Low-level laser therapy in the supportive treatment of dermatologic adverse events in oncology

Aleksandra S. Polonskaia , Evgeniya A. Shatokhina , Larisa S. Kruglova

Russian Journal of Physiotherapy, Balneology and Rehabilitation ›› 2022, Vol. 21 ›› Issue (2) : 131 -141.

PDF
Russian Journal of Physiotherapy, Balneology and Rehabilitation ›› 2022, Vol. 21 ›› Issue (2) : 131 -141. DOI: 10.17816/rjpbr109603
Review
review-article

Low-level laser therapy in the supportive treatment of dermatologic adverse events in oncology

Author information +
History +
PDF

Abstract

Supportive treatment plays an important role in oncology nowadays. The main aims of oncologic supportive treatment are management of cancer symptoms and adverse events of cancer treatment.

In terms of dermatologic adverse events the most important types of reaction are oral mucositis during radiation therapy, chemotherapy and during hematopoetic stem cell transplantation, palmoplantar syndrome during chemotherapy, palmoplantar skin reaction, acneiform paronychia and pyogenic granulomas during targeted therapy, immune-related dermatologic adverse events during immunotherapy.

During recent years, special attention has been paid to low level laser therapy for the prophylaxis and management of cancer therapy dermatologic adverse events. The effects of low level laser therapy may have a beneficial effect on many conditions that play important roles in the pathogenesis of radiation and chemotherapy-induced complications in oncologic patients. Therapeutic effects of low level laser therapy are attributed to the stimulation of adaptive processes and to the increase of nonspecific resistance. The latter develop due to the close interaction of the immune, humoral and nervous systems. When choosing a method for the supportive treatment of cancer therapy adverse events, it is extremely important to establish safety in terms of the tumor process and absence of negative effects on cancer treatment.

Effects of low level laser therapy on the proliferative and invasive activity of an existing malignancy remains a matter of debate due to conflicting results from in vitro studies.

At the same time, according to the results of numerous clinical studies, the use of this method is assumed to be safe for cancer patients.

Keywords

low-level laser therapy / dermatologic adverse events / cancer therapy / rehabilitation / supportive treatment

Cite this article

Download citation ▾
Aleksandra S. Polonskaia, Evgeniya A. Shatokhina, Larisa S. Kruglova. Low-level laser therapy in the supportive treatment of dermatologic adverse events in oncology. Russian Journal of Physiotherapy, Balneology and Rehabilitation, 2022, 21(2): 131-141 DOI:10.17816/rjpbr109603

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

US Department of Health and Human Services et al. Common terminology criteria for adverse events (CTCAE) version 4.0 (May 28, 2009). National Institute of Health, National Cancer Institute v.4.03: June 14, 2010. Available from: https://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03/CTCAE_4.03_2010-06-14_QuickReference_8.5x11.pdf. Accessed: 15.12.2021.

[2]

US Department of Health and Human Services et al. Common terminology criteria for adverse events (CTCAE) version 4.0 (May 28, 2009). National Institute of Health, National Cancer Institute v.4.03: June 14, 2010. Режим доступа: https://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03/CTCAE_4.03_2010-06-14_QuickReference_8.5x11.pdf. Дата обращения: 15.12.2021.

[3]

Rosen AC, Case EC, Dusza SW, et al. Impact of dermatologic adverse events on quality of life in 283 cancer patients: a questionnaire study in a dermatology referral clinic. Am J Clin Dermatol. 2013;14(4):327–333. doi: 10.1007/s40257-013-0021-0

[4]

Rosen A.C., Case E.C., Dusza S.W., et al. Impact of dermatologic adverse events on quality of life in 283 cancer patients: a questionnaire study in a dermatology referral clinic // Am J Clin Dermatol. 2013. Vol. 14, N 4. Р. 327–333. doi: 10.1007/s40257-013-0021-0

[5]

Lacouture ME, Anadkat MJ, Bensadoun RJ, et al. Clinical practice guidelines for the prevention and treatment of EGFR inhibitor-associated dermatologic toxicities. Support Care Cancer. 2011;19(8):1079–1095. doi: 10.1007/s00520-011-1197-6

[6]

Lacouture M.E., Anadkat M.J., Bensadoun R.J., et al. Clinical practice guidelines for the prevention and treatment of EGFR inhibitor-associated dermatologic toxicities // Support Care Cancer. 2011. Vol. 19, N 8. Р. 1079–1095. doi: 10.1007/s00520-011-1197-6

[7]

Lacouture ME, Sibaud V, Gerber PA, et al. Prevention and management of dermatological toxicities related to anticancer agents: ESMO Clinical Practice Guidelines. Ann Oncol. 2021;32(2):157–170. doi: 10.1016/j.annonc.2020.11.005

[8]

Lacouture M.E., Sibaud V., Gerber P.A., et al. Prevention and management of dermatological toxicities related to anticancer agents: ESMO Clinical Practice Guidelines // Ann Oncol. 2021. Vol. 32, N 2. Р. 157–170. doi: 10.1016/j.annonc.2020.11.005

[9]

Koroleva IA, Bolotina LV, Gladkov OA, et al. Practical recommendations on the management of dermatologic adverse events in patients, treated with targeted anticancer. Prakticheskie rekomendatsii RUSSCO #3s2. 2020;10(42):88–101. (In Russ). doi: 10.18027/2224-5057-2020-10-3s2-42

[10]

Королева И. А., Болотина Л. В., Гладков О. А., и др. Практические рекомендации по лекарственному лечению дерматологических реакций у пациентов, получающих противоопухолевую лекарственную терапию // Практические рекомендации RUSSCO #3s2. 2020. Т. 10, № 42. C. 88–101. doi: 10.18027/2224-5057-2020-10-3s2-42

[11]

Elad S, Cheng KK, Lalla RV, et al. MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy. Cancer. 2020;126(19):4423–4431. doi: 10.1002/cncr.33100

[12]

Elad S., Cheng K.K., Lalla R.V., et al. MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy // Cancer. 2020. Vol. 126, N 19. Р. 4423–4431. doi: 10.1002/cncr.33100

[13]

Potekaev NN, Kruglova LS. Laser in dermatology and cosmetology. Moscow: MDV; 2012. 280 р. (In Russ).

[14]

Потекаев Н.Н., Круглова Л.С. Лазер в дерматологии и косметологии. Москва: МДВ, 2012. 280 с.

[15]

General physiotherapy: textbook. Electronic edition. Ed. by G.N. Ponomarenko. 5th ed., revised and updated. Moscow: GEOTAR-Media; 2014. 368 p. (In Russ).

[16]

Общая физиотерапия: учебник. Электронное издание / под ред. Г.Н. Пономаренко. 5-е изд., перераб. и доп. Москва: ГЭОТАР-Медиа, 2014. 368 с.

[17]

Zecha JA, Raber-Durlacher JE, Nair RG, et al. Low level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: part 1: mechanisms of action, dosimetric, and safety considerations. Support Care Cancer. 2016;24(6):2781–2792. doi: 10.1007/s00520-016-3152-z

[18]

Zecha J.A., Raber-Durlacher J.E., Nair R.G., et al. Low level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: part 1: mechanisms of action, dosimetric, and safety considerations // Support Care Cancer. 2016. Vol. 24, N 6. Р. 2781–2792. doi: 10.1007/s00520-016-3152-z

[19]

Bjordal JM, Johnson MI, Iversen V, et al. Low-level laser therapy in acute pain: a systematic review of possible mechanisms of action and clinical effects in randomized placebo-controlled trials. Photomed Laser Surg. 2006;24(2):158–168. doi: 10.1089/pho.2006.24.158

[20]

Bjordal J.M., Johnson M.I., Iversen V., et al. Low-level laser therapy in acute pain: a systematic review of possible mechanisms of action and clinical effects in randomized placebo-controlled trials // Photomed Laser Surg. 2006. Vol. 24, N 2. Р. 158–168. doi: 10.1089/pho.2006.24.158

[21]

Hartmann JT, Haap M, Kopp HG, Lipp HP. Tyrosine kinase inhibitors — a review on pharmacology, metabolism and side effects. Curr Drug Metab. 2009;10(5):470–481. doi: 10.2174/138920009788897975

[22]

Hartmann J.T., Haap M., Kopp H.G., Lipp H.P. Tyrosine kinase inhibitors - a review on pharmacology, metabolism and side effects // Curr Drug Metab. 2009. Vol. 10, N 5. Р. 470–481. doi: 10.2174/138920009788897975

[23]

Huang YY, Sharma SK, Carroll J, Hamblin MR. Biphasic dose response in low level light therapy - an update. Dose Response. 2011;9(4):602–618. doi: 10.2203/dose-response.11-009.Hamblin

[24]

Huang Y.Y., Sharma S.K., Carroll J., Hamblin M.R. Biphasic dose response in low level light therapy — an update // Dose Response. 2011. Vol. 9, N 4. Р. 602–618. doi: 10.2203/dose-response.11-009.Hamblin

[25]

Hawkins D, Abrahamse H. Biological effects of helium-neon laser irradiation on normal and wounded human skin fibroblasts. Photomed Laser Surg. 2005;23(3):251–259. doi: 10.1089/pho.2005.23.251

[26]

Hawkins D., Abrahamse H. Biological effects of helium-neon laser irradiation on normal and wounded human skin fibroblasts // Photomed Laser Surg. 2005. Vol. 23, N 3. Р. 251–259. doi: 10.1089/pho.2005.23.251

[27]

Schartinger VH, Galvan O, Riechelmann H, Dudás J. Differential responses of fibroblasts, non-neoplastic epithelial cells, and oral carcinoma cells to low-level laser therapy. Support Care Cancer. 2012;20(3):523–529. doi: 10.1007/s00520-011-1113-0

[28]

Schartinger V.H., Galvan O., Riechelmann H., Dudás J. Differential responses of fibroblasts, non-neoplastic epithelial cells, and oral carcinoma cells to low-level laser therapy // Support Care Cancer. 2012. Vol. 20, N 3. Р. 523–529. doi: 10.1007/s00520-011-1113-0

[29]

Powell K, Low P, McDonnell PA, et al. The effect of laser irradiation on proliferation of human breast carcinoma, melanoma, and immortalized mammary epithelial cells. Photomed Laser Surg. 2010;28(1):115–123. doi: 10.1089/pho.2008.2445

[30]

Powell K., Low P., McDonnell P.A., et al. The effect of laser irradiation on proliferation of human breast carcinoma, melanoma, and immortalized mammary epithelial cells // Photomed Laser Surg. 2010. Vol. 28, N 1. Р. 115–123. doi: 10.1089/pho.2008.2445

[31]

Henriques ÁC, Ginani F, Oliveira RM, et al. Low-level laser therapy promotes proliferation and invasion of oral squamous cell carcinoma cells. Lasers Med Sci. 2014;29(4):1385–1395. doi: 10.1007/s10103-014-1535-2

[32]

Henriques Á.C., Ginani F., Oliveira R.M., et al. Low-level laser therapy promotes proliferation and invasion of oral squamous cell carcinoma cells // Lasers Med Sci. 2014. Vol. 29, N 4. Р. 1385–1395. doi: 10.1007/s10103-014-1535-2

[33]

Pellicioli AC, Martins MD, Dillenburg CS, et al. Laser phototherapy accelerates oral keratinocyte migration through the modulation of the mammalian target of rapamycin signaling pathway. J Biomed Opt. 2014;19(2):028002. doi: 10.1117/1.JBO.19.2.028002

[34]

Pellicioli A.C., Martins M.D., Dillenburg C.S., et al. Laser phototherapy accelerates oral keratinocyte migration through the modulation of the mammalian target of rapamycin signaling pathway // J Biomed Opt. 2014. Vol. 19, N 2. Р. 028002. doi: 10.1117/1.JBO.19.2.028002

[35]

Simpson DR, Mell LK, Cohen EE. Targeting the PI3K/AKT/mTOR pathway in squamous cell carcinoma of the head and neck. Oral Oncol. 2015;51(4):291–298. doi: 10.1016/j.oraloncology.2014.11.012

[36]

Simpson D.R., Mell L.K., Cohen E.E. Targeting the PI3K/AKT/mTOR pathway in squamous cell carcinoma of the head and neck // Oral Oncol. 2015. Vol. 51, N 4. Р. 291–298. doi: 10.1016/j.oraloncology.2014.11.012

[37]

Nagata Y, Takahashi A, Ohnishi K, et al. Effect of rapamycin, an mTOR inhibitor, on radiation sensitivity of lung cancer cells having different p53 gene status. Int J Oncol. 2010;37(4):1001–1010. doi: 10.3892/ijo_00000751

[38]

Nagata Y., Takahashi A., Ohnishi K., et al. Effect of rapamycin, an mTOR inhibitor, on radiation sensitivity of lung cancer cells having different p53 gene status // Int J Oncol. 2010. Vol. 37, N 4. Р. 1001–1010. doi: 10.3892/ijo_00000751

[39]

Chang L, Graham PH, Hao J, et al. Acquisition of epithelial-mesenchymal transition and cancer stem cell phenotypes is associated with activation of the PI3K/Akt/mTOR pathway in prostate cancer radioresistance. Cell Death Dis. 2013;4(10):e875. doi: 10.1038/cddis.2013.407

[40]

Chang L., Graham P.H., Hao J., et al. Acquisition of epithelial-mesenchymal transition and cancer stem cell phenotypes is associated with activation of the PI3K/Akt/mTOR pathway in prostate cancer radioresistance // Cell Death Dis. 2013. Vol. 4, N 10. Р. e875. doi: 10.1038/cddis.2013.407

[41]

Sperandio FF, Giudice FS, Corrêa L, et al. Low-level laser therapy can produce increased aggressiveness of dysplastic and oral cancer cell lines by modulation of Akt/mTOR signaling pathway. J Biophotonics. 2013;6(10):839–847. doi: 10.1002/jbio.201300015

[42]

Sperandio F.F., Giudice F.S., Corrêa L., et al. Low-level laser therapy can produce increased aggressiveness of dysplastic and oral cancer cell lines by modulation of Akt/mTOR signaling pathway // J Biophotonics. 2013. Vol. 6, N 10. Р. 839–847. doi: 10.1002/jbio.201300015

[43]

Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26(22):3279–3290. doi: 10.1038/sj.onc.1210421

[44]

Dhillon A.S., Hagan S., Rath O., Kolch W. MAP kinase signalling pathways in cancer // Oncogene. 2007. Vol. 26, N 22. Р. 3279–3290. doi: 10.1038/sj.onc.1210421

[45]

Guo YJ, Pan WW, Liu SB, et al. ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med. 2020;19(3):1997–2007. doi: 10.3892/etm.2020.8454

[46]

Guo Y.J., Pan W.W., Liu S.B., et al. ERK/MAPK signalling pathway and tumorigenesis // Exp Ther Med. 2020. Vol. 19, N 3. Р. 1997–2007. doi: 10.3892/etm.2020.8454

[47]

Cui X, Li S, Li T, et al. Significance of elevated ERK expression and its positive correlation with EGFR in Kazakh patients with esophageal squamous cell carcinoma. Int J Clin Exp Pathol. 2014;7(5):2382–2391.

[48]

Cui X., Li S., Li T., et al. Significance of elevated ERK expression and its positive correlation with EGFR in Kazakh patients with esophageal squamous cell carcinoma // Int J Clin Exp Pathol. 2014. Vol. 7, N 5. Р. 2382–2391.

[49]

Pardali K, Moustakas A. Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer. Biochim Biophys Acta. 2007;1775(1):21–62. doi: 10.1016/j.bbcan.2006.06.004

[50]

Pardali K., Moustakas A. Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer // Biochim Biophys Acta. 2007. Vol. 1775, N 1. Р. 21–62. doi: 10.1016/j.bbcan.2006.06.004

[51]

Principe DR, Doll JA, Bauer J, et al. TGF-β: duality of function between tumor prevention and carcinogenesis. J Natl Cancer Inst. 2014;106(2):djt369. doi: 10.1093/jnci/djt369

[52]

Principe D.R., Doll J.A., Bauer J., et al. TGF-β: duality of function between tumor prevention and carcinogenesis // J Natl Cancer Inst. 2014. Vol. 106, N 2. Р. djt369. doi: 10.1093/jnci/djt369

[53]

Siegel PM, Massagué J. Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer. 2003;3(11):807–821. doi: 10.1038/nrc1208

[54]

Siegel P.M., Massagué J. Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer // Nat Rev Cancer. 2003. Vol. 3, N 11. Р. 807–821. doi: 10.1038/nrc1208

[55]

Hwang YS, Park KK, Chung WY. Stromal transforming growth factor-beta 1 is crucial for reinforcing the invasive potential of low invasive cancer. Arch Oral Biol. 2014;59(7):687–694. doi: 10.1016/j.archoralbio.2014.03.017

[56]

Hwang Y.S., Park K.K., Chung W.Y. Stromal transforming growth factor-beta 1 is crucial for reinforcing the invasive potential of low invasive cancer // Arch Oral Biol. 2014. Vol. 59, N 7. Р. 687–694. doi: 10.1016/j.archoralbio.2014.03.017

[57]

Prime SS, Davies M, Pring M, Paterson IC. The role of TGF-beta in epithelial malignancy and its relevance to the pathogenesis of oral cancer (part II). Crit Rev Oral Biol Med. 2004;15(6):337–347. doi: 10.1177/154411130401500603

[58]

Prime S.S., Davies M., Pring M., Paterson I.C. The role of TGF-beta in epithelial malignancy and its relevance to the pathogenesis of oral cancer (part II) // Crit Rev Oral Biol Med. 2004. Vol. 15, N 6. Р. 337–347. doi: 10.1177/154411130401500603

[59]

Medical rehabilitation. Book 1. Ed. by V.M. Bogolyubov. Moscow: BINOM; 2010. 416 p. (In Russ).

[60]

Медицинская реабилитация. Книга 1 / под ред. В.М. Боголюбова. Москва: БИНОМ, 2010. 416 с.

[61]

Becker A, van Wijk A, Smit EF, Postmus PE. Side-effects of long-term administration of erlotinib in patients with non-small cell lung cancer. J Thorac Oncol. 2010;5(9):1477–1480. doi: 10.1097/JTO.0b013e3181e981d9

[62]

Becker A., van Wijk A., Smit E.F., Postmus P.E. Side-effects of long-term administration of erlotinib in patients with non-small cell lung cancer // J Thorac Oncol. 2010. Vol. 5, N 9. Р. 1477–1480. doi: 10.1097/JTO.0b013e3181e981d9

[63]

Schaffer M, Sroka R, Fuchs C, et al. Biomodulative effects induced by 805 nm laser light irradiation of normal and tumor cells. J Photochem Photobiol B. 1997;40(3):253–257. doi: 10.1016/s1011-1344(97)00065-1

[64]

Schaffer M., Sroka R., Fuchs C., et al. Biomodulative effects induced by 805 nm laser light irradiation of normal and tumor cells // J Photochem Photobiol B. 1997. Vol. 40, N 3. Р. 253–257. doi: 10.1016/s1011-1344(97)00065-1

[65]

Sroka R, Schaffer M, Fuchs C, et al. Effects on the mitosis of normal and tumor cells induced by light treatment of different wavelengths. Lasers Surg Med. 1999;25(3):263–271. doi: 10.1002/(sici)1096-9101(1999)25:3<263::aid-lsm11>3.0.co;2-t

[66]

Sroka R., Schaffer M., Fuchs C., et al. Effects on the mitosis of normal and tumor cells induced by light treatment of different wavelengths // Lasers Surg Med. 1999. Vol. 25, N 3. Р. 263–271. doi: 10.1002/(sici)1096-9101(1999)25:3<263::aid-lsm11>3.0.co;2-t

[67]

Kreisler M, Christoffers AB, Willershausen B, d'Hoedt B. Low-level 809 nm GaAlAs laser irradiation increases the proliferation rate of human laryngeal carcinoma cells in vitro. Lasers Med Sci. 2003;18(2):100–103. doi: 10.1007/s10103-003-0265-7

[68]

Kreisler M., Christoffers A.B., Willershausen B., d'Hoedt B. Low-level 809 nm GaAlAs laser irradiation increases the proliferation rate of human laryngeal carcinoma cells in vitro // Lasers Med Sci. 2003. Vol. 18, N 2. Р. 100–103. doi: 10.1007/s10103-003-0265-7

[69]

Liu YH, Cheng CC, Ho CC, et al. Effects of diode 808 nm GaAlAs low-power laser irradiation on inhibition of the proliferation of human hepatoma cells in vitro and their possible mechanism. Res Commun MolPathol Pharmacol. 2004;115-116:185–201.

[70]

Liu Y.H., Cheng C.C., Ho C.C., et al. Effects of diode 808 nm GaAlAs low-power laser irradiation on inhibition of the proliferation of human hepatoma cells in vitro and their possible mechanism // Res Commun Mol Pathol Pharmacol. 2004. Vol. 115-116. Р. 185–201.

[71]

Werneck CE, Pinheiro AL, Pacheco MT, et al. Laser light is capable of inducing proliferation of carcinoma cells in culture: a spectroscopic in vitro study. Photomed Laser Surg. 2005;23(3):300–303. doi: 10.1089/pho.2005.23.300

[72]

Werneck C.E., Pinheiro A.L., Pacheco M.T., et al. Laser light is capable of inducing proliferation of carcinoma cells in culture: a spectroscopic in vitro study // Photomed Laser Surg. 2005. Vol. 23, N 3. Р. 300–303. doi: 10.1089/pho.2005.23.300

[73]

Al-Watban FA, Andres BL. Laser biomodulation of normal and neoplastic cells. Lasers Med Sci. 2012;27(5):1039–1043. doi: 10.1007/s10103-011-1040-9

[74]

Al-Watban F.A., Andres B.L. Laser biomodulation of normal and neoplastic cells // Lasers Med Sci. 2012. Vol. 27, N 5. Р. 1039–1043. doi: 10.1007/s10103-011-1040-9

[75]

Murayama H, Sadakane K, Yamanoha B, Kogure S. Low-power 808-nm laser irradiation inhibits cell proliferation of a human-derived glioblastoma cell line in vitro. Lasers Med Sci. 2012;27(1):87–93. doi: 10.1007/s10103-011-0924-z

[76]

Murayama H., Sadakane K., Yamanoha B., Kogure S. Low-power 808-nm laser irradiation inhibits cell proliferation of a human-derived glioblastoma cell line in vitro // Lasers Med Sci. 2012. Vol. 27, N 1. Р. 87–93. doi: 10.1007/s10103-011-0924-z

[77]

Antunes HS, Herchenhorn D, Small IA, et al. Long-term survival of a randomized phase III trial of head and neck cancer patients receiving concurrent chemoradiation therapy with or without low-level laser therapy (LLLT) to prevent oral mucositis. Oral Oncol. 2017;71:11–15. doi: 10.1016/j.oraloncology.2017.05.018

[78]

Antunes H.S., Herchenhorn D., Small I.A., et al. Long-term survival of a randomized phase III trial of head and neck cancer patients receiving concurrent chemoradiation therapy with or without low-level laser therapy (LLLT) to prevent oral mucositis // Oral Oncol. 2017. Vol. 71. Р. 11–15. doi: 10.1016/j.oraloncology.2017.05.018

[79]

Brandão TB, Morais-Faria K, Ribeiro AC, et al. Locally advanced oral squamous cell carcinoma patients treated with photobiomodulation for prevention of oral mucositis: retrospective outcomes and safety analyses. Support Care Cancer. 2018;26(7):2417–2423. doi: 10.1007/s00520-018-4046-z

[80]

Brandão T.B., Morais-Faria K., Ribeiro A.C., et al. Locally advanced oral squamous cell carcinoma patients treated with photobiomodulation for prevention of oral mucositis: retrospective outcomes and safety analyses // Support Care Cancer. 2018. Vol. 26, N 7. Р. 2417–2423. doi: 10.1007/s00520-018-4046-z

[81]

Bensadoun RJ, Epstein JB, Nair RG, et al. Safety and efficacy of photobiomodulation therapy in oncology: a systematic review. Cancer Med. 2020;9(22):8279–8300. doi: 10.1002/cam4.3582

[82]

Bensadoun R.J., Epstein J.B., Nair R.G., et al. Safety and efficacy of photobiomodulation therapy in oncology: A systematic review // Cancer Med. 2020. Vol. 9, N 22. Р. 8279–8300. doi: 10.1002/cam4.3582

[83]

Genot-Klastersky MT, Paesmans M, Ameye L, et al. Retrospective evaluation of the safety of low-level laser therapy/photobiomodulation in patients with head/neck cancer. Support Care Cancer. 2020;28(7):3015–3022. doi: 10.1007/s00520-019-05041-3

[84]

Genot-Klastersky M.T., Paesmans M., Ameye L., et al. Retrospective evaluation of the safety of low-level laser therapy/photobiomodulation in patients with head/neck cancer // Support Care Cancer. 2020. Vol. 28, N 7. Р. 3015–3022. doi: 10.1007/s00520-019-05041-3

[85]

Shatokhina EA, Kruglova LS, Korchazhkina NB. Modern views on adjuvant therapy of cancer patients against the background of targeted treatment. Fizioterapevt. 2016;(2):9–33. (In Russ).

[86]

Шатохина Е.А., Круглова Л.С., Корчажкина Н.Б. Современные взгляды на адъювантную терапию онкологических больных на фоне таргетного лечения // Физиотерапевт. 2016. № 2. С. 9–33.

RIGHTS & PERMISSIONS

Polonskaia A.S., Shatokhina E.A., Kruglova L.S.

AI Summary AI Mindmap
PDF

77

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/