Plasma medicine: Prospects and experience of application of low-temperature argon plasma in medical rehabilitation

Valeriia O. Kozyreva

Russian Journal of Physiotherapy, Balneology and Rehabilitation ›› 2022, Vol. 21 ›› Issue (5) : 359 -367.

PDF
Russian Journal of Physiotherapy, Balneology and Rehabilitation ›› 2022, Vol. 21 ›› Issue (5) : 359 -367. DOI: 10.17816/rjpbr115273
Review
review-article

Plasma medicine: Prospects and experience of application of low-temperature argon plasma in medical rehabilitation

Author information +
History +
PDF

Abstract

Plasma medicine is a dynamically developing field of science based on the physical and chemical properties of air-plasma flows.

Low-temperature plasma is a partially ionized gas with a temperature of about 40ºC, the synergistic interaction of its active substances is a successful method of sterilization, decontamination of wound surfaces, treatment of surgical and burn wounds. Due to the combined action, over the past decades, low-temperature plasma has proven itself in purulent surgery, dermatology, and dentistry, but in addition, it has opened up great prospects in oncology. Possessing the effects of inhibiting inflammatory processes, stimulating regeneration processes, improving microcirculation and tissue metabolism, plasma flows are also used in medical rehabilitation.

The review considers the possibilities of using low-temperature plasma in various fields of medicine, as well as the effect of plasma flows on basic cellular processes and various forms of cell death. The experience of using low-temperature argon plasma in the complex rehabilitation of patients with malignant neoplasms is presented.

Literature sources from Russian and foreign databases (Elibrary, PubMed) on the topic of low-temperature plasma application in medical practice were analyzed. The analysis showed that plasma medicine is a rapidly developing modern direction, opening up new opportunities in healthcare.

Further studies of plasma streams are needed to unlock their full therapeutic potential and fully understand the mechanisms of action.

Keywords

medical rehabilitation / cold atmospheric plasma / mammary cancer / radiation reactions

Cite this article

Download citation ▾
Valeriia O. Kozyreva. Plasma medicine: Prospects and experience of application of low-temperature argon plasma in medical rehabilitation. Russian Journal of Physiotherapy, Balneology and Rehabilitation, 2022, 21(5): 359-367 DOI:10.17816/rjpbr115273

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Schuster M, Seebauer C, Rutkowski R, et al. Visible tumor surface response to physical plasma and apoptotic cell kill in head and neck cancer. J Craniomaxillofac Surg. 2016;44(9):1445–1452. doi: 10.1016/j.jcms.2016.07.001

[2]

Schuster M., Seebauer C., Rutkowski R., et al. Visible tumor surface response to physical plasma and apoptotic cell kill in head and neck cancer // J Craniomaxillofac Surg. 2016. Vol. 44, N 9. P. 1445–1452. doi: 10.1016/j.jcms.2016.07.001

[3]

Weltmann KD, von Woedtke T. Plasma medicine — current state of research and medical application. Plasma Physics Controlled Fusion. 2016;59(1):014031. doi: 10.1088/0741-3335/59/1/014031

[4]

Weltmann K.D., von Woedtke T. Plasma medicine — current state of research and medical application // Plasma Physics Controlled Fusion. 2016. Vol. 59, N 1. P. 014031. doi: 10.1088/0741-3335/59/1/014031

[5]

Chauvin J, Judée F, Yousfi M, et al. Analysis of reactive oxygen and nitrogen species generated in three liquid media by low temperature helium plasma jet. Sci Rep. 2017;7(1):45–62. doi: 10.1038/s41598-017-04650-4

[6]

Chauvin J., Judee F., Yousfi M., et al. Analysis of reactive oxygen and nitrogen species generated in three liquid media by low temperature helium plasma jet // Sci Rep. 2017. Vol. 7, N 1. Р. 45-62. doi: 10.1038/s41598-017-04650-4

[7]

Dunnill C, Patton T, Brennan J, et al. Reactive oxygen species (ROS) and wound healing: The functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int Wound J. 2017;14(1):89–96. doi: 10.1111/iwj.12557

[8]

Dunnill C., Patton T., Brennan J., et al. Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process // Int Wound J. 2017. Vol. 14, N 1. P. 89-96. doi: 10.1111/iwj.12557

[9]

Graves DB. Mechanisms of plasma medicine: Coupling plasma physics, biochemistry, and biology. IEEE Trans Radiat Plasma Med Sci. 2017;1(4):281–292. doi: 10.1109/TRPMS.2017.2710880

[10]

Graves D.B. Mechanisms of plasma medicine: Coupling plasma physics, biochemistry, and biology // IEEE Trans Radiat Plasma Med Sci. 2017. Vol. 1, N 4. P. 281–292. doi: 10.1109/TRPMS.2017.2710880

[11]

Balan GG, Rosca I, Ursu EL, et al. Plasma-activated water: A new and effective alternative for duodenoscope reprocessing. Infect Drug Resist. 2018;17(11):727–733. doi: 10.2147/IDR.S159243

[12]

Balan G.G., Rosca I., Ursu E.L., et al. Plasma-activated water: A new and effective alternative for duodenoscope reprocessing // Infect Drug Resist. 2018. Vol. 17, N 11. P. 727-733. doi: 10.2147/IDR.S159243

[13]

Nicol MJ, Brubaker TR, Honish BJ, et al. Antibacterial effects of low-temperature plasma generated by atmospheric-pressure plasma jet are mediated by reactive oxygen species. Sci Rep. 2020;10(1):30–66. doi: 10.1038/s41598-020-59652-6

[14]

Nicol M.J., Brubaker T.R., Honish B.J., et al. Antibacterial effects of low-temperature plasma generated by atmospheric-pressure plasma jet are mediated by reactive oxygen species // Sci Rep. 2020. Vol. 10, N 1. Р. 30-66. doi: 10.1038/s41598-020-59652-6

[15]

Zhukhovitsky VG, Kazakova MV, Sysolyatina EV, et al. Bactericidal effect of low-temperature plasma against helicobacter pylori in vitro. Exp Clin Gastroenterol. 2019;163(3):51–57. (In Russ). doi: 10.31146/1682-8658-ecg-163-3-51-57

[16]

Жуховицкий В.Г., Казакова М.В., Сысолятина Е.В., и др. Бактерицидный эффект низкотемпературной плазмы в отношении Helicobacter pylori in vitro // Экспериментальная и клиническая гастроэнтерология. 2019. Т. 163, № 3. С. 51–57. doi: 10.31146/1682-8658-ecg-163-3-51-57

[17]

Plattfaut I, Besser M, Severing AL, et al. Plasma medicine and wound management: Evaluation of the antibacterial efficacy of a medically certified cold atmospheric argon plasma jet. Int J Antimicrob Agents. 2021;57(5):106319. doi: 10.1016/j.ijantimicag.2021.106319

[18]

Plattfaut I., Besser M., Severing A.L., et al. Plasma medicine and wound management: Evaluation of the antibacterial efficacy of a medically certified cold atmospheric argon plasma jet // Int J Antimicrob Agents. 2021. Vol. 57, N 5. P. 106319. doi: 10.1016/j.ijantimicag.2021.106319

[19]

Liu T, Wu L, Babu JP, et al. Effects of atmospheric non-thermal argon/oxygen plasma on biofilm viability and hydrophobicity of oral bacteria. Am J Dent. 2017;30(1):52–56.

[20]

Liu T., Wu L., Babu J.P., et al. Effects of atmospheric non-thermal argon/oxygen plasma on biofilm viability and hydrophobicity of oral bacteria // Am J Dent. 2017. Vol. 30, N 1. P. 52-56.

[21]

Strohal R, Dietrich S, Mittlböck M, Hämmerle G. Chronic wounds treated with cold atmospheric plasmajet versus best practice wound dressings: A multicenter, randomized, non-inferiority trial. Sci Rep. 2022;12(1):36–45. doi: 10.1038/s41598-022-07333-x

[22]

Strohal R., Dietrich S., Mittlbock M., Hämmerle G. Chronic wounds treated with cold atmospheric plasmajet versus best practice wound dressings: A multicenter, randomized, non-inferiority trial // Sci Rep. 2022. Vol. 12, N 1. P. 36-45. doi: 10.1038/s41598-022-07333-x

[23]

Stratmann B, Costea TC, Nolte C, et al. Effect of cold atmospheric plasma therapy vs standard therapy placebo on wound healing in patients with diabetic foot ulcers: A randomized clinical trial. JAMA Netw Open. 20201;3(7):e2010411. doi: 10.1001/jamanetworkopen.2020.10411

[24]

Stratmann B., Costea T.C., Nolte C., et al. Effect of cold atmospheric plasma therapy vs standard therapy placebo on wound healing in patients with diabetic foot ulcers: A randomized clinical trial // JAMA Netw Open. 2020. Vol. 3, N 7. P. 2010411. doi: 10.1001/jamanetworkopen.2020.10411

[25]

Shulutko AM, Osmanov EG, Chanturiya MO, Macharadze AD. The plasma flows in surgical practice. Med J Russ Federation. 2018;24(2):93–98. (In Russ). doi: 10.18821/0869-2106-2018-24-2-93-98

[26]

Шулутко А.М., Османов Э.Г., Чантурия М.О., Мачарадзе А.Д. Плазменные потоки в хирургической практике // Российский медицинский журнал. 2018. Т. 24, № 2. C. 93-98. doi: 10.18821/0869-2106-2018-24-2-93-98

[27]

Arndt S, Unger P, Wacker E, et al. Cold atmospheric plasma (CAP) changes gene expression of key molecules of the wound healing machinery and improves wound healing in vitro and in vivo. PLoS One. 2013;8(11):79325. doi: 10.1371/journal.pone.0079325

[28]

Arndt S., Unger P., Wacker E., et al. Cold atmospheric plasma (CAP) changes gene expression of key molecules of the wound healing machinery and improves wound healing in vitro and in vivo // PLoS One. 2013. Vol. 8, N 11. P. 79325. doi: 10.1371/journal.pone.0079325

[29]

Chatraie M, Torkaman G, Khani M, et al. In vivo study of non-invasive effects of non-thermal plasma in pressure ulcer treatment. Sci Rep. 2018;8(1):56–21. doi: 10.1038/s41598-018-24049-z

[30]

Chatraie M., Torkaman G., Khani M., et al. In vivo study of non-invasive effects of non-thermal plasma in pressure ulcer treatment // Sci Rep. 2018. Vol. 8, N 1. P. 56-21. doi: 10.1038/s41598-018-24049-z

[31]

Cheng KY, Lin ZH, Cheng YP, et al. Wound healing in streptozotocin-induced diabetic rats using atmospheric-pressure argon plasma jet. Sci Rep. 2018;8(1):12–14. doi: 10.1038/s41598-018-30597-1

[32]

Cheng K.Y., Lin Z.H., Cheng Y.P., et al. Wound healing in streptozotocin-induced diabetic rats using atmospheric-pressure argon plasma jet // Sci Rep. 2018. Vol. 8, N 1. P. 12214. doi: 10.1038/s41598-018-30597-1

[33]

Kubinova S, Zaviskova K, Uherkova LP, et al. Non-thermal air plasma promotes the healing of acute skin wounds in rats. Sci Rep. 2017;7:45183. (In Russ). doi: 10.1038/srep45183

[34]

Kubinova S., Zaviskova K., Uherkova L., et al. Non-thermal air plasma promotes the healing of acute skin wounds in rats // Sci Rep. 2017. Vol. 24, N 7. P. 45183. doi: 10.1038/srep45183

[35]

Lou BS, Hsieh JH, Chen CM, et al. Helium/Argon-Generated cold atmospheric plasma facilitates cutaneous wound healing. Front Bioeng Biotechnol. 2020;8(1):683. doi: 10.3389/fbioe.2020.00683

[36]

Lou B.S., Hsieh J.H., Chen C.M., et al. Helium/Argon-Generated cold atmospheric plasma facilitates cutaneous wound healing // Front Bioeng Biotechnol. 2020. Vol. 8, N 1. P. 683. doi: 10.3389/fbioe.2020.00683

[37]

Frolov SA, Kuzminov AM, Vyshegorodtsev DV, et al. The possibilities of using low-temperature argon plasma in the treatment of postoperative and long-term non-healing wounds. Russ J Gastroenterol Hepatol Coloproctol. 2019;29(6):15–21. (In Russ). doi: 10.22416/1382-4376-2019-29-6-15-21

[38]

Фролов С.А., Кузьминов А.М., Вышегородцев Д.В., и др. Возможности применения низкотемпературной аргоновой плазмы в лечении послеоперационных и длительно незаживающих ран // Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2019. Т. 29, № 6. С. 15–21. doi: 10.22416/1382-4376-2019-29-6-15-21

[39]

Zinovyev EV, Tsygan VN, Asadulayev MS, et al. Possibilities of use of arc-type discharge low-temperature air plasma of atmospheric pressure for burn wound treatment. Bulletin Russ Military Med Academy. 2018;20(2):171–176. (In Russ). doi: 10.17816/brmma12315

[40]

Зиновьев Е.В., Цыган В.Н., Асадулаев М.С., и др. Возможности применения низкотемпературной воздушной плазмы дугового разряда атмосферного давления для лечения ожоговых ран // Вестник Российской Военно-медицинской академии. 2018. Т. 20, № 2. C. 171-176. doi: 10.17816/brmma12315

[41]

Osmanov KF, Zinoviev EV, Bogdanov SB. Air plasma as a physical method to improve the treatment of burn wounds. Med Theory Pract. 2020;4(3):125–129. (In Russ).

[42]

Османов К.Ф., Зиновьев Е.В., Богданов С.Б. Воздушная плазма как физический метод улучшения лечения ожоговых ран // Медицина: теория и практика. 202. Т. 4, № 3. С. 125-129.

[43]

Hartwig S, Doll C, Voss JO, et al. Treatment of wound healing disorders of radial forearm free flap donor sites using cold atmospheric plasma: A proof of concept. J Oral Maxillofacial Sur. 2017;75(2):429–435. doi: 10.1016/j.joms.2016.08.011

[44]

Hartwig S., Doll C., Voss J.O., et al. Treatment of wound healing disorders of radial forearm free flap donor sites using cold atmospheric plasma: A proof of concept // J Oral Maxillofacial Sur. 2017. Vol. 75, N 2. P. 429–435. doi: 10.1016/j.joms.2016.08.011

[45]

Kuzminov AM, Frolov SA, Vyshegorodtsev DV, et al. The first experience of using low-temperature argon plasma in the treatment of wounds after open hemorrhoidectomy. Sur News. 2020;28(5):543–550. (In Russ). doi: 10.18484/2305-0047.2020.5.543

[46]

Кузьминов А.М., Фролов С.А., Вышегородцев Д.В., и др. Первый опыт применения низкотемпературной аргоновой плазмы в лечении ран после открытой геморроидэктомии // Новости хирургии. 2020. Т. 28, № 5. С. 543-550. doi: 10.18484/2305-0047.2020.5.543

[47]

Frolov SA, Kuzminov AM, Vyshegorodtsev DV, et al. Low-temperature argon plasma in the wounds treatment after hemorrhoidectomy. Koloproktologia. 2021;20(3):51–61. (In Russ). doi: 10.33878/2073-7556-2021-20-3-51-61

[48]

Фролов С.А., Кузьминов А.М., Вышегородцев Д.В., и др. Применение низкотемпературной аргоновой плазмы в лечении ран после открытой геморроидэктомии // Колопроктология. 2021. Т. 20, № 3. С. 51-61. doi: 10.33878/2073-7556-2021-20-3-51-61

[49]

Bernhardt T, Semmler ML, Schäfer M, et al. Plasma medicine: applications of cold atmospheric pressure plasma in dermatology. Oxid Med Cell Longev. 2019;(3):3873928. doi: 10.1155/2019/3873928

[50]

Bernhardt T., Semmler M.L., Schäfer M., et al. Plasma medicine: Applications of cold atmospheric pressure plasma in dermatology // Oxid Med Cell Longev. 2019. N 3. P. 3873928. doi: 10.1155/2019/3873928

[51]

He Z, Liu K, Scally L, et al. Cold atmospheric plasma stimulates clathrin-dependent endocytosis to repair oxidised membrane and enhance uptake of nanomaterial in glioblastoma multiforme cells. Sci Rep. 2020;10(1):69–85. doi: 10.1038/s41598-020-63732-y

[52]

He Z., Liu K., Scally L., et al. Cold atmospheric plasma stimulates clathrin-dependent endocytosis to repair oxidised membrane and enhance uptake of nanomaterial in glioblastoma multiforme cells // Sci Rep. 2020. Vol. 10, N 1. P. 69-85. doi: 10.1038/s41598-020-63732-y

[53]

Biscop E, Lin A, Boxem WV, et al. Influence of cell type and culture medium on determining cancer selectivity of cold atmospheric plasma treatment. Cancers (Basel). 2019;11(9):12–87. doi: 10.3390/cancers11091287

[54]

Biscop E., Lin A., Boxem W.V., et al. Influence of cell type and culture medium on determining cancer selectivity of cold atmospheric plasma treatment // Cancers (Basel). 2019. Vol. 11, N 9. P. 12-87. doi: 10.3390/cancers11091287

[55]

Van Loenhout J, Flieswasser T, Freire Boullosa L, et al. Cold atmospheric plasma-treated PBS eliminates immunosuppressive pancreatic stellate cells and induces immunogenic cell death of pancreatic cancer cells. Cancers (Basel). 2019;11(10):15–97. doi: 10.3390/cancers11101597

[56]

Van Loenhout J., Flieswasser T., Freire Boullosa L., et al. Cold atmospheric plasma-treated PBS eliminates immunosuppressive pancreatic stellate cells and induces immunogenic cell death of pancreatic cancer cells // Cancers (Basel). 2019. Vol. 11, N 10. Р. 1597. doi: 10.3390/cancers11101597

[57]

Lin A, Stapelmann K, Bogaerts A. Advances in plasma oncology toward clinical translation. Cancers. 2020;12(11):32–83. doi: 10.3390/cancers12113283

[58]

Lin A., Stapelmann K., Bogaerts A. Advances in plasma oncology toward clinical translation // Cancers. 2020. Vol. 12, N 11. P. 32-83. doi: 10.3390/cancers12113283

[59]

Motaln H, Recek N, Rogelj B. Intracellular responses triggered by cold atmospheric plasma and plasma-activated media in cancer cells. Molecules. 2021;26(5):1336. doi: 10.3390/molecules26051336

[60]

Motaln H., Recek N., Rogelj B. Intracellular responses triggered by cold atmospheric plasma and plasma-activated media in cancer cells // Molecules. 2021. Vol. 26, N 5. P. 13-36. doi: 10.3390/molecules26051336

[61]

Vaquero J, Judée F, Vallette M, et al. Cold-Atmospheric plasma induces tumor cell death in preclinical in vivo and in vitro models of human cholangiocarcinoma. Cancers (Basel). 2020;12(5):1280. doi: 10.3390/cancers12051280

[62]

Vaquero J., Judee F., Vallette M., et al. Cold-Atmospheric plasma induces tumor cell death in preclinical in vivo and in vitro models of human cholangiocarcinoma // Cancers (Basel). 2020. Vol. 12, N 5. P. 12-80. doi: 10.3390/cancers12051280

[63]

Zubor P, Wang Y, Liskova A, et al. Cold atmospheric pressure plasma (CAP) as a new tool for the management of vulva cancer and vulvar premalignant lesions in gynaecological oncology. Int J Mol Sci. 2020;21(21):7988. doi: 10.3390/ijms21217988

[64]

Zubor P., Wang Y., Liskova A., et al. Cold atmospheric pressure plasma (cap) as a new tool for the management of vulva cancer and vulvar premalignant lesions in gynaecological oncology // Int J Mol Sci. 2020. Vol. 21, N 21. P. 7988. doi: 10.3390/ijms21217988

[65]

Xu D, Ning N, Xu Y, et al. Effect of cold atmospheric plasma treatment on the metabolites of human leukemia cells. Cancer Cell Int. 2019;19(1):135. doi: 10.1186/s12935-019-0856-4

[66]

Xu D., Ning N., Xu Y., et al. Effect of cold atmospheric plasma treatment on the metabolites of human leukemia cells // Cancer Cell Int. 2019. Vol. 17, N 19. P. 135. doi: 10.1186/s12935-019-0856-4

[67]

Alimohammadi M, Golpur M, Sohbatzadeh F, et al. Cold atmospheric plasma is a potent tool to improve chemotherapy in melanoma in vitro and in vivo. Biomolecules. 2020;10(7):1011. doi: 10.3390/biom10071011

[68]

Alimohammadi M., Golpur M., Sohbatzadeh F., et al. Cold atmospheric plasma is a potent tool to improve chemotherapy in melanoma in vitro and in vivo // Biomolecules. 2020. Vol. 10, N 7. P. 1011. doi: 10.3390/biom10071011

[69]

Gümbel D, Bekeschus S, Gelbrich N, et al. Cold atmospheric plasma in the treatment of osteosarcoma. Int J Mol Sci. 2017;18(9):2004. doi: 10.3390/ijms18092004

[70]

Gümbel D., Bekeschus S., Gelbrich N., et al. Cold atmospheric plasma in the treatment of osteosarcoma // Int J Mol Sci. 2017. Vol. 18, N 9. P. 2004. doi: 10.3390/ijms18092004

[71]

Jo A, Joh HM, Chung TH, Chung JW. Anticancer effects of plasma-activated medium produced by a microwave-excited atmospheric pressure argon plasma jet. Oxid Med Cell Longev. 2020;(2020):4205640. doi: 10.1155/2020/4205640

[72]

Jo A., Joh H.M., Chung T.H., Chung J.W. Anticancer effects of plasma-activated medium produced by a microwave-excited atmospheric pressure argon plasma jet // Oxid Med Cell Longev. 2020. N 2020. P. 4205640. doi: 10.1155/2020/4205640

[73]

Jan D, Cui H, Zhu W, et al. The specific vulnerabilities of cancer cells to the cold atmospheric plasma-stimulated solutions. Sci Rep. 2017;7(1):4479. doi: 10.1038/s41598-017-04770-x

[74]

Jan D., Cui H., Zhu W., et al. The specific vulnerabilities of cancer cells to the cold atmospheric plasma-stimulated solutions // Sci Rep. 2017. Vol. 7, N 1. P. 44-79. doi: 10.1038/s41598-017-04770-x

[75]

Sole-Marti X, Espona-Noguera A, Ginebra MP, Canal C. Plasma-Conditioned liquids as anticancer therapies in vivo: Current state and future directions. Cancers (Basel). 2021;13(3):452. doi: 10.3390/cancers13030452

[76]

Sole-Marti X., Espona-Noguera A., Ginebra M.P., Canal C. Plasma-Conditioned liquids as anticancer therapies in vivo: Current state and future directions // Cancers (Basel). 2021. Vol. 13, N 3. P. 452. doi: 10.3390/cancers13030452

[77]

Tornin J, Mateu-Sanz M, Rodríguez A, et al. Pyruvate plays a main role in the antitumoral selectivity of cold atmospheric plasma in osteosarcoma. Sci Rep. 2019;9(1):10681. doi: 10.1038/s41598-019-47128-1

[78]

Tornin J., Mateu-Sanz M., Rodríguez A., et al. Pyruvate plays a main role in the antitumoral selectivity of cold atmospheric plasma in osteosarcoma // Sci Rep. 2019. Vol. 9, N 1. P. 10681. doi: 10.1038/s41598-019-47128-1

[79]

Chen CY, Cheng YC, Cheng YJ. Synergistic effects of plasma-activated medium and chemotherapeutic drugs in cancer treatment. J Physics D Applied Physics. 2020;51(13):aaafc4. doi: 10.1088/1361-6463/aaafc4

[80]

Chen C.Y., Cheng Y.C., Cheng Y.J. Synergistic effects of plasma-activated medium and chemotherapeutic drugs in cancer treatment // J Physics D Applied Physics. 2018. Vol. 51, N 13. Р. еaaafc4. doi: 10.1088/1361-6463/aaafc4

[81]

Evstigneeva IS, Gerasimenko MY, Esimova IE. Application of physical factors at the first stage of medical rehabilitation after radical surgical treatment of breast cancer. Bulletin Rehabilitation Med. 2022;21(2):127–138. (In Russ). doi: 10.38025/2078-1962-2022-21-2-127-138

[82]

Евстигнеева И.С., Герасименко М.Ю., Есимова И.Е. Применение физических факторов на I этапе медицинской реабилитации после радикального хирургического лечения рака молочной железы // Вестник восстановительной медицины. 2022. Т. 21, № 2. С. 127-138. doi: 10.38025/2078-1962-2022-21-2-127-138

[83]

Gerasimenko MY, Evstigneeva IS, Kozyreva VO. The use of low-temperature argon plasma and general magnetotherapy in the early postoperative period after surgical treatment of breast cancer. Physiotherapist. 2022;1(1):47–58. (In Russ). doi: 10.33920/med-14-2202-06

[84]

Герасименко М.Ю., Евстигнеева И.С., Козырева В.О. Применение низкотемпературной аргоновой плазмы и общей магнитотерапии в раннем послеоперационном периоде после хирургического лечения рака молочной железы // Физиотерапевт. 2022. № 1. С. 47–58. doi: 10.33920/med-14-2202-06

[85]

Patent RUS № 2021135534А/03.12.21. Byul. № 22. Evstigneeva IS, Gerasimenko MYu, Kozyreva VO, et al. A method of treating patients after radical surgical treatment of breast cancer. (In Russ). Available from: https://patents.google.com/patent/RU2777347C1/ru. Accessed: 15.07.2022.

[86]

Патент РФ на изобретение № 2021135534А/03.12.21. Бюл. № 22. Евстигнеева И.С., Герасименко М.Ю., Козырева В.О., и др. Способ лечения пациентов после радикального хирургического лечения рака молочной железы. Режим доступа: https://patents.google.com/patent/RU2777347C1/ru. Дата обращения: 15.07.2022.

[87]

Evstigneeva IS, Kozyreva VO, Gerasimenko MY. Experience of using low-temperature plasma in the therapy of radiation reactions. Physiotherapy Balneology Rehabilitation. 2021;20(6):559–566. (In Russ).

[88]

Евстигнеева И.С., Козырева В.О., Герасименко М.Ю. Опыт применения низкотемпературной плазмы в терапии лучевых реакций // Физиотерапия, бальнеология и реабилитация. 2021. Т. 20, № 6. С. 559–566.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

85

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/