академии. 2022. Т. 24, № 2. С. 381–389. DOI: 10.17816/brmma91018 |
| [15] |
Van Der Made CI, Simons A, Schuurs-Hoeijmakers J, et al. Presence of genetic variants among young men with severe COVID-19. JAMA. 2020;324(7):663–673. DOI: 10.1001/jama.2020.13719 |
| [16] |
Van Der Made C.I., Simons A., Schuurs-Hoeijmakers J., et al. Presence of genetic variants among young men with severe COVID-19 // JAMA. 2020. Vol. 324, No. 7. P. 663–673. DOI: 10.1001/jama.2020.13719 |
| [17] |
Zhang C, Wu Z, Li J-W, et al. Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int J Antimicrob Agents. 2020;55(5):105954. DOI: 10.1016/j.ijantimicag.2020.105954 |
| [18] |
Zhang C., Wu Z., Li J.-W., et al. Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality // Int J Antimicrob Agents. 2020. Vol. 55, No. 5. ID 105954. DOI: 10.1016/j.ijantimicag.2020.105954 |
| [19] |
Ye Q, Wang B, Mao J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J Infect. 2020;80(6):607–613. DOI: 10.1016/j.jinf.2020.03.037 |
| [20] |
Ye Q., Wang B., Mao J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19 // J Infect. 2020. Vol. 80, No. 6. P. 607–613. DOI: 10.1016/j.jinf.2020.03.037 |
| [21] |
Richardson PJ, Corbellino M, Stebbing J. Baricitinib for COVID-19: a suitable treatment? Lancet Infect Dis. 2020;20(9):1013–1014. DOI: 10.1016/S1473-3099(20)30270-X |
| [22] |
Richardson P.J., Corbellino M., Stebbing J. Baricitinib for COVID-19: a suitable treatment? // Lancet Infect Dis. 2020. Vol. 20, No. 9. P. 1013–1014. DOI: 10.1016/S1473-3099(20)30270-X |
| [23] |
Tian Y, Rong L, Nian W, He Y. Gastrointestinal features in COVID-19 and the possibility of faecal transmission. Aliment Pharmacol Ther. 2020;51(9):843–851. DOI: 10.1111/apt.15731 |
| [24] |
Tian Y., Rong L., Nian W., He Y. Gastrointestinal features in COVID-19 and the possibility of faecal transmission // Aliment Pharmacol Ther. 2020. Vol. 51, No. 9. P. 843–851. DOI: 10.1111/apt.15731 |
| [25] |
McElvaney OJ, McEvoy NL, McElvaney OF, et al. Characterization of the inflammatory response to severe COVID-19 illness. Am J Respir Crit Care Med. 2020;202(6):812–821. DOI: 10.1164/rccm.202005-1583OC |
| [26] |
McElvaney O.J., McEvoy N.L., McElvaney O.F., et al. Characterization of the inflammatory response to severe COVID-19 illness // Am J Respir Crit Care Med. 2020. Vol. 202, No. 6. P. 812–821. DOI: 10.1164/rccm.202005-1583OC |
| [27] |
Gumilevskiy BY, Moskalev AV, Gumilevskaya OP, et al. Features of immunopathogenesis of a new coronavirus infection. Bulletin of the Russian Military Medical Academy. 2021;23(1):187–198. (In Russ.). DOI: 10.17816/brmma63654 |
| [28] |
Гумилевский Б.Ю., Москалев А.В., Гумилевская О.П., и др. Особенности иммунопатогенеза новой коронавирусной инфекции // Вестник Российской военно-медицинской академии. 2021. Т. 23, № 1. C. 187–198. DOI: 10.17816/brmma63654 |
| [29] |
Chen Y-M, Zheng Y, Yu Y, et al. Blood molecular markers associated with COVID-19 immunopathology and multi-organ damage. EMBO J. 2020;39(24):e105896. DOI: 10.15252/embj.2020105896 |
| [30] |
Chen Y.-M., Zheng Y., Yu Y., et al. Blood molecular markers associated with COVID-19 immunopathology and multi-organ damage // EMBO J. 2020. Vol. 39, No. 24. ID e105896. DOI: 10.15252/embj.2020105896 |
| [31] |
Sposito B, Broggi A, Pandolfi L, et al. The interferon landscape along the respiratory tract impacts the severity of COVID-19. Cell. 2021;184(19):4953–4968. DOI: 10.1016/j.cell.2021.08.016 |
| [32] |
Sposito B., Broggi A., Pandolfi L., et al. The interferon landscape along the respiratory tract impacts the severity of COVID-19 // Cell. 2021. Vol. 184, No. 19. P. 4953–4968. DOI: 10.1016/j.cell.2021.08.016 |
| [33] |
Minnullin TI, Stepanov AV, Chepur SV, et al. Immunological aspects of SARS-CoV-2 coronavirus damage. Bulletin of the Russian Military Medical Academy. 2021;23(2):187–198. (In Russ.). DOI: 10.17816/brmma72051 |
| [34] |
Миннуллин Т.И., Степанов А.В., Чепур С.В., и др. Иммунологические аспекты поражения коронавирусом SARS-CoV-2 // Вестник Российской военно-медицинской академии. 2021. Т. 23, № 2. C. 187–198. DOI: 10.17816/brmma72051 |
| [35] |
Saponi-Cortes JMR, Rivas MD, Calle-Alonso F, et al. IFNL4 genetic variant can predispose to COVID-19. Sci Rep. 2021;11:21185. DOI: 10.1038/s41598-021-00747-z |
| [36] |
Saponi-Cortes J.M.R., Rivas M.D., Calle-Alonso F., et al. IFNL4 genetic variant can predispose to COVID-19 // Sci Rep. 2021. Vol. 11. ID 21185. DOI: 10.1038/s41598-021-00747-z |
| [37] |
Rahimi P, Tarharoudi R, Rahimpour A, et al. The association between interferon lambda 3 and 4 gene single-nucleotide polymorphisms and the recovery of COVID-19 patients. Virol J. 2021;18:221. DOI: 10.1186/s12985-021-01692-z |
| [38] |
Rahimi P., Tarharoudi R., Rahimpour A., et al. The association between interferon lambda 3 and 4 gene single-nucleotide polymorphisms and the recovery of COVID-19 patients // Virol J. 2021. Vol. 18. ID 221. DOI: 10.1186/s12985-021-01692-z |
| [39] |
Agwa SHA, Kamel MM, Elghazaly H, et al. Association between interferon-lambda-3 rs12979860, TLL1 rs17047200 and DDR1 rs4618569 variant polymorphisms with the course and outcome of SARS-CoV-2 patients. Genes. 2021;12(6):830. DOI: 10.3390/genes12060830 |
| [40] |
Agwa S.H.A., Kamel M.M., Elghazaly H., et al. Association between interferon-lambda-3 rs12979860, TLL1 rs17047200 and DDR1 rs4618569 variant polymorphisms with the course and outcome of SARS-CoV-2 patients // Genes. 2021. Vol. 12, No. 6. P. 830. DOI: 10.3390/genes12060830 |
| [41] |
Grimaudo S, Amodio E, Pipitone RM, et al. PNPLA3 and TLL-1 polymorphisms as potential predictors of disease severity in patients with COVID-19. Front Cell Dev Biol. 2021;9:1589. DOI: 10.3389/fcell.2021.627914 |
| [42] |
Grimaudo S., Amodio E., Pipitone R.M., et al. PNPLA3 and TLL-1 polymorphisms as potential predictors of disease severity in patients with COVID-19 // Front Cell Dev Biol. 2021. Vol. 9. P. 1589. DOI: 10.3389/fcell.2021.627914 |
| [43] |
Klaassen K, Stankovic B, Zukic B, et al. Functional prediction and comparative population analysis of variants in genes for proteases and innate immunity related to SARS-CoV-2 infection. Infect Genet Evol. 2020;84:104498. DOI: 10.1016/j.meegid.2020.104498 |
| [44] |
Klaassen K., Stankovic B., Zukic B., et al. Functional prediction and comparative population analysis of variants in genes for proteases and innate immunity related to SARS-CoV-2 infection // Infect Genet Evol. 2020. Vol. 84. ID 104498. DOI: 10.1016/j.meegid.2020.104498 |
| [45] |
Magusali N, Graham AC, Piers TM, et al. A genetic link between risk for Alzheimer's disease and severe COVID-19 outcomes via the OAS1 gene. Brain. 2021;144(12):3727–3741. DOI: 10.1093/brain/awab337 |
| [46] |
Magusali N., Graham A.C., Piers T.M., et al. A genetic link between risk for Alzheimer's disease and severe COVID-19 outcomes via the OAS1 gene // Brain. 2021. Vol. 144, No. 12. P. 3727–3741. DOI: 10.1093/brain/awab337 |
| [47] |
Zhang Y, Qin L, Zhao Y, et al. Interferon-induced transmembrane protein 3 genetic variant rs12252-C associated with disease severity in coronavirus disease 2019. J Infect Dis. 2020;222(1):34–37. DOI: 10.1093/infdis/jiaa224 |
| [48] |
Zhang Y., Qin L., Zhao Y., et al. Interferon-induced transmembrane protein 3 genetic variant rs12252-C associated with disease severity in coronavirus disease 2019 // J Infect Dis. 2020. Vol. 222, No. 1. P. 34–37. DOI: 10.1093/infdis/jiaa224 |
| [49] |
Zhu X, Wang Y, Zhang H, et al. Genetic variation of the human α-2-Heremans-Schmid glycoprotein (AHSG) gene associated with the risk of SARS-CoV infection. PloS One. 2011;6(8):E23730. DOI: 10.1371/journal.pone.0023730 |
| [50] |
Zhu X., Wang Y., Zhang H., et al. Genetic variation of the human α-2-Heremans-Schmid glycoprotein (AHSG) gene associated with the risk of SARS-CoV infection // PloS One. 2011. Vol. 6, No. 8. ID E23730. DOI: 10.1371/journal.pone.0023730 |
| [51] |
Kryukov EV, Salukhov VV, Kotiv BN, et al. Factors affecting the content of Ig G-antibodies to S-protein SARS-CoV-2 in the blood of reconvalescents after new coronaviral infection (COVID-19). Medical Council. 2022;(4):51–65. (In Russ.). DOI: 10.21518/2079-701X-2022-16-4-51-65 |
| [52] |
Крюков Е.В., Салухов В.В., Котив Б.Н., и др. Факторы, влияющие на содержание IgG-антител к S-белку SARS-CoV-2 в крови у реконвалесцентов после новой коронавирусной инфекции (COVID-19) // Медицинский совет. 2022. № 4. С. 51–65. DOI: 10.21518/2079-701X-2022-16-4-51-65 |
| [53] |
Wu Y, Feng Z, Li P, Yu Q. Relationship between ABO blood group distribution and clinical characteristics in patients with COVID-19. Clin Chim Acta. 2020;509:220–223. DOI: 10.1016/j.cca.2020.06.026 |
| [54] |
Wu Y., Feng Z., Li P., Yu Q. Relationship between ABO blood group distribution and clinical characteristics in patients with COVID-19 // Clin Chim Acta. 2020. Vol. 509. P. 220–223. DOI: 10.1016/j.cca.2020.06.026 |
| [55] |
Senapati S, Kumar S, Singh AK, et al. Assessment of risk conferred by coding and regulatory variations of TMPRSS2 and CD26 in susceptibility to SARS-CoV-2 infection in human. J Genet. 2020;99:53. DOI: 10.1007/s12041-020-01217-7 |
| [56] |
Senapati S., Kumar S., Singh A.K., et al. Assessment of risk conferred by coding and regulatory variations of TMPRSS2 and CD26 in susceptibility to SARS-CoV-2 infection in human // J Genet. 2020. Vol. 99. ID 53. DOI: 10.1007/s12041-020-01217-7 |
| [57] |
Deng H, Yan X, Yuan L. Human genetic basis of coronavirus disease 2019. Signal Transduct Target Ther. 2021;6:344. DOI: 10.1038/s41392-021-00736-8 |
| [58] |
Deng H., Yan X., Yuan L. Human genetic basis of coronavirus disease 2019 // Signal Transduct Target Ther. 2021. Vol. 6. ID 344. DOI: 10.1038/s41392-021-00736-8 |
| [59] |
Kulski JK, Shiina T, Dijkstra JM. Genomic diversity of the major histocompatibility complex in health and disease. Cells. 2019;8(10):1270. DOI: 10.3390/cells8101270 |
| [60] |
Kulski J.K., Shiina T., Dijkstra J.M. Genomic diversity of the major histocompatibility complex in health and disease // Cells. 2019. Vol. 8, No. 10. P. 1270. DOI: 10.3390/cells8101270 |
| [61] |
Ambagala APN, Solheim JC, Srikumaran S. Viral interference with MHC class I antigen presentation pathway: the battle continues. Vet Immunol Immunopathol. 2005;107(1-2):1–15. DOI: 10.1016/j.vetimm.2005.04.006 |
| [62] |
Ambagala A.P.N., Solheim J.C., Srikumaran S. Viral interference with MHC class I antigen presentation pathway: the battle continues // Vet Immunol Immunopathol. 2005. Vol. 107, No. 1-2. P. 1–15. DOI: 10.1016/j.vetimm.2005.04.006 |
| [63] |
Yewdell JW, Hill AB. Viral interference with antigen presentation. Nat Immunol. 2002;3(11):1019–1025. DOI: 10.1038/ni1102-1019 |
| [64] |
Yewdell J.W., Hill A.B. Viral interference with antigen presentation // Nat Immunol. 2002. Vol. 3, No. 11. P. 1019–1025. DOI: 10.1038/ni1102-1019 |
| [65] |
Nguyen A, David JK, Maden SK, et al. Human leukocyte antigen susceptibility map for severe acute respiratory syndrome coronavirus 2. J Virol. 2020;94(13):e00510-20. DOI: 10.1128/JVI.00510-20 |
| [66] |
Nguyen A., David J.K., Maden S.K., et al. Human leukocyte antigen susceptibility map for severe acute respiratory syndrome coronavirus 2 // J Virol. 2020. Vol. 94, No. 13. ID e00510-20. DOI: 10.1128/JVI.00510-20 |
| [67] |
Shkurnikov M, Nersisyan S, Jankevic T, et al. Association of HLA class I genotypes with severity of coronavirus disease-19. Front Immunol. 2021;12:423. DOI: 10.3389/fimmu.2021.641900 |
| [68] |
Shkurnikov M., Nersisyan S., Jankevic T., et al. Association of HLA class I genotypes with severity of coronavirus disease-19 // Front Immunol. 2021. Vol. 12. P. 423. DOI: 10.3389/fimmu.2021.641900 |
| [69] |
Ivchenko EV, Kotiv BN, Ovchinnikov DV, Bucenko SA. Results of the work of the Military medical academy research institute of novel coronavirus infection problems through 2020–2021. Bulletin of the Russian Military Medical Academy. 2021;23(4):93–104. (In Russ.). DOI: 10.17816/brmma83094 |
| [70] |
Ивченко Е.В., Котив Б.Н., Овчинников Д.В., Буценко С.А. Результаты работы научно-исследовательского института проблем новой коронавирусной инфекции Военно-медицинской академии за 2020–2021 гг. // Вестник Российской военно-медицинской академии. 2021. Т. 23, № 4. C. 93–104. DOI: 10.17816/brmma83094 |
| [71] |
Tomita Y, Ikeda T, Sato R, Sakagami T. Association between HLA gene polymorphisms and mortality of COVID-19: An in silico analysis. J Virol. 2020;94(13):e00510-20. DOI: 10.1002/iid3.358 |
| [72] |
Tomita Y., Ikeda T., Sato R., Sakagami T. Association between HLA gene polymorphisms and mortality of COVID-19: An in silico analysis // J Virol. 2020. Vol. 94, No. 13. ID e00510-20. DOI: 10.1002/iid3.358 |
| [73] |
Mohammadpour S, Torshizi Esfahani A, Halaji M, et al. An updated review of the association of host genetic factors with susceptibility and resistance to COVID-19. J Cell Physiol. 2020;236(1):49–54. DOI: 10.1002/jcp.29868 |
| [74] |
Mohammadpour S., Torshizi Esfahani A., Halaji M., et al. An updated review of the association of host genetic factors with susceptibility and resistance to COVID-19 // J Cell Physiol. 2020. Vol. 236, No. 1. P. 49–54. DOI: 10.1002/jcp.29868 |
| [75] |
Debnath M, Banerjee M, Berk M. Genetic gateways to COVID-19 infection: Implications for risk, severity, and outcomes. FASEB J. 2020;34(7):8787–8795. DOI: 10.1096/fj.202001115R |
| [76] |
Debnath M., Banerjee M., Berk M. Genetic gateways to COVID-19 infection: Implications for risk, severity, and outcomes // FASEB J. 2020. Vol. 34, No. 7. P. 8787–8795. DOI: 10.1096/fj.202001115R |
| [77] |
Kiyotani K, Toyoshima Y, Nemoto K, Nakamura Y. Bioinformatic prediction of potential T cell epitopes for SARS-Cov-2. J Hum Genet. 2020;65(7):569–575. DOI: 10.1038/s10038-020-0771-5 |
| [78] |
Kiyotani K., Toyoshima Y., Nemoto K., Nakamura Y. Bioinformatic prediction of potential T cell epitopes for SARS-Cov-2 // J Hum Genet. 2020. Vol. 65, No. 7. P. 569–575. DOI: 10.1038/s10038-020-0771-5 |
| [79] |
Pisanti S, Deelen J, Gallina AM, et al. Correlation of the two most frequent HLA haplotypes in the Italian population to the differential regional incidence of COVID-19. J Transl Med. 2020;18:352. DOI: 10.1186/s12967-020-02515-5 |
| [80] |
Pisanti S., Deelen J., Gallina A.M., et al. Correlation of the two most frequent HLA haplotypes in the Italian population to the differential regional incidence of COVID-19 // J Transl Med. 2020. Vol. 18. ID 352. DOI: 10.1186/s12967-020-02515-5 |
| [81] |
Migliorini F, Torsiello E, Spiezia F, et al. Association between HLA genotypes and COVID-19 susceptibility, severity and progression: a comprehensive review of the literature. Eur J Med Res. 2021;26:84. DOI: 10.1186/s40001-021-00563-1 |
| [82] |
Migliorini F., Torsiello E., Spiezia F., et al. Association between HLA genotypes and COVID-19 susceptibility, severity and progression: a comprehensive review of the literature // Eur J Med Res. 2021. Vol. 26. ID 84. DOI: 10.1186/s40001-021-00563-1 |
| [83] |
Zhogolev SD, Gorenchuk AN, Kuzin AA, et al. Evaluation of vaccine “Sputnik V” immunogenicity and reactogenicity when it is used in military personnel. Bulletin of the Russian Military Medical Academy. 2021;23(4):147–152. (In Russ.). DOI: 10.17816/brmma80760 |
| [84] |
Жоголев С.Д., Горенчук А.Н., Кузин А.А., и др. Оценка иммуногенности и реактогенности вакцины «Спутник V» при ее применении у военнослужащих // Вестник Российской военно-медицинской академии. 2021. Т. 23, № 4. С. 147–152. DOI: 10.17816/brmma80760 |
Butusov A.M., Krusko O.V., Potapov P.K., Derevyankin D.S., Zagranichnov V.D., Malyshkin S.S., Zhurbin E.A.
/
| 〈 |
|
〉 |