The role of adipokines in the development of adipose tissue dysfunction and other metabolic disorders

Alexey A. Mikhailov , Yuri S. Khalimov , Sergey V. Gaiduk , Yuri E. Rubtsov , Elena B. Kireeva

Bulletin of the Russian Military Medical Academy ›› 2022, Vol. 24 ›› Issue (1) : 209 -218.

PDF
Bulletin of the Russian Military Medical Academy ›› 2022, Vol. 24 ›› Issue (1) : 209 -218. DOI: 10.17816/brmma103946
Review
review-article

The role of adipokines in the development of adipose tissue dysfunction and other metabolic disorders

Author information +
History +
PDF

Abstract

The role of specific adipokines in the formation of adipose tissue dysfunction is considered. Obesity is a multifactorial disease that is characterized by excessive adipose tissue accumulation in the body and is a risk factor for the development of several other diseases, including type 2 diabetes mellitus, cardiovascular diseases, and non-alcoholic fatty liver disease. Obesity is one of the main causes of chronic diseases and disability in modern society. Adipose tissue takes an active part in cellular reactions and metabolic homeostasis and does not represent inert tissue only for energy storage. In obesity, excessive accumulation of visceral fat causes adipose tissue dysfunction, which greatly contributes to the occurrence of concomitant diseases. Adipose tissue is capable of synthesizing and releasing a large number of hormones, cytokines, extracellular matrix proteins, growth factors, and vasoactive factors, which are collectively called adipokines, affecting various physiological and pathophysiological processes in the body. Perivascular adipose tissue produces cytokines that affect angiogenesis and peripheral vascular resistance. Adiponectin suppresses the production of glucose in the liver and enhances fatty acid oxidation in the skeletal muscles, which together contribute to a favorable metabolic effect in energy homeostasis, protect cells from apoptosis, and reduce inflammation in various cell types through receptor-dependent mechanisms. Leptin modulates vasoconstriction depending on sympathetic activity while resistin is involved in insulin resistance due to inflammation, wherein its high level determines metabolically unhealthy obesity. Additionally, visfatin plays an important role in the pathogenesis of vascular inflammation in obesity and diabetes mellitus while osteopontin regulates the production of inflammatory mediators by immune cells and omentin plays an important anti-inflammatory and insulin-sensitizing role. The production of most inflammatory mediators in adipose tissue dysfunction increases and contributes to the progression of obesity and related metabolic and vascular disorders. Considering adipokines as biological markers of pathological processes is necessary since their study will create prerequisites for preventive measures and will contribute to the positive treatment process.

Keywords

adiponectin / obesity / adipokines / adipose tissue dysfunction / adipocytes / resistin / leptin / visfatin / osteopontin / omentin-1

Cite this article

Download citation ▾
Alexey A. Mikhailov, Yuri S. Khalimov, Sergey V. Gaiduk, Yuri E. Rubtsov, Elena B. Kireeva. The role of adipokines in the development of adipose tissue dysfunction and other metabolic disorders. Bulletin of the Russian Military Medical Academy, 2022, 24(1): 209-218 DOI:10.17816/brmma103946

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ametov AS, Rubtsov YuE, Saluhov VV, et al. Elimination of adipose tissue dysfunction as a major factor in reducing cardiometabolic risks in obesity. Therapy. 2019;(6):66–74. (In Russ.). DOI: 10.18565/therapy.2019.6.66-74

[2]

Аметов А.С., Рубцов Ю.Е., Салухов В.В., и др. Устранение дисфункции жировой ткани как главный фактор снижения кардиометаболических рисков при ожирении // Терапия. 2019. № 6. С. 66–74. DOI: 10.18565/therapy.2019.6.66-74

[3]

Xia N, Li H. The Role of Perivascular Adipose Tissue in Obesity-Induced Vascular Dysfunction. Br J Pharm. 2017;174(20):3425–3442. DOI: 10.1111/bph.13650

[4]

Xia N., Li H. The Role of Perivascular Adipose Tissue in Obesity-Induced Vascular Dysfunction // Br J Pharm. 2017. Vol. 174. No. 20. P. 3425–3442. DOI: 10.1111/bph.13650

[5]

Kryukov EV, Potekhin NP, Fursov AN, et al. Hypertensive crisis: modern view of the problem and optimization of diagnostic and therapeutic modalities. Clinical Medicine (Russian Journal). 2016;94(1): 52–56. (In Russ.). DOI: 10.18821/0023-2149-2016-94-1-52-56

[6]

Крюков Е.В., Потехин Н.П., Фурсов А.Н., и др. Гипертонический криз: современный взгляд на проблему и оптимизация лечебно-диагностических подходов // Клиническая медицина. 2016. Т. 94, № 1. С. 52–56. DOI: 10.18821/0023-2149-2016-94-1-52-56

[7]

Kuz'mich VG, Khalimov YuSh, Salukhov VV, et al. Aktual'nye problemy profilaktiki i lecheniya ozhireniya u voennosluzhashchikh. Aktual'nye problemy i perspektivy razvitiya fizicheskoi podgotovki. Materialy mezhvuzovskoi nauchno-prakticheskoi konferentsii. 2018;(1):39–50. (In Russ.).

[8]

Кузьмич В.Г., Халимов Ю.Ш., Салухов В.В., и др. Актуальные проблемы профилактики и лечения ожирения у военнослужащих // Актуальные проблемы и перспективы развития физической подготовки. Материалы межвузовской научно-практической конференции. 2018. № 1. С. 39–50.

[9]

Costa R, Toster R, Neves K, et al. Perivascular adipose tissue as a relevant fat depot for cardiovascular risk in obesity. Front Physiol. 2018;9:253. DOI: 10.3389/fphys.2018.00253

[10]

Costa R., Toster R., Neves K., et al. Perivascular adipose tissue as a relevant fat depot for cardiovascular risk in obesity // Front Physiol. 2018. Vol. 9. ID 253. DOI: 10.3389/fphys.2018.00253

[11]

Arutyunov GP, Boytsov SA, Voevoda MI, et al. Correction of hypertriglyceridemia in order to reduce the residual risk in atherosclerosis-related diseases. Expert Council Opinion. Russian Journal of Cardiology. 2019;(9):44–51. (In Russ.). DOI: 10.15829/1560-4071-2019-9-44-51

[12]

Арутюнов Г.П., Бойцов С.А., Воевода М.И. и др. Коррекция гипертриглицеридемии с целью снижения остаточного риска при заболеваниях, вызванных атеросклерозом. Заключение Совета экспертов // Российский кардиологический журнал. 2019. № 9. С. 44–51. DOI: 10.15829/1560-4071-2019-9-44-51

[13]

Maeda N, Funahashi T, Matsuzawa Y, et al. Adiponectin, a unique adipocyte-derived factor beyond hormones. Atherosclerosis. 2019;292:1–9. DOI: 10.1016/j.atherosclerosis.2019.10.021

[14]

Maeda N., Funahashi T., Matsuzawa Y., et al. Adiponectin, a unique adipocyte-derived factor beyond hormones // Atherosclerosis. 2019. Vol. 292. P. 1–9. DOI: 10.1016/j.atherosclerosis.2019.10.021

[15]

Liang W, Ye DD. The Potential of Adipokines as Biomarkers and Therapeutic Agents for Vascular Complications in Type 2 Diabetes Mellitus. Cytokine Growth Factor Rev. 2019;48:32–39. DOI: 10.1016/j.cytogfr.2019.06.002

[16]

Liang W., Ye D.D. The Potential of Adipokines as Biomarkers and Therapeutic Agents for Vascular Complications in Type 2 Diabetes Mellitus // Cytokine Growth Factor Rev. 2019. Vol. 48. P. 32–39. DOI: 10.1016/j.cytogfr.2019.06.002

[17]

Stefan N, Haring HU, Cusi K. Non-Alcoholic Fatty Liver Disease: Causes, Diagnosis, Cardiometabolic Consequences, and Treatment Strategies. Lancet Diabetes Endocrinol. 2019;7(4):313–324. DOI: 10.1016/S2213-8587(18)30154-2

[18]

Stefan N., Haring H.U., Cusi K. Non-Alcoholic Fatty Liver Disease: Causes, Diagnosis, Cardiometabolic Consequences, and Treatment Strategies // Lancet Diabetes Endocrinol. 2019. Vol. 7. No. 4. P. 313–324. DOI: 10.1016/S2213-8587(18)30154-2

[19]

Han MS, White A, Perry RJ, et al. Regulation of adipose tissue inflammation by interleukin 6. PNAS USA. 2020;117(6):2751–2760. DOI: 10.1073/pnas.1920004117

[20]

Han M.S., White A., Perry R.J., et al. Regulation of adipose tissue inflammation by interleukin 6 // PNAS USA. 2020. Vol. 117. No. 6. P. 2751–2760. DOI: 10.1073/pnas.1920004117

[21]

Vavilova TP, Pleten' AP, Mikheev RK. Biological role of adipokines and their association with morbid conditions. Problems of nutrition. 2017;86(2):5–13. (In Russ.).

[22]

Плетень А.П., Вавилова Т.П., Михеев Р.К. Биологическая роль адипокинов как маркеров патологических состояний // Вопросы питания. 2017. Т. 86, № 2. С. 5–13.

[23]

Hassnain Waqas SF, Noble A, Hoang AC, et al. Adipose tissue macrophages develop from bone marrow-independent progenitors in Xenopus laevis and mouse. J Leukoc Biol. 2017;102(3):845–855. DOI: 10.1189/jlb.1A0317-082RR

[24]

Hassnain Waqas S.F., Noble A., Hoang A.C., et al. Adipose tissue macrophages develop from bone marrow-independent progenitors in Xenopus laevis and mouse // J Leukoc Biol. 2017. Vol. 102. No. 3. P. 845–855. DOI: 10.1189/jlb.1A0317-082RR

[25]

Park HK, Kwak MK, Kim HJ, Ahima RS. Linking Resistin, Inflammation, and Cardiometabolic Diseases. Korean J Intern Med. 2017;32(2):239–247. DOI: 10.3904/kjim.2016.229

[26]

Park H.K., Kwak M.K., Kim H.J., Ahima R.S. Linking Resistin, Inflammation, and Cardiometabolic Diseases // Korean J Intern Med. 2017. Vol. 32. No. 2. P. 239–247. DOI: 10.3904/kjim.2016.229

[27]

Fruhbeck G, Kiortsis DN, Catalan V. Precision medicine: Diagnosis and Management of Obesity. Lancet Diabetes Endocrinol. 2017;6(3):164–166. DOI: 10.1016/S2213-8587(17)30312-1

[28]

Fruhbeck G., Kiortsis D.N., Catalan V. Precision medicine: Diagnosis and Management of Obesity // Lancet Diabetes Endocrinol. 2017. Vol. 6. No. 3. P. 164–166. DOI: 10.1016/S2213-8587(17)30312-1

[29]

Zhang T-P, Li H-M, Leng R-X, et al. Plasma levels of adipokines in systemic lupus erythematosus patients. Cytokine. 2016;86:15–20. DOI: 10.1016/j.cyto.2016.07.008

[30]

Zhang T.-P., Li H.-M., Leng R.-X., et al. Plasma levels of adipokines in systemic lupus erythematosus patients // Cytokine. 2016. Vol. 86. P. 15–20. DOI: 10.1016/j.cyto.2016.07.008

[31]

Chang L, Xiong W, Zhao X, et al. Bmal1 in Perivascular Adipose Tissue Regulates Resting-Phase Blood Pressure Through Transcriptional Regulation of Angiotensinogen. Circulation. 2018;138(1):67–79. DOI: 10.1161/CIRCULATIONAHA.117.029972

[32]

Chang L., Xiong W., Zhao X., et al. Bmal1 in Perivascular Adipose Tissue Regulates Resting-Phase Blood Pressure Through Transcriptional Regulation of Angiotensinogen // Circulation. 2018. Vol. 138. No. 1. P. 67–79. DOI: 10.1161/CIRCULATIONAHA.117.029972

[33]

Narumi T, Watanabe T, Kadowaki S, et al. Impact of Serum Omentin-1 Levels on Cardiac Prognosis in Patients with Heart Failure. Cardiovasc Diabetol. 2014;13:84. DOI: 10.1186/1475-2840-13-84

[34]

Narumi T., Watanabe T., Kadowaki S., et al. Impact of Serum Omentin-1 Levels on Cardiac Prognosis in Patients with Heart Failure // Cardiovasc Diabetol. 2014. Vol. 13. ID 84. DOI: 10.1186/1475-2840-13-84

[35]

Antonopoulos AS, Margaritis M, Coutinho P, et al. Adiponectin as a Link Between Type 2 Diabetes and Vascular NADPH Oxidase Activity in the Human Arterial Wall: The Regulatory Role of Perivascular Adipose Tissue. Diabetes. 2015;64(6):2207–2219. DOI: 10.2337/db14-1011

[36]

Antonopoulos A.S., Margaritis M., Coutinho P., et al. Adiponectin as a Link Between Type 2 Diabetes and Vascular NADPH Oxidase Activity in the Human Arterial Wall: The Regulatory Role of Perivascular Adipose Tissue // Diabetes. 2015. Vol. 64. No. 6. P. 2207–2219. DOI: 10.2337/db14-1011

[37]

Beloqui O, Moreno MU, San Jose G, et al. Increased Phagocytic NADPH Oxidase Activity Associates with Coronary Artery Calcification in Asymptomatic Men. Free Radic Res. 2017;51(4):389–396. DOI: 10.1080/10715762.2017.1321745

[38]

Beloqui O., Moreno M.U., San Jose G., et al. Increased Phagocytic NADPH Oxidase Activity Associates with Coronary Artery Calcification in Asymptomatic Men // Free Radic Res. 2017. Vol. 51. No. 4. P. 389–396. DOI: 10.1080/10715762.2017.1321745

[39]

Fruhbeck G, Catalan V, Rodriguez A, Gomez-Ambrosi J. Adiponectin-Leptin Ratio: A Promising Index to Estimate Adipose Tissue Dysfunction. Relation with Obesity-Associated Cardiometabolic Risk. Adipocyte. 2018;7(1):57–62. DOI: 10.1080/21623945.2017.1402151

[40]

Fruhbeck G., Catalan V., Rodriguez A., Gomez-Ambrosi J. Adiponectin-Leptin Ratio: A Promising Index to Estimate Adipose Tissue Dysfunction. Relation with Obesity-Associated Cardiometabolic Risk // Adipocyte. 2018. Vol. 7. No. 1. P. 57–62. DOI: 10.1080/21623945.2017.1402151

[41]

Wang X, Qiao Y, Yang L, et al. Leptin levels in patients with systemic lupus erythematosus inversely correlate with regulatory T cell frequency. Lupus. 2017;26(13):1401–1406. DOI: 10.1177/0961203317703497

[42]

Wang X., Qiao Y., Yang L., et al. Leptin levels in patients with systemic lupus erythematosus inversely correlate with regulatory T cell frequency // Lupus. 2017. Vol. 26. No. 13. P. 1401–1406. DOI: 10.1177/0961203317703497

[43]

Shim K, Begum R, Yang C, Wang H. Complement activation in obesity, insulin resistance, and type 2 diabetes mellitus. World J Diabetes. 2020;11(1):1–12. DOI: 10.4239/wjd.v11.i1.1

[44]

Shim K., Begum R., Yang C., Wang H. Complement activation in obesity, insulin resistance, and type 2 diabetes mellitus // World J Diabetes. 2020. Vol. 11. No. 1. P. 1–12. DOI: 10.4239/wjd.v11.i1.1

[45]

Sawaki D, Czibik G, Pini M, et al. Visceral Adipose Tissue Drives Cardiac Aging Through Modulation of Fibroblast Senescence by Osteopontin Production. Circulation. 2018;138(8):809–822. DOI: 10.1161/CIRCULATIONAHA.117.031358

[46]

Sawaki D., Czibik G., Pini M., et al. Visceral Adipose Tissue Drives Cardiac Aging Through Modulation of Fibroblast Senescence by Osteopontin Production // Circulation. 2018. Vol. 138. No. 8. P. 809–822. DOI: 10.1161/CIRCULATIONAHA.117.031358

[47]

Kennedy GC. The role of depot fat in the hypothalamic control of food intake in the rat. Proc R Soc Lond B Biol Sci. 1953;140(901): 578–596. DOI: 10.1098/rspb.1953.0009

[48]

Kennedy G.C. The role of depot fat in the hypothalamic control of food intake in the rat // Proc R Soc Lond B Biol Sci. 1953. Vol. 140. No. 901. P. 578–596. DOI: 10.1098/rspb.1953.0009

[49]

Fruhbeck G, Catalan V, Rodriguez A, et al. Normalization of Adiponectin Concentrations by Leptin Replacement in ob/ob Mice is Accompanied by Reductions in Systemic Oxidative Stress and Inflammation. Sci Rep. 2017;7:2752. DOI: 10.1038/s41598-017-02848-0

[50]

Fruhbeck G., Catalan V., Rodriguez A., et al. Normalization of Adiponectin Concentrations by Leptin Replacement in ob/ob Mice is Accompanied by Reductions in Systemic Oxidative Stress and Inflammation // Sci Rep. 2017. Vol. 7. ID 2752. DOI: 10.1038/s41598-017-02848-0

[51]

Balsan GA, Viera JL, Oliveira AM, et al. Relationship between adiponectin, obesity and insulin resistance. Revista da Associação Médica Brasileira. 2015;61:72–80. DOI: 10.1172/JCI29126

[52]

Balsan G.A., Viera J.L., Oliveira A.M., et al. Relationship between adiponectin, obesity and insulin resistance // Revista da Associação Médica Brasileira. 2015. Vol. 61. P. 72–80. DOI: 10.1172/JCI29126

[53]

Petrenko YV, Gerasimova KS, Novikova VP. Biological and pathophysiological role of adiponectin. Pediatr (Sankt-Peterburg). 2019;(2):83–87. (In Russ.). DOI: 10.17816/PED10283-87

[54]

Петренко Ю.В., Герасимова К.С., Новикова В.П. Биологическая и патофизиологическая значимость адипонектина // Педиатр. 2019. № 2. С. 83–87. DOI: 10.17816/PED10283-87

[55]

Khorlampenko AA, Karetnikova VN, Kochergina AM, et al. Visceral adiposity index in patients with coronary artery disease, obesity and type 2 diabetes. Cardiovascular Therapy and Prevention. 2020;19(3):172–180. (In Russ.). DOI: 10.15829/1728-8800-2020-2311

[56]

Хорлампенко А.А., Каретникова В.Н., Кочергина А.М., и др. Индекс висцерального ожирения у пациентов с ишемической болезнью сердца, ожирением и сахарным диабетом 2 типа // Кардиоваскулярная терапия и профилактика. 2020. Т. 19, № 3. С. 172–180. DOI: 10.15829/1728-8800-2020-2311

[57]

Uchasova EG, Gruzdeva OV, Belik EV, Dyleva YuA. Adiponectin and insulin: molecular mechanisms of metabolic disorders. Bulletin of Siberian Medicine. 2020;19(3):188–197. (In Russ.). DOI: 10.20538/1682-0363-2020-3-188-197

[58]

Учасова Е.Г., Груздева О.В., Белик Е.В., Дылева Ю.А. Адипонектин и инсулин: молекулярные механизмы реализации метаболических нарушений // Бюллетень сибирской медицины. 2020. Т. 19, № 3. С. 188–197. DOI: 10.20538/1682-0363-2020-3-188-197

[59]

Gómez-Ambrosi J, Catalán V, Diez-Caballero A, et al. Gene Expression Profile of Omental Adipose Tissue in Human Obesity. FASEB J. 2004;18(1):215–217. DOI: 10.1096/fj.03-0591fje

[60]

Gómez-Ambrosi J., Catalán V., Diez-Caballero A., et al. Gene Expression Profile of Omental Adipose Tissue in Human Obesity // FASEB J. 2004. Vol. 18. No. 1. P. 215–217. DOI: 10.1096/fj.03-0591fje

[61]

Flier JS, Maratos-Flier E. Leptin's Physiologic Role: Does the Emperor of Energy Balance Have No Clothes? Cell Metab. 2017;26(1):24–26. DOI: 10.1016/j.cmet.2017.05.013

[62]

Flier J.S., Maratos-Flier E. Leptin's Physiologic Role: Does the Emperor of Energy Balance Have No Clothes? // Cell Metab. 2017. Vol. 26. No. 1. P. 24–26. DOI: 10.1016/j.cmet.2017.05.013

[63]

Kwon O, Kim KW, Kim M-S. Leptin signalling pathways in hypothalamic neurons. Cell Mol Life Sci. 2016;73:1457–1477. DOI: 10.1007/s00018-016-2133-1

[64]

Kwon O., Kim K.W., Kim M.-S. Leptin signalling pathways in hypothalamic neurons // Cell Mol Life Sci. 2016. Vol. 73. P. 1457–1477. DOI: 10.1007/s00018-016-2133-1

[65]

Adams TD, Davidson LE, Litwin SE, et al. Weight and Metabolic Outcomes 12 Years after Gastric Bypass. NEJM. 2017;377:1143–1155. DOI: 10.1056/NEJMoa1700459

[66]

Adams T.D., Davidson L.E., Litwin S.E., et al. Weight and Metabolic Outcomes 12 Years after Gastric Bypass // NEJM. 2017. Vol. 377. P. 1143–1155. DOI: 10.1056/NEJMoa1700459

[67]

Freitas L, Braga V, Franca Silva M, et al. Adipokines, diabetes and atherosclerosis: an inflammatory association. Front Physiol. 2015;6:304. DOI: 10.3389/fphys.2015.00061

[68]

Freitas L., Braga V., Franca Silva M., et al. Adipokines, diabetes and atherosclerosis: an inflammatory association // Front Physiol. 2015. Vol. 6. P. 304. DOI: 10.3389/fphys.2015.00061

[69]

Rodriguez A, Becerril S, Ezquerro S, et al. Cross-Talk between Adipokines and Myokines in Fat Browning. Acta Physiol. 2017;219(2):362–381. DOI: 10.1111/apha.12686

[70]

Rodriguez A., Becerril S., Ezquerro S., et al. Cross-Talk between Adipokines and Myokines in Fat Browning // Acta Physiol. 2017. Vol. 219. No. 2. P. 362–381. DOI: 10.1111/apha.12686

[71]

Doulamis IP, Konstantopoulos P, Tzani A, et al. Visceral white adipose tissue and serum proteomic alternations in metabolically healthy obese patients undergoing bariatric surgery. Cytokine. 2019;115:76–83. DOI: 10.1016/j.cyto.2018.11.017

[72]

Doulamis I.P., Konstantopoulos P., Tzani A., et al. Visceral white adipose tissue and serum proteomic alternations in metabolically healthy obese patients undergoing bariatric surgery // Cytokine. 2019. Vol. 115. P. 76–83. DOI: 10.1016/j.cyto.2018.11.017

[73]

Arica PC, Aydin S, Zengin U, et al. The Effects on Obesity Related Peptides of Laparoscopic Gastric Band Applications in Morbidly Obese Patients. J Investig Surg. 2018;31(2):89–95. DOI: 10.1080/08941939.2017.1280564

[74]

Arica P.C., Aydin S., Zengin U., et al. The Effects on Obesity Related Peptides of Laparoscopic Gastric Band Applications in Morbidly Obese Patients // J Investig Surg. 2018. Vol. 31. No. 2. P. 89–95. DOI: 10.1080/08941939.2017.1280564

[75]

Moreno MU, San Jose G, Pejenaute A, et al. Association of Phagocytic NADPH Oxidase Activity with Hypertensive Heart Disease: A Role for Cardiotrophin-1? Hypertension. 2014;63(3):468–474. DOI: 10.1161/HYPERTENSIONAHA.113.01470

[76]

Moreno M.U., San Jose G., Pejenaute A., et al. Association of Phagocytic NADPH Oxidase Activity with Hypertensive Heart Disease: A Role for Cardiotrophin-1? // Hypertension. 2014. Vol. 63. No. 3. P. 468–474. DOI: 10.1161/HYPERTENSIONAHA.113.01470

[77]

Lourenco EV, Liu A, Matarese G, La Cava A. Leptin promotes systemic lupus erythematosus by increasing autoantibody production and inhibiting immune regulation. PNAS USA. 2016;113(38): 10637–10642. DOI: 10.1073/pnas.1607101113

[78]

Lourenco E.V., Liu A., Matarese G., La Cava A. Leptin promotes systemic lupus erythematosus by increasing autoantibody production and inhibiting immune regulation // PNAS USA. 2016. Vol. 113. No. 38. P. 10637–10642. DOI: 10.1073/pnas.1607101113

[79]

Carbone F, Montecucco F. Novel Cardiovascular Risk Biomarkers in Carotid Atherogenesis. Biomark Med. 2018;12(10):1065–1067. DOI: 10.2217/bmm-2018-0198

[80]

Carbone F., Montecucco F. Novel Cardiovascular Risk Biomarkers in Carotid Atherogenesis // Biomark Med. 2018. Vol. 12. No. 10. P. 1065–1067. DOI: 10.2217/bmm-2018-0198

[81]

Iсer MA, Gezmen-Karadag M. The Multiple Functions and Mechanisms of Osteopontin. Clin Biochem. 2018;59:17–24. DOI: 10.1016/j.clinbiochem.2018.07.003

[82]

Iсer M.A., Gezmen-Karadag M. The Multiple Functions and Mechanisms of Osteopontin // Clin Biochem. 2018. Vol. 59. P. 17–24. DOI: 10.1016/j.clinbiochem.2018.07.003

[83]

Unamuno X, Gomez-Ambrosi J, Rodriguez A, et al. Adipokine Dysregulation and Adipose Tissue Inflammation in Human Obesity. Eur J Clin Investig. 2018;48(9):e12997. DOI: 10.1111/eci.12997

[84]

Unamuno X., Gomez-Ambrosi J., Rodriguez A., et al. Adipokine Dysregulation and Adipose Tissue Inflammation in Human Obesity // Eur J Clin Investig. 2018. Vol. 48. No. 9. Р. e12997. DOI: 10.1111/eci.12997

[85]

Lancha A, Moncada R, Valenti V, et al. Effect of sleeve gastrectomy on osteopontin circulating levels and expression in adipose tissue and liver in rats. Obes Surg. 2014;24:1702–1708. DOI: 10.1007/s11695-014-1240-z

[86]

Lancha A., Moncada R., Valenti V., et al. Effect of sleeve gastrectomy on osteopontin circulating levels and expression in adipose tissue and liver in rats // Obes Surg. 2014. Vol. 24. P. 1702–1708. DOI: 10.1007/s11695-014-1240-z

[87]

Lopez B, Gonzalez A, Lindner D, et al. Osteopontin-mediated myocardial fibrosis in heart failure: a role for lysyl oxidase? Cardiovasc Res. 2013;99(1):111–120. DOI: 10.1093/cvr/cvt100

[88]

Lopez B., Gonzalez A., Lindner D., et al. Osteopontin-mediated myocardial fibrosis in heart failure: a role for lysyl oxidase? // Cardiovasc Res. 2013. Vol. 99. No. 1. P. 111–120. DOI: 10.1093/cvr/cvt100

[89]

Oikonomou EK, Antoniades C. The role of adipose tissue in cardiovascular health and disease. Nat Rev Cardiol. 2018;16:83–99. DOI: 10.1038/s41569-018-0097-6

[90]

Oikonomou E.K., Antoniades C. The role of adipose tissue in cardiovascular health and disease // Nat Rev Cardiol. 2018. Vol. 16. P. 83–99. DOI: 10.1038/s41569-018-0097-6

[91]

Lapointe M, Poirier P, Martin J, et al. Omentin changes following bariatric surgery and predictive links with biomarkers for risk of cardiovascular disease. Cardiovasc Diabetol. 2014;13:124. DOI: 10.1186/s12933-014-0124-9

[92]

Lapointe M., Poirier P., Martin J., et al. Omentin changes following bariatric surgery and predictive links with biomarkers for risk of cardiovascular disease // Cardiovasc Diabetol. 2014. Vol. 13. ID 124. DOI: 10.1186/s12933-014-0124-9

RIGHTS & PERMISSIONS

Mikhailov A.A., Khalimov Y.S., Gaiduk S.V., Rubtsov Y.E., Kireeva E.B.

AI Summary AI Mindmap
PDF

88

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/