Effect of pulsed magnetic therapy and moderate exercise on the course of postmenopausal osteoporosis
Yury Y. Byalovsky , Aleksey V. Ivanov , Irina S. Rakitina
Russian Journal of Physiotherapy, Balneology and Rehabilitation ›› 2022, Vol. 21 ›› Issue (6) : 409 -418.
Effect of pulsed magnetic therapy and moderate exercise on the course of postmenopausal osteoporosis
BACKGROUND: Osteoporosis is a common musculoskeletal disease with significant complications that can become a global public health problem and a major cause of death and morbidity.
AIM: The present study aimed to determine the effect of pulsed magnetotherapy, aerobic exercise, and a combination of both methods on postmenopausal women with osteoporosis.
MATERIALS AND METHODS: The randomized clinical trial included 45 patients with osteoporosis aged 60 to 65 years who had menopause at least 6 months ago and had been sedentary for at least 6 months. Patients were randomly divided into 3 equal groups. Group A (magnetic therapy group): received standard treatment (bisphosphonates, calcium and vitamin D) in addition to pulsed magnetic therapy in the hip area for 12 weeks (3 sessions per week). Group B (exercise group): received conventional treatment plus moderate-intensity aerobic exercise for 12 weeks (3 sessions per week). Group C (combined magnetic therapy and exercise therapy group): received standard medical treatment plus pulsed magnetic therapy and moderate-intensity aerobic exercise for 12 weeks (3 sessions per week). Bone mineral density was assessed in three groups at baseline by dual-energy X-ray absorptiometry and after 12 weeks of treatment.
RESULTS: The results showed that intragroup analysis revealed a statistically significant increase (p <0.05) in bone mineral density in the 3 study groups. Comparison of the results among the 3 tested groups revealed a significant increase (p <0.05) in mean post-test bone mineral density values in group C compared to group A and group B. There was no significant statistical difference in mean bone mineral density between the two groups A and B after testing.
CONCLUSION: The combination of pulsed magnetotherapy and moderate-intensity aerobic exercise showed a significant improvement in hip bone mineral density compared with either method alone.
magnetotherapy / bone mineral density / physical activity / osteoporosis / menopause
| [1] |
Nuti R, Brandi ML, Checchia G, et al. Guidelines for the management of osteoporosis and fragility fractures. Intern Emerg Med. 2019;14(1):85–102. doi: 10.1007/s11739-018-1874-2 |
| [2] |
Nuti R., Brandi M.L., Checchia G., et al. Guidelines for the management of osteoporosis and fragility fractures // Intern Emerg Med. 2019. Vol. 14, N 1. Р. 85–102. doi: 10.1007/s11739-018-1874-2 |
| [3] |
Harvey NC, Dennison E, Cooper C. Osteoporosis: Impact on health and economics. Nat Rev Rheumatol. 2010;6(2):99–105. doi: 10.1038/nrrheum.2009.260 |
| [4] |
Harvey N.C., Dennison E., Cooper C. Osteoporosis: Impact on health and economics // Nat Rev Rheumatol. 2010. Vol. 6, N 2. Р. 99–105. doi: 10.1038/nrrheum.2009.260 |
| [5] |
Legrand MA, Chapurlat R. Imminent fracture risk. Joint Bone Spine. 2021;88(3):105105. doi: 10.1016/j.jbspin.2020.105105 |
| [6] |
Legrand M.A., Chapurlat R. Imminent fracture risk // Joint Bone Spine. 2021. Vol. 88, N 3. Р. 105105. doi: 10.1016/j.jbspin.2020.105105 |
| [7] |
World Health Organization. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: Report of a WHO study group [meeting held in Rome from 22 to 25 June 1992]. WHO; 1994. Available from: https://apps.who.int/iris/handle/10665/39142. Accessed: 15.12.2022. |
| [8] |
World Health Organization. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: Report of a WHO study group [meeting held in Rome from 22 to 25 June 1992]. WHO, 1994. Режим доступа: https://apps.who.int/iris/handle/10665/39142. Дата обращения: 15.12.2022. |
| [9] |
Beck BR, Daly RM, Singh MA, Taaffe DR. Exercise and Sports Science Australia (ESSA) position statement on exercise prescription for the prevention and management of osteoporosis. J Sci Med Sport. 2017;20(5):438–445. doi: 10.1016/j.jsams.2016.10.001 |
| [10] |
Beck B.R., Daly R.M., Singh M.A., Taaffe D.R. Exercise and Sports Science Australia (ESSA) position statement on exercise prescription for the prevention and management of osteoporosis // J Sci Med Sport. 2017. Vol. 20, N 5. Р. 438–445. doi: 10.1016/j.jsams.2016.10.001 |
| [11] |
Khosla S, Shane EA. Crisis in the treatment of osteoporosis. J Bone Miner Res. 2016;31(8):1485–1487. doi: 10.1002/jbmr.2888 |
| [12] |
Khosla S., Shane E.A. Crisis in the treatment of osteoporosis // J Bone Miner Res. 2016. Vol. 31, N 8. Р. 1485–1487. doi: 10.1002/jbmr.2888 |
| [13] |
Sallis R. Exercise is medicine: A call to action for physicians to assess and prescribe exercise. Phys Sportsmed. 2015;43(1):22–26. doi: 10.1080/00913847.2015.1001938 |
| [14] |
Sallis R. Exercise is medicine: A call to action for physicians to assess and prescribe exercise // Phys Sportsmed. 2015. Vol. 43, N 1. Р. 22–26. doi: 10.1080/00913847.2015.1001938 |
| [15] |
Shen WW, Zhao JH. Pulsed electromagnetic fields stimulation affects BMD and local production with disuse osteoporosis. Bioelectromagnetics. 2010;31(2):113–119. doi: 10.1002/bem.20535 |
| [16] |
Shen W.W., Zhao J.H. Pulsed electromagnetic fields stimulation affects BMD and local production with disuse osteoporosis // Bioelectromagnetics. 2010. Vol. 31, N 2. Р. 113–119. doi: 10.1002/bem.20535 |
| [17] |
Duncan R, Turner CH. Mechanotransduction and the functional response of bone to mechanical strain. Calcif Tissue Int. 1995;57(5):344–358. doi: 10.1007/BF00302070 |
| [18] |
Duncan R., Turner C.H. Mechanotransduction and the functional response of bone to mechanical strain // Calcif Tissue Int. 1995. Vol. 57, N 5. Р. 344–358. doi: 10.1007/BF00302070 |
| [19] |
Klein-Nulend J, Bacabac RG, Bakker AD. Mechanical loading and how it affects bone cells: The role of the osteocyte cytoskeleton in maintaining our skeleton. Eur Cell Mater. 2012;(24):278–291. doi: 10.22203/ecm.v024a20 |
| [20] |
Klein-Nulend J., Bacabac R.G., Bakker A.D. Mechanical loading and how it affects bone cells: The role of the osteocyte cytoskeleton in maintaining our skeleton // Eur Cell Mater. 2012. N 24. Р. 278–291. doi: 10.22203/ecm.v024a20 |
| [21] |
McMillan LB, Zengin A, Ebeling PR, Scott D. Prescribing physical activity for the prevention and treatment of osteoporosis in older adults. Healthcare (Basel). 2017;5(4):85. doi: 10.3390/healthcare5040085 |
| [22] |
McMillan L.B., Zengin A., Ebeling P.R., Scott D. Prescribing physical activity for the prevention and treatment of osteoporosis in older adults // Healthcare (Basel). 2017. Vol. 5, N 4. Р. 85. doi: 10.3390/healthcare5040085 |
| [23] |
Wu S, Yu Q, Lai A, Tian J. Pulsed electromagnetic field induces Ca2+ dependent osteoblastogenesis in C3H10T1/2 mesenchymal cells through the Wnt-Ca2+/Wnt-β-catenin signaling pathway. Biochem Biophys Res Commun. 2018;503(2):715–721. doi: 10.1016/j.bbrc.2018.06.066 |
| [24] |
Wu S., Yu Q., Lai A., Tian J. Pulsed electromagnetic field induces Ca2+ dependent osteoblastogenesis in C3H10T1/2 mesenchymal cells through the Wnt-Ca2+/Wnt-β-catenin signaling pathway // Biochem Biophys Res Commun. 2018. Vol. 503, N 2. Р. 715–721. doi: 10.1016/j.bbrc.2018.06.066 |
| [25] |
Jansen JH, van der Jagt OP, Punt BJ, et al. Stimulation of osteogenic differentiation in human osteoprogenitor cells by pulsed electromagnetic fields: An in vitro study. BMC Musculoskelet Disord. 2010;(11):188. doi: 10.1186/1471-2474-11-188 |
| [26] |
Jansen J.H., van der Jagt O.P., Punt B.J., et al. Stimulation of osteogenic differentiation in human osteoprogenitor cells by pulsed electromagnetic fields: An in vitro study // BMC Musculoskelet Disord. 2010. N 11. Р. 188. doi: 10.1186/1471-2474-11-188 |
| [27] |
Mirkovic VB, Banjac L, Dasic Z, Dapcevic M. Non-pharmacological treatment of diabetic polyneuropathy by pulse electromagnetic field. Health Med. 2012;6(4):1291–1295. |
| [28] |
Mirkovic V.B., Banjac L., Dasic Z., Dapcevic M. Non-pharmacological treatment of diabetic polyneuropathy by pulse electromagnetic field // Health Med. 2012. Vol. 6, N 4. Р. 1291–1295. |
| [29] |
Androjna C, Fort B, Zborowski M, Midura RJ. Pulsed electromagnetic field treatment enhances healing callus biomechanical properties in an animal model of osteoporotic fracture. Bioelectromagnetics. 2014;35(6):396–405. doi: 10.1002/bem.21855 |
| [30] |
Androjna C., Fort B., Zborowski M., Midura R.J. Pulsed electromagnetic field treatment enhances healing callus biomechanical properties in an animal model of osteoporotic fracture // Bioelectromagnetics. 2014. Vol. 35, N 6. Р. 396–405. doi: 10.1002/bem.21855 |
| [31] |
Tu KN, Lie JD, Wan CK, et al. Osteoporosis: A review of treatment options. Pharm Ther. 2018;43(2):92. |
| [32] |
Tu K.N., Lie J.D., Wan C.K., et al. Osteoporosis: A review of treatment options // Pharm Ther. 2018. Vol. 43, N 2. Р. 92. |
| [33] |
Watts NB, Camacho PM, Lewiecki EM, Petak SM. American Association of Clinical Endocrinologists / American College of Endocrinology clinical practice guidelines for the diagnosis and treatment of postmenopausal osteoporosis-2020 update. Endocr Pract. 2020;27(4):379–380. doi: 10.1016/j.eprac.2021.02.001 |
| [34] |
Watts NB, Camacho PM, Lewiecki EM, Petak SM. American Association of Clinical Endocrinologists / American College of Endocrinology clinical practice guidelines for the diagnosis and treatment of postmenopausal osteoporosis-2020 update // Endocr Pract. 2020. Vol. 27, N 4. Р. 379–380. doi: 10.1016/j.eprac.2021.02.001 |
| [35] |
Doroudinia A, Colletti PM. Bone mineral measurements. Clin Nucl Med. 2015;40(8):647–657. doi: 10.1097/RLU.0000000000000860 |
| [36] |
Doroudinia A., Colletti P.M. Bone mineral measurements // Clin Nucl Med. 2015. Vol. 40, N 8. Р. 647–657. doi: 10.1097/RLU.0000000000000860 |
| [37] |
Byalovsky YY, Ivanov AV, Rakitina IS. Effects of a pulsed electromagnetic field on the course of osteoporosis in postmenopausal women. Russ J Physial Therapy, Balneotherapy Rehabilitation. 2021;20(5):385–395. (In Russ). doi: 10.17816/rjpbr107453 |
| [38] |
Бяловский Ю.Ю., Иванов А.В., Ракитина И.С. Эффекты импульсного электромагнитного поля на течение остеопороза в постменопаузе у женщин // Физиотерапия, бальнеология и реабилитация. 2021. Т. 20, № 5. С. 385–395. doi: 10.17816/rjpbr107453 |
| [39] |
Karvonen MJ, Kentala E, Mustala O. The effects of training on heart rate: A longitudinal study. Ann Med Exp Bil Fenn. 1957;35(3):307–315. |
| [40] |
Karvonen M.J., Kentala E., Mustala O. The effects of training on heart rate: A longitudinal study // Ann Med Exp Bil Fenn. 1957. Vol. 35, N 3. Р. 307–315. |
| [41] |
Alghadir AH, Aly FA, Gabr SA. Effect of moderate aerobic training on bone metabolism indices among adult humans. Pak J Med Sci. 2014;30(4):840–844. doi: 10.12669/pjms.304.4624 |
| [42] |
Alghadir A.H., Aly F.A., Gabr S.A. Effect of moderate aerobic training on bone metabolism indices among adult humans // Pak J Med Sci. 2014. Vol. 30, N 4. Р. 840–844. doi: 10.12669/pjms.304.4624 |
| [43] |
Zhu S, He H, Zhang C, et al. Effects of pulsed electromagnetic fields on postmenopausal osteoporosis. Bioelectromagnetics. 2017;38(6):406–624. doi: 10.1002/bem.22065 |
| [44] |
Zhu S., He H., Zhang C., et al. Effects of pulsed electromagnetic fields on postmenopausal osteoporosis // Bioelectromagnetics. 2017. Vol. 38, N 6. Р. 406–424. doi: 10.1002/bem.22065 |
| [45] |
Petecchia L, Sbrana F, Utzeri R, et al. Electro-magnetic field promotes osteogenic differentiation of BM-hMSCs through a selective action on Ca2+ related mechanisms. Sci Rep. 2015;(5):13856. doi: 10.1038/srep13856 |
| [46] |
Petecchia L., Sbrana F., Utzeri R., et al. Electro-magnetic field promotes osteogenic differentiation of BM-hMSCs through a selective action on Ca2+-related mechanisms // Sci Rep. 2015. N 5. Р. 13856. doi: 10.1038/srep13856 |
| [47] |
Vincenzi F, Targa M, Corciulo C, et al. Pulsed electromagnetic fields increased the anti-inflammatory effect of A2A and A3 adenosine receptors in human T/C-28a2 chondrocytes and hFOB 1.19 osteoblasts. PLoS One. 2013;8(5):e65561. doi: 10.1371/journal.pone.0065561 |
| [48] |
Vincenzi F., Targa M., Corciulo C., et al. Pulsed electromagnetic fields increased the anti-inflammatory effect of A2A and A3 adenosine receptors in human T/C-28a2 chondrocytes and hFOB 1.19 osteoblasts // PLoS One. 2013. Vol. 8, N 5. Р. e65561. doi: 10.1371/journal.pone.0065561 |
| [49] |
Carpenter D, Ayrapntyan S. Biological effects of electric and magnetic fields. San Diego, CA: Academic Press; 2004. Р. 3–7. |
| [50] |
Carpenter D., Ayrapntyan S. Biological effects of electric and magnetic fields. San Diego, CA: Academic Press, 2004. Р. 3–7. |
| [51] |
Fitzsimmans R, Baylink J. Growth factors and electromagnetic fields in bone. Clin Plast Surg. 1994;21(3):401–406. |
| [52] |
Fitzsimmans R., Baylink J. Growth factors and electromagnetic fields in bone // Clin Plast Surg. 1994. Vol. 21, N 3. Р. 401–406. |
| [53] |
Ongaro A, Pellati A, Bagheri L, et al. Pulsed electromagnetic fields stimulate osteogenic differentiation in human bone marrow and adipose tissue derived mesenchymal stem cells. Bioelectromagnetics. 2014;35(6):426–436. doi: 10.1002/bem.21862 |
| [54] |
Ongaro A., Pellati A., Bagheri L., et al. Pulsed electromagnetic fields stimulate osteogenic differentiation in human bone et al marrow and adipose tissue derived mesenchymal stem cells // Bioelectromagnetics. 2014. Vol. 35, N 6. Р. 426–436. doi: 10.1002/bem.21862 |
| [55] |
Jing D, Cai J, Shen G, et al. The preventive effects of pulsed electromagnetic fields on diabetic bone loss in streptozotocin-treated rats. Osteoporos Int. 2011;22(6):1885–1895. doi: 10.1007/s00198-010-1447-3 |
| [56] |
Jing D., Cai J., Shen G., et al. The preventive effects of pulsed electromagnetic fields on diabetic bone loss in streptozotocin-treated rats // Osteoporos Int. 2011. Vol. 22, N 6. Р. 1885–1895. doi: 10.1007/s00198-010-1447-3 |
| [57] |
Fu YC, Lin CC, Chang JK, et al. A novel single pulsed electromagnetic field stimulates osteogenesis of bone marrow mesenchymal stem cells and bone repair. PLoS One. 2014;9(4):e91581. doi: 10.1371/journal.pone.0091581 |
| [58] |
Fu Y.C., Lin C.C., Chang J.K., et al. A novel single pulsed electromagnetic field stimulates osteogenesis of bone marrow mesenchymal stem cells and bone repair // PLoS One. 2014. Vol. 9, N 4. e91581. doi: 10.1371/journal.pone.0091581 |
| [59] |
Van der Jagt OP, van der Linden JC, Schaden W, et al. Unfocused extracorporeal shock wave therapy as potential treatment for osteoporosis. J Orthop Res. 2009;27(11):1528–1533. doi: 10.1002/jor.20910 |
| [60] |
Van der Jagt O.P., van der Linden J.C., Schaden W., et al. Unfocused extracorporeal shock wave therapy as potential treatment for osteoporosis // J Orthop Res. 2009. Vol. 27, N 11. Р. 1528–1533. doi: 10.1002/jor.20910 |
| [61] |
Banfi G, Colombini A, Lombardi G, Lubkowska A. Metabolic markers in sports medicine. Adv Clin Chem. 2012;(56):1–54. doi: 10.1016/b978-0-12-394317-0.00015-7 |
| [62] |
Banfi G., Colombini A., Lombardi G., Lubkowska A. Metabolic markers in sports medicine // Adv Clin Chem. 2012. N 56. Р. 1–54. doi: 10.1016/b978-0-12-394317-0.00015-7 |
| [63] |
Gonzalez-Aguero A, Vicente-Rodriguez G, Gomez-Cabello A, et al. A 21-week bone deposition promoting exercise programme increases bone mass in youths with Down syndrome. Dev Med Child Neurol. 2012;54(6):552–556. doi: 10.1111/j.1469-8749.2012.04262.x |
| [64] |
Gonzalez-Aguero A., Vicente-Rodriguez G., Gomez-Cabello A., et al. A 21-week bone deposition promoting exercise programme increases bone mass in youths with Down syndrome // Dev Med Child Neurol. 2012. Vol. 54, N 6. Р. 552–556. doi: 10.1111/j.1469-8749.2012.04262.x |
| [65] |
Rossouw J, Anderson G, Prentice R, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: Principal results from the Women's Health Initiative randomized controlled trial. JAMA. 2002;288(3):321–33. doi: 10.1001/jama.288.3.321 |
| [66] |
Rossouw J., Anderson G., Prentice R., et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: Principal results from the Women's Health Initiative randomized controlled trial // JAMA. 2002. Vol. 288, N 3. Р. 321–333. doi: 10.1001/jama.288.3.321 |
| [67] |
Neil D, Ronald C. Resistance training and type 2 diabetes considerations for implementation at the population level. Diabetes Care. 2006;29(8):1933–1941. doi: 10.2337/dc05-1981 |
| [68] |
Neil D., Ronald C. Resistance training and type 2 diabetes considerations for implementation at the population level // Diabetes Care. 2006. Vol. 29, N 8. Р. 1933–1941. doi: 10.2337/dc05-1981 |
| [69] |
Beekley MD, Sato Y, Abe T. KAATSU-walk training increases serum bone-specific alkaline phosphatase in young men. Int J KAATSU Train Res. 2005;1(2):77–81. doi: 10.3806/ijktr.1.77 |
| [70] |
Beekley M.D., Sato Y., Abe T. KAATSU-walk training increases serum bone-specific alkaline phosphatase in young men // Int J KAATSU Train Res. 2005. Vol. 1, N 2. Р. 77–81. doi: 10.3806/ijktr.1.77 |
| [71] |
Pourvaghar MJ. The effect of 2 month-regular aerobic training on students’ rest time serum calcium, phosphorus and magnesium variations. Gazzeta Medica Italiana. 2008;167(3):105–108. |
| [72] |
Pourvaghar M.J. The effect of 2 month-regular aerobic training on students’ rest time serum calcium, phosphorus and magnesium variations // Gazzeta Medica Italiana. 2008. Vol. 167, N 3. Р. 105–108. |
| [73] |
Martyn-St James M, Carroll S. High-intensity resistance training and postmenopausal bone loss: A meta-analysis. Osteoporos Int. 2006;17(8):1225–1240. doi: 10.1007/s00198-006-0083-4 |
| [74] |
Martyn-St James M., Carroll S. High-intensity resistance training and postmenopausal bone loss: A meta-analysis // Osteoporos Int. 2006. Vol. 17, N 8. Р. 1225–1240. doi: 10.1007/s00198-006-0083-4 |
| [75] |
Martyn-St James M, Carroll S. Meta-analysis of walking for preservation of bone mineral density in postmenopausal women. Bone. 2008;43(3):521–531. doi: 10.1016/j.bone.2008.05.012 |
| [76] |
Martyn-St James M., Carroll S. Meta-analysis of walking for preservation of bone mineral density in postmenopausal women // Bone. 2008. Vol. 43, N 3. Р. 521–531. doi: 10.1016/j.bone.2008.05.012 |
| [77] |
Chodzko-Zajko W, Proctor D, Fiatarone Singh M, et al. American College of Sports Medicine position stand. Exercise and physical activity for older adults. Med Sci Sports Exerc. 2009;41(7):1510–1530. doi: 10.1249/MSS.0b013e3181a0c95c |
| [78] |
Chodzko-Zajko W., Proctor D., Fiatarone Singh M., et al. American College of Sports Medicine position stand. Exercise and physical activity for older adults // Med Sci Sports Exerc. 2009. Vol. 41, N 7. Р. 1510–1530. doi: 10.1249/MSS.0b013e3181a0c95c |
| [79] |
Marques E, Mota J, Carvalho J. Exercise effects on bone mineral density in older adults: A meta-analysis of randomized controlled trials. Age. 2012;34(6):1493–1515. doi: 10.1007/s11357-011-9311-8 |
| [80] |
Marques E., Mota J., Carvalho J. Exercise effects on bone mineral density in older adults: A meta-analysis of randomized controlled trials // Age. 2012. Vol. 34, N 6. Р. 1493–1515. doi: 10.1007/s11357-011-9311-8 |
Eco-Vector
/
| 〈 |
|
〉 |