To choose the use of 2d or 3d images in rehabilitation: review

O. V. Kubryak , Elena Aleksandrovna Kriklenko

Russian Journal of Physiotherapy, Balneology and Rehabilitation ›› 2018, Vol. 17 ›› Issue (3) : 116 -119.

PDF
Russian Journal of Physiotherapy, Balneology and Rehabilitation ›› 2018, Vol. 17 ›› Issue (3) : 116 -119. DOI: 10.18821/1681-3456-2018-17-3-116-119
Review
review-article

To choose the use of 2d or 3d images in rehabilitation: review

Author information +
History +
PDF

Abstract

Different properties of displays, features of visual perception of three-dimensional images and other conditions, probably affect the effectiveness of motor rehabilitation when using a visual feedback channel and virtual reality technology. A brief review presents the latest publications on a choice of 2D or 3D displays. It is concluded that the presence of many features not only creates difficulties in comparing the effects of using various equipment, but also provides the potential for targeted display selection for a particular rehabilitation task.

Keywords

neurorehabilitation / display / 2D / 3D / binocular vision / stereopsis / vection / line of sight / virtual reality / motor rehabilitation

Cite this article

Download citation ▾
O. V. Kubryak, Elena Aleksandrovna Kriklenko. To choose the use of 2d or 3d images in rehabilitation: review. Russian Journal of Physiotherapy, Balneology and Rehabilitation, 2018, 17(3): 116-119 DOI:10.18821/1681-3456-2018-17-3-116-119

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Corbetta D., Imeri F., Gatti R. Rehabilitation that incorporates virtual reality is more effective than standard rehabilitation for improving walking speed, balance and mobility after stroke: a systematic review. J Physiother. 2015; 61(3): 117–24. DOI: 10.1016/j. jphys.2015.05.017.

[2]

Corbetta D., Imeri F., Gatti R. Rehabilitation that incorporates vir- tual reality is more effective than standard rehabilitation for im- proving walking speed, balance and mobility after stroke: a sys- tematic review. J Physiother. 2015; 61(3): 117–24. DOI: 10.1016/j. jphys.2015.05.017.

[3]

Kubryak O.V., Panova E.N. The definition of the term of «virtual reality» in the context of medical rehabilitation. Fizioterapiya, Bal’neologiya i Reabilitatsiya (Russian Journal of the Physical Therapy, Balneotherapy and Rehabilitation). 2017; 16(2): 70–2. DOI: 10.18821/1681-3456-2017-16-2-70-72. (In Russ.)

[4]

Кубряк О.В., Панова Е.Н. Определение понятий виртуальной реальности в медицинской реабилитации. Физиотерапия, баль- неология и реабилитация. 2017; 16(2): 70–2. DOI: 10.18821/1681- 3456-2017-16-2-70-72. Bal’neologiya i Reabilitatsiya (Russian Journal of the Physical Therapy, Balneotherapy and Rehabilitation). 2017; 16(2): 70–2. DOI: 10.18821/1681-3456-2017-16-2-70-72. (In Russ.)

[5]

Lledó L.D., Díez J.A., Bertomeu-Motos A. et al. A comparative analysis of 2D and 3D tasks for virtual reality therapies based on robotic-assisted neurorehabilitation for post-stroke patients. Front. Aging Neurosci. 2016; 8: 205. DOI: 10.3389/fnagi.2016.00205.

[6]

Kim S.H., Suh Y.W., Yun C. et al. Influence of stereopsis and abnormal binocular vision on ocular and systemic discomfort while watching 3D television. Eye (Lond). 2013; 27(11): 1243–8. DOI: 10.1038/ eye.2013.173.

[7]

Kim S.H., Suh Y.W., Yun C. et al. Influence of stereopsis and abnor- mal binocular vision on ocular and systemic discomfort while watch- ing 3D television. Eye (Lond). 2013; 27(11): 1243–8. DOI: 10.1038/ eye.2013.173.

[8]

Thomas J.S., France C.R., Applegate M.E. et al. Effects of visual display on joint excursions used to play virtual dodgeball. JMIR Serious Games. 2016; 4(2): e16. DOI: 10.2196/games.6476.

[9]

Thomas J.S., France C.R., Applegate M.E. et al. Effects of visual dis- play on joint excursions used to play virtual dodgeball. JMIR Serious Games. 2016; 4(2): e16. DOI: 10.2196/games.6476.

[10]

Riecke B.E., Jordan J.D. Comparing the effectiveness of different displays in enhancing illusions of self-movement (vection). Front. Psychol. 2015; 6: 713. DOI: 10.3389/fpsyg.2015.00713.

[11]

Barr C.J., McLoughlin J.V., van den Berg M.E. et al. Visual field dependence is associated with reduced postural sway, dizziness and falls in older people attending a falls clinic. J. Nutr. Health Aging. 2016; 20(6): 671–6. DOI: 10.1007/s12603-015-0681-y

[12]

Roettl J., Terlutter R. The same video game in 2D, 3D or virtual reality – How does technology impact game evaluation and brand placements? PLoS One. 2018; 13(7): e0200724. DOI: 10.1371/journal. pone.0200724.

[13]

Roettl J., Terlutter R. The same video game in 2D, 3D or virtual reali- ty – How does technology impact game evaluation and brand place- ments? PLoS One. 2018; 13(7): e0200724. DOI: 10.1371/journal. pone.0200724.

[14]

Palmisano S., Riecke B.E. The search for instantaneous vection: An oscillating visual prime reduces vection onset latency. PLoS One. 2018; 13(5): e0195886. DOI: 10.1371/journal.pone.0195886.

[15]

Keshavarz B., Speck M., Haycock B., Berti S. Effect of different display types on vection and its interaction with motion direction and field dependence. i-Perception. 2017; 8(3): 2041669517707768. DOI: 10.1177/2041669517707768.

[16]

Yeom H.J., Kim H.J., Kim S.B. et al. 3D holographic head mounted display using holographic optical elements with astigmatism aberration compensation. Opt. Express. 2015; 23(25): 32025–34. DOI: 10.1364/OE.23.032025.

[17]

Yeom H.J., Kim H.J., Kim S.B. et al. 3D holographic head mounted display using holographic optical elements with astigmatism aber- ration compensation. Opt. Express. 2015; 23(25): 32025–34. DOI: 10.1364/OE.23.032025.

[18]

Yang F., Gu H., Li M. et al. The impact on human visual performance when viewing 2-D and 3-D movies. Technol. Health Care. 2018; 26(S1): 79–86. DOI: 10.3233/THC-174206.

[19]

Yang F., Gu H., Li M. et al. The impact on human visual perfor- mance when viewing 2-D and 3-D movies. Technol. Health Care. 2018; 26(S1): 79–86. DOI: 10.3233/THC-174206.

[20]

Zeri F., Livi S. Visual discomfort while watching stereoscopic threedimensional movies at the cinema. Ophthalmic Physiol. Opt. 2015; 35(3): 271–82. DOI: 10.1111/opo.12194.

[21]

Zeri F., Livi S. Visual discomfort while watching stereoscopic three- dimensional movies at the cinema. Ophthalmic Physiol. Opt. 2015; 35(3): 271–82. DOI: 10.1111/opo.12194.

[22]

Read J.C., Bohr I. User experience while viewing stereoscopic 3D television. Ergonomics. 2014; 57(8): 1140–53. DOI: 10.1080/ 00140139.2014.914581.

[23]

Read J.C., Simonotto J., Bohr I. et al. Balance and coordination after viewing stereoscopic 3D television. R. Soc. Open Sci. 2015; 2(7): 140522. DOI: 10.1098/rsos.140522.

[24]

Read J.C., Godfrey A., Bohr I. et al. Viewing 3D TV over two months produces no discernible effects on balance, coordination or eyesight. Ergonomics. 2016; 59(8): 1073–88. DOI: 10.1080/00140139. 2015.1114682.

[25]

Read J.C., Godfrey A., Bohr I. et al. Viewing 3D TV over two months produces no discernible effects on balance, coordination or eye- sight. Ergonomics. 2016; 59(8): 1073–88. DOI: 10.1080/00140139. 2015.1114682.

[26]

Kim S.H., Suh Y.W., Yun C. et al Influence of stereopsis and abnormal binocular vision on ocular and systemic discomfort while watching 3D television. Eye (Lond). 2013; 27(11): 1243–8. DOI: 10.1038/ eye.2013.173.

[27]

Kim S.H., Suh Y.W., Yun C. et al Influence of stereopsis and abnor- mal binocular vision on ocular and systemic discomfort while watch- ing 3D television. Eye (Lond). 2013; 27(11): 1243–8. DOI: 10.1038/ eye.2013.173.

[28]

Zanier E.R., Zoerle T., Di Lernia D., Riva G. Virtual reality for traumatic brain injury. Front. Neurol. 2018; 9: 345. DOI: 10.3389/fneur. 2018.00345.

[29]

Zanier E.R., Zoerle T., Di Lernia D., Riva G. Virtual reality for trau- matic brain injury. Front. Neurol. 2018; 9: 345. DOI: 10.3389/fneur. 2018.00345.

[30]

Aida J., Chau B., Dunn J. Immersive virtual reality in traumatic brain injury rehabilitation: A literature review. NeuroRehabilitation. 2018; 42(4): 441–8. DOI: 10.3233/NRE-172361.

[31]

Laver K.E., Lange B., George S. et al. Virtual reality for stroke rehabilitation. Cochrane Database Syst. Rev. 2017; 11: CD008349. DOI: 10.1002/14651858.CD008349.pub4.

[32]

Laver K.E., Lange B., George S. et al. Virtual reality for stroke reha- bilitation. Cochrane Database Syst. Rev. 2017; 11: CD008349. DOI: 10.1002/14651858.CD008349.pub4.

[33]

Grokhovsky S.S., Kubryak O.V. Towards the question of «dose» motor rehabilitation after stroke: review. Fizioterapiya, Bal’neologiya i Reabilitatsiya (Russian Journal of the Physical Therapy, Balneotherapy and Rehabilitation). 2018. 17(2): 66–71. DOI: 10.18821/16813456-2018-17-2-66-71. (In Russ.)

[34]

Гроховский С.С., Кубряк О.В. К вопросу о «дозе» двигательной реабилитации после инсульта: обзор. Физиотерапия, бальнео- логия и реабилитация. 2018. 17(2): 66–71. DOI: 10.18821/1681- 3456-2018-17-2-66-71.

[35]

Ferreira Dos Santos L., Christ O., Mate K. et al. Movement visualisation in virtual reality rehabilitation of the lower limb: a systematic review. Biomed Eng. Online. 2016; 15(Suppl 3): 144. DOI: 10.1186/ s12938-016-0289-4.

[36]

Ferreira Dos Santos L., Christ O., Mate K. et al. Movement visuali- sation in virtual reality rehabilitation of the lower limb: a systematic review. Biomed Eng. Online. 2016; 15(Suppl 3): 144. DOI: 10.1186/ s12938-016-0289-4.

[37]

de Rooij I.J., van de Port I.G., Meijer J.G. Effect of virtual reality training on balance and gait ability in patients with stroke: systematic review and meta-analysis. Phys. Ther. 2016; 96(12): 1905–18. DOI: 10.2522/ptj.20160054.

[38]

Chen L., Lo W.L., Mao Y.R. et al. Effect of virtual reality on postural and balance control in patients with stroke: a systematic literature review. Biomed. Res. Int. 2016; 2016: 7309272. DOI: 10.1155/2016/7309272.

[39]

Chen L., Lo W.L., Mao Y.R. et al. Effect of virtual reality on pos- tural and balance control in patients with stroke: a systematic literature review. Biomed. Res. Int. 2016; 2016: 7309272. DOI: 10.1155/2016/7309272.

[40]

Iruthayarajah J., McIntyre A., Cotoi A. et al. The use of virtual reality for balance among individuals with chronic stroke: a systematic review and meta-analysis. Top Stroke Rehabil. 2017; 24(1): 68–79. DOI: 10.1080/10749357.2016.1192361.

[41]

Iruthayarajah J., McIntyre A., Cotoi A. et al. The use of virtual real- ity for balance among individuals with chronic stroke: a systematic review and meta-analysis. Top Stroke Rehabil. 2017; 24(1): 68–79. DOI: 10.1080/10749357.2016.1192361.

[42]

Booth V., Masud T., Connell L., Bath-Hextall F. The effectiveness of virtual reality interventions in improving balance in adults with impaired balance compared with standard or no treatment: a systematic review and meta-analysis. Clin. Rehabil. 2014; 28(5): 419–31. DOI: 10.1177/0269215513509389.

[43]

Booth V., Masud T., Connell L., Bath-Hextall F. The effectiveness of virtual reality interventions in improving balance in adults with im- paired balance compared with standard or no treatment: a systematic review and meta-analysis. Clin. Rehabil. 2014; 28(5): 419–31. DOI: 10.1177/0269215513509389.

[44]

Dascal J., Reid M., IsHak W.W. et al. Virtual reality and medical inpatients: a systematic review of randomized, controlled trials. Innov. Clin. Neurosci. 2017; 14(1–2): 14–21. PMID: 28386517.

[45]

Dascal J., Reid M., IsHak W.W. et al. Virtual reality and medical in- patients: a systematic review of randomized, controlled trials. Innov. Clin. Neurosci. 2017; 14(1–2): 14–21. PMID: 28386517.

[46]

Silva J.N.A., Southworth M., Raptis C., Silva J. Emerging applications of virtual reality in cardiovascular medicine. JACC Basic Transl. Sci. 2018; 3(3): 420–430. DOI: 10.1016/j. jacbts.2017.11.009.

[47]

Silva J.N.A., Southworth M., Raptis C., Silva J. Emerging ap- plications of virtual reality in cardiovascular medicine. JACC Basic Transl. Sci. 2018; 3(3): 420–430. DOI: 10.1016/j. jacbts.2017.11.009.

[48]

Palermo L., Nori R., Piccardi L. et al. Refractive errors affect the vividness of visual mental images. PLoS One. 2013; 8(6): e65161. DOI: 10.1371/journal.pone.0065161.

[49]

Boccia M., Piccardi L., Palermo L. et al. A penny for your thoughts! patterns of fMRI activity reveal the content and the spatial topography of visual mental images. Hum. Brain Mapp. 2015; 36(3): 945– 58. DOI: 10.1002/hbm.22678.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

63

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/