Predictors of effectiveness in the implementation of personalized use of therapeutic physical factors in patients with metabolic syndrome
Andrey A. Benkov , Sergey N. Nagornev , Sabina S. Mamedova , Amalia S. Shabanova
Russian Journal of Physiotherapy, Balneology and Rehabilitation ›› 2022, Vol. 21 ›› Issue (6) : 437 -445.
Predictors of effectiveness in the implementation of personalized use of therapeutic physical factors in patients with metabolic syndrome
BACKGROUND: A personalized approach to the use of therapeutic physical factors should take into account individual predictor biomarkers, which are predictive information regarding the effectiveness of the treatment, taking into account the initial state of the patient's reserve capabilities. The metabolic syndrome was defined as a model of a pathological condition characterized by reduced functional reserves. Previous studies have shown that transcranial magnetotherapy (TMT) and pulsed low-frequency exposure to an electrostatic field (INESP) have potential effectiveness in relation to the pathogenetic manifestations of the metabolic syndrome.
AIM: The purpose of the study is to determine the predictors of effectiveness in the implementation of personalized combined use of TMT and INESP in patients with metabolic syndrome.
MATERIALS AND METHODS: The study involved 100 patients with a diagnosis of metabolic syndrome established in accordance with clinical guidelines. All patients were divided into four groups of 25 by simple fixed randomization. The first group (control) received a placebo effect (imitation of physiotherapeutic effects with the device turned off) for 10 days of observation. Patients of the second group (comparison group 1) were exposed to a low frequency electrostatic field (INESP). The third group (comparison group 2) received transcranial magnetic therapy with a traveling magnetic field (TMT). Patients of the fourth group (main) were subjected to a combined effect of INESP and TMT. All patients before and after a course of physiotherapy underwent a comprehensive examination using functional, biochemical and hormonal methods. Statistical processing of the obtained results was carried out using the Statistica 12.6 software package using the algorithms of correlation and regression analyses.
RESULTS: The analysis performed using the multiple regression algorithm made it possible to identify a cluster of independent variables in the form of an autonomic balance index, microcirculation index, body mass index and catalase activity, determined in the initial value of patients. The high efficiency of the combined use of TMT and INESP is achieved with a probability of at least 95% in patients with metabolic syndrome, the initial state of which is characterized by a level of the autonomic balance index below 1.7 conventional units. units, tissue perfusion parameter more than 14 perf. units, BMI value below 29 c.u. units and catalase activity above 90 units. аct. The results of the verification of the constructed information model convincingly prove its adequacy and objectively confirm compliance with the stated forecast requirements.
CONCLUSION: It is concluded that the identified constellation of phenotypic patterns, which characterizes the state of the pathological process, reflects the main pathogenetic mechanisms that determine the severity of clinical and functional manifestations of metabolic syndrome. Evaluation of the initial values of the autonomic balance index, microcirculation index, body mass index and catalase activity in patients with metabolic syndrome makes it possible to predict the expected effectiveness of the course combined use of TMT and INESP.
efficacy predictors / pulsed low-frequency electrostatic field / metabolic syndrome / personalized medicine / combined use of physiotherapeutic factors / transcranial magnetotherapy
| [1] |
Ginsburg GS, McCarthy JJ. Personalized medicine: revolutionizing drug discovery and patient care. Trends Biotechnol. 2001;19(12):491–496. |
| [2] |
Ginsburg G.S., McCarthy J.J. Personalized medicine: revolutionizing drug discovery and patient care // Trends Biotechnol. 2001. Vol. 19, N 12. P. 491–496. |
| [3] |
Jain KK. Personalized medicine. Curr Opin Mol Ther. 2002;4(6):548–558. |
| [4] |
Jain K.K. Personalized medicine // Curr Opin Mol Ther. 2002. Vol. 4, N 6. Р. 548–558. |
| [5] |
Shlyakhto EV. Scientific foundations of personalized medicine: realities and opportunities. Bulletin of the Russian Academy of Sciences. 2022;92(12):1105–1118. (In Russ). |
| [6] |
Шляхто Е.В. Научные основы персонализированной медицины: реалии и возможности // Вестник Российской академии наук. 2022. Т. 92, № 12. С. 1105–1118. |
| [7] |
Karpov OE, Temples AE. Information technologies, computing systems and artificial intelligence in medicine. Moscow; 2022. 480 p. (In Russ). |
| [8] |
Карпов О.Э., Храмов А.Е. Информационные технологии, вычислительные системы и искусственный интеллект в медицине. Москва, 2022. 480 с. |
| [9] |
Steinhubl SR, Topol EJ. Digital medicine, on its way to being just plain medicine. NPJ Digital Med. 2018;1:20175. doi: 10.1038/s41746-017-0005-1 (In Russ). |
| [10] |
Steinhubl S.R., Topol E.J. Digital medicine, on its way to being just plain medicine // NPJ Digit Med. 2018. Vol. 1. P. 20175. doi: 10.1038/s41746-017-0005-1 |
| [11] |
Dedov II, Tyulpakov AN, Chekhonin VP, et al. Personalized medicine: current state and prospects. Bulletin of the Russian Academy of Medical Sciences. 2012;67(12):4–12. (In Russ). |
| [12] |
Дедов И.И., Тюльпаков А.Н., Чехонин В.П., и др. Персонализированная медицина: современное состояние и перспективы // Вестник Российской академии медицинских наук. 2012. Т. 67, № 12. С. 4–12. |
| [13] |
Abul-Husn NS, Kenny EE. Personalized Medicine and the Power of Electronic Health Records. Cell. 2019;177(1):58–69. |
| [14] |
Abul-Husn N.S., Kenny E.E. Personalized medicine and the power of electronic health records // Cell. 2019. Vol. 177, N 1. P. 58–69. |
| [15] |
Chen XQ, Sawa M, Mobley WC. Dysregulation of neurotrophin signaling in the pathogenesis of Alzheimer disease and of Alzheimer disease in Down syndrome. Free Radic. Biol. Med. 2018;114:52–61. |
| [16] |
Chen X.Q., Sawa M., Mobley W.C. Dysregulation of neurotrophin signaling in the pathogenesis of Alzheimer disease and of Alzheimer disease in Down syndrome // Free Radic Biol Med. 2018. Vol. 114. Р. 52–61. |
| [17] |
Ng SB, Chung TH, Kato S, et al. Epstein–Barr virus-associated primary nodal T/NK-cell lymphoma shows a distinct molecular signature and copy number changes. Haematologica. 2018;103(2):278–287. |
| [18] |
Ng S.B., Chung T.H., Kato S., et al. Epstein–Barr virus-associated primary nodal T/NK-cell lymphoma shows a distinct molecular signature and copy number changes // Haematologica. 2018. Vol. 103, N 2. P. 278–287. |
| [19] |
Yong WP, Rha SY, Tan IB, et al. Real-Time Tumor Gene Expression Profiling to Direct Gastric Cancer Chemotherapy: Proof-of-Concept "3G" Trial. Clin Cancer Res. 2018;24(21):5272–5281. |
| [20] |
Yong W.P., Rha S.Y., Tan I.B., et al. Real-Time tumor gene expression profiling to direct gastric cancer chemotherapy: proof-of-concept «3G» trial // Clin Cancer Res. 2018. Vol. 24, N 21. Р. 5272–5281. |
| [21] |
Lemaitre F. Has the Time Come for Systematic Therapeutic Drug Monitoring of First-Line and WHO Group A Antituberculosis Drugs? Ther. Drug Monit. 2022;44(1):133–137. |
| [22] |
Lemaitre F. Has the time come for systematic therapeutic drug monitoring of first-line and WHO Group A antituberculosis drugs? // Ther Drug Monit. 2022. Vol. 44, N 1. Р. 133–137. |
| [23] |
Ponomarenko GN. The concept of translational medicine in physiotherapy and rehabilitation. Physiotherapy, balneology and rehabilitation. 2014;13(3):4–12. (In Russ). |
| [24] |
Пономаренко Г.Н. Концепция трансляционной медицины в физиотерапии и реабилитации // Физиотерапия, бальнеология и реабилитация. 2014. № 3. С. 4–12. |
| [25] |
Krysyuk OB, Circumcised AG, Ponomarenko GN. Problems of personalized medicine in the clinic of internal diseases. Bulletin of St. Petersburg University. Medicine. 2006;(1):16–22. |
| [26] |
Крысюк О.Б., Обрезан А.Г., Пономаренко Г.Н. Проблемы персонифицированной медицины в клинике внутренних болезней // Вестник Санкт-Петербургского университета. Медицина. 2006. № 1. С. 16–22. |
| [27] |
Recommendations for the management of patients with metabolic syndrome: Clinical guidelines. Moscow; 2013. 43 p. (In Russ). |
| [28] |
Рекомендации по ведению больных с метаболическим синдромом: Клинические рекомендации. Москва, 2013. 43 с. |
| [29] |
Kulikov AG, Kuzovleva EV. The use of a low-frequency electrostatic field in clinical practice. Physiotherapy, balneology and rehabilitation. 2013;12(4):44–53. (In Russ). |
| [30] |
Куликов А.Г., Кузовлева Е.В. Применение низкочастотного электростатического поля в клинической практике // Физиотерапия, бальнеология и реабилитация. 2013. № 4. С. 44–53. |
| [31] |
Nagornev SN, Bobrovnitsky IP, Frolkov VK, et ak. Methodology of the systemic application of transcranial magnetic influences in conditions of hemocirculatory and dysmetabolic disorders. Russian Journal of Rehabilitation Medicine. 2016;(1):32–44. (In Russ). |
| [32] |
Нагорнев С.Н., Бобровницкий И.П., Фролков В.К., и др. Методология системного применения транскраниальных магнитных воздействий в условиях гемоциркуляторных и дисметаболических нарушений // Russian Journal of Rehabilitation Medicine. 2016. № 1. С. 32–44. |
| [33] |
Gavrilov VB, Gavrilova AR, Mazhul LM. Analysis of methods for determining lipid peroxidation products in serum according to the test with TBA. Questions of Medical Chemistry. 1987;(1):118–122. (In Russ). |
| [34] |
Гаврилов В.Б., Гаврилова А.Р., Мажуль Л.М. Анализ методов определения продуктов ПОЛ в сыворотке по тесту с ТБК // Вопросы медицинской химии. 1987. № 1. С. 118–122. |
| [35] |
Karpishchenko AI. Medical laboratory technologies. Directory. St. Petersburg; 2002. 600 p. (In Russ). |
| [36] |
Карпищенко, А.И. Медицинские лабораторные технологии. Справочник. Санкт-Петербург, 2002. 600 с. |
| [37] |
Kostyuk VA, Potapovich AI, Kovaleva ZhI. A simple and sensitive method for the determination of superoxide dismutase based on the oxidation reaction of quercetin. Questions of Medical Chemistry. 1990;(2):88–91. (In Russ). |
| [38] |
Костюк В.А., Потапович А.И., Ковалева Ж.И. Простой и чувствительный метод определения супероксиддисмутазы, основанный на реакции окисления кверцитина // Вопросы медицинской химии. 1990. № 2. С. 88–91. |
| [39] |
Klimov AN. Cholesterol in the pathogenesis of atherosclerosis: the role of "bad" and "good" cholesterol. Medical Academic Journal. 2007;7(1):4–11. (In Russ). |
| [40] |
Климов А.Н. Холестерин в патогенезе атеросклероза: роль «плохого» и «хорошего» холестерина // Медицинский академический журнал. 2007. Т. 7, № 1. С. 4–11. |
| [41] |
Nagornev SN, Sytnik SI, Bobrovnitsky IP, et al. Pharmacological correction of the process of lipid peroxidation during hypoxia and the possibility of increasing a person's altitude stability with the help of drugs of a metabolic type of action. Bulletin of the Russian Academy of Medical Sciences. 1996;(7):53–60. (In Russ). |
| [42] |
Нагорнев С.Н., Сытник С.И., Бобровницкий И.П., и др. Фармакологическая коррекция процесса липопероксидации при гипоксии и возможность повышения высотной устойчивости человека с помощью препаратов метаболического типа действия // Вестник РАМН. 1996. № 7. С. 53–60. |
| [43] |
Gerasimov AN. Medical statistics: textbook. Moscow; 2007. 480 p. (In Russ). |
| [44] |
Герасимов А.Н. Медицинская статистика: Учебное пособие. Москва: МИА, 2007. 480 с. |
| [45] |
Junkerov VN, Grigoriev SG, Rezvantsev MV. Mathematical and statistical processing of medical research data. St. Petersburg; 2011. 318 p. (In Russ). |
| [46] |
Юнкеров В.Н., Григорьев С.Г., Резванцев М.В. Математико-статистическая обработка данных медицинских исследований. Санкт-Петербург, 2011. 318 с. |
| [47] |
Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetology. 1985;28(7):412–419. |
| [48] |
Matthews D.R., Hosker J.P., Rudenski A.S., et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man // Diabetologia. 1985. Vol. 28, N 7. Р. 412–419. |
Eco-Vector
/
| 〈 |
|
〉 |