Effect of pulsed magnetic therapy and moderate exercise on the course of postmenopausal osteoporosis

Yury Y. Byalovsky , Aleksey V. Ivanov , Irina S. Rakitina

Russian Journal of Physiotherapy, Balneology and Rehabilitation ›› 2022, Vol. 21 ›› Issue (6) : 409 -418.

PDF
Russian Journal of Physiotherapy, Balneology and Rehabilitation ›› 2022, Vol. 21 ›› Issue (6) : 409 -418. DOI: 10.17816/rjpbr115280
Original studies
research-article

Effect of pulsed magnetic therapy and moderate exercise on the course of postmenopausal osteoporosis

Author information +
History +
PDF

Abstract

BACKGROUND: Osteoporosis is a common musculoskeletal disease with significant complications that can become a global public health problem and a major cause of death and morbidity.

AIM: The present study aimed to determine the effect of pulsed magnetotherapy, aerobic exercise, and a combination of both methods on postmenopausal women with osteoporosis.

MATERIALS AND METHODS: The randomized clinical trial included 45 patients with osteoporosis aged 60 to 65 years who had menopause at least 6 months ago and had been sedentary for at least 6 months. Patients were randomly divided into 3 equal groups. Group A (magnetic therapy group): received standard treatment (bisphosphonates, calcium and vitamin D) in addition to pulsed magnetic therapy in the hip area for 12 weeks (3 sessions per week). Group B (exercise group): received conventional treatment plus moderate-intensity aerobic exercise for 12 weeks (3 sessions per week). Group C (combined magnetic therapy and exercise therapy group): received standard medical treatment plus pulsed magnetic therapy and moderate-intensity aerobic exercise for 12 weeks (3 sessions per week). Bone mineral density was assessed in three groups at baseline by dual-energy X-ray absorptiometry and after 12 weeks of treatment.

RESULTS: The results showed that intragroup analysis revealed a statistically significant increase (p <0.05) in bone mineral density in the 3 study groups. Comparison of the results among the 3 tested groups revealed a significant increase (p <0.05) in mean post-test bone mineral density values in group C compared to group A and group B. There was no significant statistical difference in mean bone mineral density between the two groups A and B after testing.

CONCLUSION: The combination of pulsed magnetotherapy and moderate-intensity aerobic exercise showed a significant improvement in hip bone mineral density compared with either method alone.

Keywords

magnetotherapy / bone mineral density / physical activity / osteoporosis / menopause

Cite this article

Download citation ▾
Yury Y. Byalovsky, Aleksey V. Ivanov, Irina S. Rakitina. Effect of pulsed magnetic therapy and moderate exercise on the course of postmenopausal osteoporosis. Russian Journal of Physiotherapy, Balneology and Rehabilitation, 2022, 21(6): 409-418 DOI:10.17816/rjpbr115280

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Nuti R, Brandi ML, Checchia G, et al. Guidelines for the management of osteoporosis and fragility fractures. Intern Emerg Med. 2019;14(1):85–102. doi: 10.1007/s11739-018-1874-2

[2]

Nuti R., Brandi M.L., Checchia G., et al. Guidelines for the management of osteoporosis and fragility fractures // Intern Emerg Med. 2019. Vol. 14, N 1. Р. 85–102. doi: 10.1007/s11739-018-1874-2

[3]

Harvey NC, Dennison E, Cooper C. Osteoporosis: Impact on health and economics. Nat Rev Rheumatol. 2010;6(2):99–105. doi: 10.1038/nrrheum.2009.260

[4]

Harvey N.C., Dennison E., Cooper C. Osteoporosis: Impact on health and economics // Nat Rev Rheumatol. 2010. Vol. 6, N 2. Р. 99–105. doi: 10.1038/nrrheum.2009.260

[5]

Legrand MA, Chapurlat R. Imminent fracture risk. Joint Bone Spine. 2021;88(3):105105. doi: 10.1016/j.jbspin.2020.105105

[6]

Legrand M.A., Chapurlat R. Imminent fracture risk // Joint Bone Spine. 2021. Vol. 88, N 3. Р. 105105. doi: 10.1016/j.jbspin.2020.105105

[7]

World Health Organization. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: Report of a WHO study group [meeting held in Rome from 22 to 25 June 1992]. WHO; 1994. Available from: https://apps.who.int/iris/handle/10665/39142. Accessed: 15.12.2022.

[8]

World Health Organization. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: Report of a WHO study group [meeting held in Rome from 22 to 25 June 1992]. WHO, 1994. Режим доступа: https://apps.who.int/iris/handle/10665/39142. Дата обращения: 15.12.2022.

[9]

Beck BR, Daly RM, Singh MA, Taaffe DR. Exercise and Sports Science Australia (ESSA) position statement on exercise prescription for the prevention and management of osteoporosis. J Sci Med Sport. 2017;20(5):438–445. doi: 10.1016/j.jsams.2016.10.001

[10]

Beck B.R., Daly R.M., Singh M.A., Taaffe D.R. Exercise and Sports Science Australia (ESSA) position statement on exercise prescription for the prevention and management of osteoporosis // J Sci Med Sport. 2017. Vol. 20, N 5. Р. 438–445. doi: 10.1016/j.jsams.2016.10.001

[11]

Khosla S, Shane EA. Crisis in the treatment of osteoporosis. J Bone Miner Res. 2016;31(8):1485–1487. doi: 10.1002/jbmr.2888

[12]

Khosla S., Shane E.A. Crisis in the treatment of osteoporosis // J Bone Miner Res. 2016. Vol. 31, N 8. Р. 1485–1487. doi: 10.1002/jbmr.2888

[13]

Sallis R. Exercise is medicine: A call to action for physicians to assess and prescribe exercise. Phys Sportsmed. 2015;43(1):22–26. doi: 10.1080/00913847.2015.1001938

[14]

Sallis R. Exercise is medicine: A call to action for physicians to assess and prescribe exercise // Phys Sportsmed. 2015. Vol. 43, N 1. Р. 22–26. doi: 10.1080/00913847.2015.1001938

[15]

Shen WW, Zhao JH. Pulsed electromagnetic fields stimulation affects BMD and local production with disuse osteoporosis. Bioelectromagnetics. 2010;31(2):113–119. doi: 10.1002/bem.20535

[16]

Shen W.W., Zhao J.H. Pulsed electromagnetic fields stimulation affects BMD and local production with disuse osteoporosis // Bioelectromagnetics. 2010. Vol. 31, N 2. Р. 113–119. doi: 10.1002/bem.20535

[17]

Duncan R, Turner CH. Mechanotransduction and the functional response of bone to mechanical strain. Calcif Tissue Int. 1995;57(5):344–358. doi: 10.1007/BF00302070

[18]

Duncan R., Turner C.H. Mechanotransduction and the functional response of bone to mechanical strain // Calcif Tissue Int. 1995. Vol. 57, N 5. Р. 344–358. doi: 10.1007/BF00302070

[19]

Klein-Nulend J, Bacabac RG, Bakker AD. Mechanical loading and how it affects bone cells: The role of the osteocyte cytoskeleton in maintaining our skeleton. Eur Cell Mater. 2012;(24):278–291. doi: 10.22203/ecm.v024a20

[20]

Klein-Nulend J., Bacabac R.G., Bakker A.D. Mechanical loading and how it affects bone cells: The role of the osteocyte cytoskeleton in maintaining our skeleton // Eur Cell Mater. 2012. N 24. Р. 278–291. doi: 10.22203/ecm.v024a20

[21]

McMillan LB, Zengin A, Ebeling PR, Scott D. Prescribing physical activity for the prevention and treatment of osteoporosis in older adults. Healthcare (Basel). 2017;5(4):85. doi: 10.3390/healthcare5040085

[22]

McMillan L.B., Zengin A., Ebeling P.R., Scott D. Prescribing physical activity for the prevention and treatment of osteoporosis in older adults // Healthcare (Basel). 2017. Vol. 5, N 4. Р. 85. doi: 10.3390/healthcare5040085

[23]

Wu S, Yu Q, Lai A, Tian J. Pulsed electromagnetic field induces Ca2+ dependent osteoblastogenesis in C3H10T1/2 mesenchymal cells through the Wnt-Ca2+/Wnt-β-catenin signaling pathway. Biochem Biophys Res Commun. 2018;503(2):715–721. doi: 10.1016/j.bbrc.2018.06.066

[24]

Wu S., Yu Q., Lai A., Tian J. Pulsed electromagnetic field induces Ca2+ dependent osteoblastogenesis in C3H10T1/2 mesenchymal cells through the Wnt-Ca2+/Wnt-β-catenin signaling pathway // Biochem Biophys Res Commun. 2018. Vol. 503, N 2. Р. 715–721. doi: 10.1016/j.bbrc.2018.06.066

[25]

Jansen JH, van der Jagt OP, Punt BJ, et al. Stimulation of osteogenic differentiation in human osteoprogenitor cells by pulsed electromagnetic fields: An in vitro study. BMC Musculoskelet Disord. 2010;(11):188. doi: 10.1186/1471-2474-11-188

[26]

Jansen J.H., van der Jagt O.P., Punt B.J., et al. Stimulation of osteogenic differentiation in human osteoprogenitor cells by pulsed electromagnetic fields: An in vitro study // BMC Musculoskelet Disord. 2010. N 11. Р. 188. doi: 10.1186/1471-2474-11-188

[27]

Mirkovic VB, Banjac L, Dasic Z, Dapcevic M. Non-pharmacological treatment of diabetic polyneuropathy by pulse electromagnetic field. Health Med. 2012;6(4):1291–1295.

[28]

Mirkovic V.B., Banjac L., Dasic Z., Dapcevic M. Non-pharmacological treatment of diabetic polyneuropathy by pulse electromagnetic field // Health Med. 2012. Vol. 6, N 4. Р. 1291–1295.

[29]

Androjna C, Fort B, Zborowski M, Midura RJ. Pulsed electromagnetic field treatment enhances healing callus biomechanical properties in an animal model of osteoporotic fracture. Bioelectromagnetics. 2014;35(6):396–405. doi: 10.1002/bem.21855

[30]

Androjna C., Fort B., Zborowski M., Midura R.J. Pulsed electromagnetic field treatment enhances healing callus biomechanical properties in an animal model of osteoporotic fracture // Bioelectromagnetics. 2014. Vol. 35, N 6. Р. 396–405. doi: 10.1002/bem.21855

[31]

Tu KN, Lie JD, Wan CK, et al. Osteoporosis: A review of treatment options. Pharm Ther. 2018;43(2):92.

[32]

Tu K.N., Lie J.D., Wan C.K., et al. Osteoporosis: A review of treatment options // Pharm Ther. 2018. Vol. 43, N 2. Р. 92.

[33]

Watts NB, Camacho PM, Lewiecki EM, Petak SM. American Association of Clinical Endocrinologists / American College of Endocrinology clinical practice guidelines for the diagnosis and treatment of postmenopausal osteoporosis-2020 update. Endocr Pract. 2020;27(4):379–380. doi: 10.1016/j.eprac.2021.02.001

[34]

Watts NB, Camacho PM, Lewiecki EM, Petak SM. American Association of Clinical Endocrinologists / American College of Endocrinology clinical practice guidelines for the diagnosis and treatment of postmenopausal osteoporosis-2020 update // Endocr Pract. 2020. Vol. 27, N 4. Р. 379–380. doi: 10.1016/j.eprac.2021.02.001

[35]

Doroudinia A, Colletti PM. Bone mineral measurements. Clin Nucl Med. 2015;40(8):647–657. doi: 10.1097/RLU.0000000000000860

[36]

Doroudinia A., Colletti P.M. Bone mineral measurements // Clin Nucl Med. 2015. Vol. 40, N 8. Р. 647–657. doi: 10.1097/RLU.0000000000000860

[37]

Byalovsky YY, Ivanov AV, Rakitina IS. Effects of a pulsed electromagnetic field on the course of osteoporosis in postmenopausal women. Russ J Physial Therapy, Balneotherapy Rehabilitation. 2021;20(5):385–395. (In Russ). doi: 10.17816/rjpbr107453

[38]

Бяловский Ю.Ю., Иванов А.В., Ракитина И.С. Эффекты импульсного электромагнитного поля на течение остеопороза в постменопаузе у женщин // Физиотерапия, бальнеология и реабилитация. 2021. Т. 20, № 5. С. 385–395. doi: 10.17816/rjpbr107453

[39]

Karvonen MJ, Kentala E, Mustala O. The effects of training on heart rate: A longitudinal study. Ann Med Exp Bil Fenn. 1957;35(3):307–315.

[40]

Karvonen M.J., Kentala E., Mustala O. The effects of training on heart rate: A longitudinal study // Ann Med Exp Bil Fenn. 1957. Vol. 35, N 3. Р. 307–315.

[41]

Alghadir AH, Aly FA, Gabr SA. Effect of moderate aerobic training on bone metabolism indices among adult humans. Pak J Med Sci. 2014;30(4):840–844. doi: 10.12669/pjms.304.4624

[42]

Alghadir A.H., Aly F.A., Gabr S.A. Effect of moderate aerobic training on bone metabolism indices among adult humans // Pak J Med Sci. 2014. Vol. 30, N 4. Р. 840–844. doi: 10.12669/pjms.304.4624

[43]

Zhu S, He H, Zhang C, et al. Effects of pulsed electromagnetic fields on postmenopausal osteoporosis. Bioelectromagnetics. 2017;38(6):406–624. doi: 10.1002/bem.22065

[44]

Zhu S., He H., Zhang C., et al. Effects of pulsed electromagnetic fields on postmenopausal osteoporosis // Bioelectromagnetics. 2017. Vol. 38, N 6. Р. 406–424. doi: 10.1002/bem.22065

[45]

Petecchia L, Sbrana F, Utzeri R, et al. Electro-magnetic field promotes osteogenic differentiation of BM-hMSCs through a selective action on Ca2+ related mechanisms. Sci Rep. 2015;(5):13856. doi: 10.1038/srep13856

[46]

Petecchia L., Sbrana F., Utzeri R., et al. Electro-magnetic field promotes osteogenic differentiation of BM-hMSCs through a selective action on Ca2+-related mechanisms // Sci Rep. 2015. N 5. Р. 13856. doi: 10.1038/srep13856

[47]

Vincenzi F, Targa M, Corciulo C, et al. Pulsed electromagnetic fields increased the anti-inflammatory effect of A2A and A3 adenosine receptors in human T/C-28a2 chondrocytes and hFOB 1.19 osteoblasts. PLoS One. 2013;8(5):e65561. doi: 10.1371/journal.pone.0065561

[48]

Vincenzi F., Targa M., Corciulo C., et al. Pulsed electromagnetic fields increased the anti-inflammatory effect of A2A and A3 adenosine receptors in human T/C-28a2 chondrocytes and hFOB 1.19 osteoblasts // PLoS One. 2013. Vol. 8, N 5. Р. e65561. doi: 10.1371/journal.pone.0065561

[49]

Carpenter D, Ayrapntyan S. Biological effects of electric and magnetic fields. San Diego, CA: Academic Press; 2004. Р. 3–7.

[50]

Carpenter D., Ayrapntyan S. Biological effects of electric and magnetic fields. San Diego, CA: Academic Press, 2004. Р. 3–7.

[51]

Fitzsimmans R, Baylink J. Growth factors and electromagnetic fields in bone. Clin Plast Surg. 1994;21(3):401–406.

[52]

Fitzsimmans R., Baylink J. Growth factors and electromagnetic fields in bone // Clin Plast Surg. 1994. Vol. 21, N 3. Р. 401–406.

[53]

Ongaro A, Pellati A, Bagheri L, et al. Pulsed electromagnetic fields stimulate osteogenic differentiation in human bone marrow and adipose tissue derived mesenchymal stem cells. Bioelectromagnetics. 2014;35(6):426–436. doi: 10.1002/bem.21862

[54]

Ongaro A., Pellati A., Bagheri L., et al. Pulsed electromagnetic fields stimulate osteogenic differentiation in human bone et al marrow and adipose tissue derived mesenchymal stem cells // Bioelectromagnetics. 2014. Vol. 35, N 6. Р. 426–436. doi: 10.1002/bem.21862

[55]

Jing D, Cai J, Shen G, et al. The preventive effects of pulsed electromagnetic fields on diabetic bone loss in streptozotocin-treated rats. Osteoporos Int. 2011;22(6):1885–1895. doi: 10.1007/s00198-010-1447-3

[56]

Jing D., Cai J., Shen G., et al. The preventive effects of pulsed electromagnetic fields on diabetic bone loss in streptozotocin-treated rats // Osteoporos Int. 2011. Vol. 22, N 6. Р. 1885–1895. doi: 10.1007/s00198-010-1447-3

[57]

Fu YC, Lin CC, Chang JK, et al. A novel single pulsed electromagnetic field stimulates osteogenesis of bone marrow mesenchymal stem cells and bone repair. PLoS One. 2014;9(4):e91581. doi: 10.1371/journal.pone.0091581

[58]

Fu Y.C., Lin C.C., Chang J.K., et al. A novel single pulsed electromagnetic field stimulates osteogenesis of bone marrow mesenchymal stem cells and bone repair // PLoS One. 2014. Vol. 9, N 4. e91581. doi: 10.1371/journal.pone.0091581

[59]

Van der Jagt OP, van der Linden JC, Schaden W, et al. Unfocused extracorporeal shock wave therapy as potential treatment for osteoporosis. J Orthop Res. 2009;27(11):1528–1533. doi: 10.1002/jor.20910

[60]

Van der Jagt O.P., van der Linden J.C., Schaden W., et al. Unfocused extracorporeal shock wave therapy as potential treatment for osteoporosis // J Orthop Res. 2009. Vol. 27, N 11. Р. 1528–1533. doi: 10.1002/jor.20910

[61]

Banfi G, Colombini A, Lombardi G, Lubkowska A. Metabolic markers in sports medicine. Adv Clin Chem. 2012;(56):1–54. doi: 10.1016/b978-0-12-394317-0.00015-7

[62]

Banfi G., Colombini A., Lombardi G., Lubkowska A. Metabolic markers in sports medicine // Adv Clin Chem. 2012. N 56. Р. 1–54. doi: 10.1016/b978-0-12-394317-0.00015-7

[63]

Gonzalez-Aguero A, Vicente-Rodriguez G, Gomez-Cabello A, et al. A 21-week bone deposition promoting exercise programme increases bone mass in youths with Down syndrome. Dev Med Child Neurol. 2012;54(6):552–556. doi: 10.1111/j.1469-8749.2012.04262.x

[64]

Gonzalez-Aguero A., Vicente-Rodriguez G., Gomez-Cabello A., et al. A 21-week bone deposition promoting exercise programme increases bone mass in youths with Down syndrome // Dev Med Child Neurol. 2012. Vol. 54, N 6. Р. 552–556. doi: 10.1111/j.1469-8749.2012.04262.x

[65]

Rossouw J, Anderson G, Prentice R, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: Principal results from the Women's Health Initiative randomized controlled trial. JAMA. 2002;288(3):321–33. doi: 10.1001/jama.288.3.321

[66]

Rossouw J., Anderson G., Prentice R., et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: Principal results from the Women's Health Initiative randomized controlled trial // JAMA. 2002. Vol. 288, N 3. Р. 321–333. doi: 10.1001/jama.288.3.321

[67]

Neil D, Ronald C. Resistance training and type 2 diabetes considerations for implementation at the population level. Diabetes Care. 2006;29(8):1933–1941. doi: 10.2337/dc05-1981

[68]

Neil D., Ronald C. Resistance training and type 2 diabetes considerations for implementation at the population level // Diabetes Care. 2006. Vol. 29, N 8. Р. 1933–1941. doi: 10.2337/dc05-1981

[69]

Beekley MD, Sato Y, Abe T. KAATSU-walk training increases serum bone-specific alkaline phosphatase in young men. Int J KAATSU Train Res. 2005;1(2):77–81. doi: 10.3806/ijktr.1.77

[70]

Beekley M.D., Sato Y., Abe T. KAATSU-walk training increases serum bone-specific alkaline phosphatase in young men // Int J KAATSU Train Res. 2005. Vol. 1, N 2. Р. 77–81. doi: 10.3806/ijktr.1.77

[71]

Pourvaghar MJ. The effect of 2 month-regular aerobic training on students’ rest time serum calcium, phosphorus and magnesium variations. Gazzeta Medica Italiana. 2008;167(3):105–108.

[72]

Pourvaghar M.J. The effect of 2 month-regular aerobic training on students’ rest time serum calcium, phosphorus and magnesium variations // Gazzeta Medica Italiana. 2008. Vol. 167, N 3. Р. 105–108.

[73]

Martyn-St James M, Carroll S. High-intensity resistance training and postmenopausal bone loss: A meta-analysis. Osteoporos Int. 2006;17(8):1225–1240. doi: 10.1007/s00198-006-0083-4

[74]

Martyn-St James M., Carroll S. High-intensity resistance training and postmenopausal bone loss: A meta-analysis // Osteoporos Int. 2006. Vol. 17, N 8. Р. 1225–1240. doi: 10.1007/s00198-006-0083-4

[75]

Martyn-St James M, Carroll S. Meta-analysis of walking for preservation of bone mineral density in postmenopausal women. Bone. 2008;43(3):521–531. doi: 10.1016/j.bone.2008.05.012

[76]

Martyn-St James M., Carroll S. Meta-analysis of walking for preservation of bone mineral density in postmenopausal women // Bone. 2008. Vol. 43, N 3. Р. 521–531. doi: 10.1016/j.bone.2008.05.012

[77]

Chodzko-Zajko W, Proctor D, Fiatarone Singh M, et al. American College of Sports Medicine position stand. Exercise and physical activity for older adults. Med Sci Sports Exerc. 2009;41(7):1510–1530. doi: 10.1249/MSS.0b013e3181a0c95c

[78]

Chodzko-Zajko W., Proctor D., Fiatarone Singh M., et al. American College of Sports Medicine position stand. Exercise and physical activity for older adults // Med Sci Sports Exerc. 2009. Vol. 41, N 7. Р. 1510–1530. doi: 10.1249/MSS.0b013e3181a0c95c

[79]

Marques E, Mota J, Carvalho J. Exercise effects on bone mineral density in older adults: A meta-analysis of randomized controlled trials. Age. 2012;34(6):1493–1515. doi: 10.1007/s11357-011-9311-8

[80]

Marques E., Mota J., Carvalho J. Exercise effects on bone mineral density in older adults: A meta-analysis of randomized controlled trials // Age. 2012. Vol. 34, N 6. Р. 1493–1515. doi: 10.1007/s11357-011-9311-8

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/