The role of macroelements in the development and progression of a new coronavirus infection (literature review)
Alexei O. Romanov , Maisiyat M. Sharipova , Maria V. Ivkina , Anna N. Arkhangelskaya , Konstantin G. Gurevich
Russian Journal of Physiotherapy, Balneology and Rehabilitation ›› 2021, Vol. 20 ›› Issue (5) : 449 -459.
The role of macroelements in the development and progression of a new coronavirus infection (literature review)
The article provides a brief overview of the data on the effect of changes in the content of the main macronutrients (sodium, calcium, potassium and magnesium) on the incidence and course of COVID-19. The features of imbalance of mineral substances in patients with new coronavirus infection were analyzed, the role of electrolyte disturbances in increasing the incidence of complications and increasing mortality among patients with COVID-19 was demonstrated. Possible mechanisms of macronutrient imbalance arising from infection with SARS-CoV-2 are described.
The search for publications on changes in the content of magnesium, potassium, calcium and sodium in patients with COVID-19, as well as their impact on the development and progression of the disease, was carried out using the Web of Science, Scopus, MedLine, The Cochrane Library, Embase, Global Health, CyberLeninka, RSCI databases. In addition, publications from journals peer-reviewed by the Higher Attestation Commission, as well as international and regional journals were analyzed.
review / COVID-19 / macroelements / artificial lung ventilation / mortality
| [1] |
Rylova NV, Troegubova NA, Zholinskiy AV, et al. Assessment of the mineral status in young athletes. Russ Bulletin Perinatol Pediatrics. 2017;62(5):175–183. (In Russ). doi: 10.21508/1027-4065-2017-62-5-175-183 |
| [2] |
Рылова Н.В., Троегубова Н.А., Жолинский А.В., и др. Оценка минерального статуса у юных спортсменов // Российский вестник перинатологии и педиатрии. 2017. Т. 62, № 5. C. 175–183. doi: 10.21508/1027-4065-2017-62-5-175-183 |
| [3] |
Galmés S, Serra F, Palou A. Current state of evidence: influence of nutritional and nutrigenetic factors on immunity in the COVID-19 pandemic framework. Nutrients. 2020;12(9):2738. doi: 10.3390/nu12092738 |
| [4] |
Galmés S., Serra F., Palou A. Current state of evidence: influence of nutritional and nutrigenetic factors on immunity in the COVID-19 pandemic framework // Nutrients. 2020. Vol. 12, N 9. P. 2738. doi: 10.3390/nu12092738 |
| [5] |
Wessels I, Rolles B, Slusarenko A, Rink L. Zinc deficiency as a possible risk factor for increased susceptibility and severe progression of Corona Virus Disease 19. Br J Nutrition. 2021;127(2):214–232. doi: 10.1017/S0007114521000738 |
| [6] |
Wessels I., Rolles B., Slusarenko A., Rink L. Zinc deficiency as a possible risk factor for increased susceptibility and severe progression of Corona Virus Disease 19 // Br J Nutrition. 2022. Vol. 127, N 2. P. 214–232. doi: 10.1017/S0007114521000738 |
| [7] |
Vogel-González M, Talló-Parra M, Herrera-Fernández V, et al. Low zinc levels at admission associates with poor clinical outcomes in SARS-CoV-2 Infection. Nutrients. 2021;13(2):562. doi: 10.3390/nu13020562 |
| [8] |
Vogel-González M., Talló-Parra M., Herrera-Fernández V., et al. Low zinc levels at admission associates with poor clinical outcomes in SARS-CoV-2 Infection // Nutrients. 2021. Vol. 13, N 2. P. 562. doi: 10.3390/nu13020562 |
| [9] |
Im JH, Je YS, Baek J, et al. Nutritional status of patients with COVID-19. Int J Infect Dis. 2020;(100):390–393. doi: 10.1016/j.ijid.2020.08.018 |
| [10] |
Im J.H., Je Y.S., Baek J., et al. Nutritional status of patients with COVID-19 // Int J Infect Dis. 2020. N 100. P. 390–393. doi: 10.1016/j.ijid.2020.08.018 |
| [11] |
Heller RA, Sun Q, Hackler J, et al. Prediction of survival odds in COVID-19 by zinc, age and selenoprotein P as composite biomarker. Redox Biol. 2021;(38):101764. doi: 10.1016/j.redox.2020.101764 |
| [12] |
Heller R.A., Sun Q., Hackler J., et al. Prediction of survival odds in COVID-19 by zinc, age and selenoprotein P as composite biomarker // Redox Biol. 2021. N 38. P. 101764. doi: 10.1016/j.redox.2020.101764 |
| [13] |
Zhao K, Huang J, Dai D, et al. Serum iron level as a potential predictor of coronavirus disease 2019 severity and mortality: a retrospective study. Open Forum Infect Dis. 2020;7(7):ofaa250. doi: 10.1093/ofid/ofaa250 |
| [14] |
Zhao K., Huang J., Dai D., et al. Serum iron level as a potential predictor of coronavirus disease 2019 severity and mortality: a retrospective study // Open Forum Infect Dis. 2020. Vol. 7, N 7. P. ofaa250. doi: 10.1093/ofid/ofaa250 |
| [15] |
Pincemail J, Cavalier E, Charlier C, et al. Oxidative stress status in COVID-19 Patients hospitalized in intensive care unit for severe pneumonia. A Pilot Study Antioxidants (Basel). 2021;10(2):257. doi: 10.3390/antiox10020257 |
| [16] |
Pincemail J., Cavalier E., Charlier C., et al. Oxidative stress status in COVID-19 Patients hospitalized in intensive care unit for severe pneumonia // A Pilot Study. Antioxidants (Basel). 2021. Vol. 10, N 2. P. 257. doi: 10.3390/antiox10020257 |
| [17] |
Lippi G, South AM, Henry BM. Electrolyte imbalances in patients with severe coronavirus disease 2019 (COVID-19). Ann Clin Biochem. 2020;57(3):262–265. doi: 10.1177/0004563220922255 |
| [18] |
Lippi G., South A.M., Henry B.M. Electrolyte imbalances in patients with severe coronavirus disease 2019 (COVID-19) // Ann Clin Biochem. 2020. Vol. 57, N 3. P. 262–265. doi: 10.1177/0004563220922255 |
| [19] |
Samad N, Sodunke TE, Abubakar AR, et al. The implications of zinc therapy in combating the COVID-19 global pandemic. J Inflamm Res. 2021;(14):527–550. doi: 10.2147/JIR.S295377 |
| [20] |
Samad N., Sodunke T.E., Abubakar A.R., et al. The implications of zinc therapy in combating the COVID-19 global pandemic // J Inflamm Res. 2021. N 14. Р. 527–550. doi: 10.2147/JIR.S295377 |
| [21] |
Perera M, El Khoury J, Chinni V, et al. Randomised controlled trial for high-dose intravenous zinc as adjunctive therapy in SARS-CoV-2 (COVID-19) positive critically ill patients: trial protocol. BMJ Open. 2020;10(12):e040580. doi: 10.1136/bmjopen-2020-040580 |
| [22] |
Perera M., El Khoury J., Chinni V., et al. Randomised controlled trial for high-dose intravenous zinc as adjunctive therapy in SARS-CoV-2 (COVID-19) positive critically ill patients: trial protocol // BMJ Open. 2020. Vol. 10, N 12. P. e040580. doi: 10.1136/bmjopen-2020-040580 |
| [23] |
Doboszewska U, Wlaź P, Nowak G, Młyniec K. Targeting zinc metalloenzymes in coronavirus disease 2019. Br J Pharmacol. 2020;177(21):4887–4898. doi: 10.1111/bph.15199 |
| [24] |
Doboszewska U., Wlaź P., Nowak G., Młyniec K. Targeting zinc metalloenzymes in coronavirus disease 2019 // Br J Pharmacol. 2020. Vol. 177, N 21. P. 4887–4898. doi: 10.1111/bph.15199 |
| [25] |
Notz Q, Herrmann J, Schlesinger T, et al. Clinical significance of micronutrient supplementation in critically Ill COVID-19 patients with severe ARDS. Nutrients. 2021;13(6):2113. doi: 10.3390/nu13062113 |
| [26] |
Notz Q., Herrmann J., Schlesinger T., et al. Clinical significance of micronutrient supplementation in critically Ill COVID-19 patients with severe ARDS // Nutrients. 2021. Vol. 13, N 6. P. 2113. doi: 10.3390/nu13062113 |
| [27] |
Tan CW, Ho LP, Kalimuddin S, et al. Cohort study to evaluate the effect of vitamin D, magnesium, and vitamin B12 in combination on progression to severe outcomes in older patients with coronavirus (COVID-19). Nutrition. 2020;(79-80):111017. doi: 10.1016/j.nut.2020.111017 |
| [28] |
Tan C.W., Ho L.P., Kalimuddin S., et al. Cohort study to evaluate the effect of vitamin D, magnesium, and vitamin B12 in combination on progression to severe outcomes in older patients with coronavirus (COVID-19) // Nutrition. 2020. N 79-80. P. 111017. doi: 10.1016/j.nut.2020.111017 |
| [29] |
Leung C. Clinical features of deaths in the novel coronavirus epidemic in China. Rev Med Virol. 2020;30(3):e2103. doi: 10.1002/rmv.2103 |
| [30] |
Leung C. Clinical features of deaths in the novel coronavirus epidemic in China // Rev Med Virol. 2020. Vol. 30, N 3. P. e2103. doi: 10.1002/rmv.2103 |
| [31] |
Wu D, Wu T, Liu Q, Yang Z. The SARS-CoV-2 outbreak: what we know. Int J Infect Dis. 2020;94:44–48. doi: 10.1016/j.ijid.2020.03.004 |
| [32] |
Wu D., Wu T., Liu Q., Yang Z. The SARS-CoV-2 outbreak: what we know // Int J Infect Dis. 2020. N 94. P. 44–48. doi: 10.1016/j.ijid.2020.03.004 |
| [33] |
Weston S, Frieman MB. COVID-19: knowns, unknowns, and questions. mSphere. 2020;5(2):e00203–00220. doi: 10.1128/mSphere.00203-20 |
| [34] |
Weston S., Frieman M.B. COVID-19: Knowns, unknowns, and questions // mSphere. 2020. Vol. 5, N 2. P. e00203–00220. doi: 10.1128/mSphere.00203-20 |
| [35] |
Rahman MT, Idid SZ. Can Zn be a critical element in COVID-19 treatment? Biol Trace Elem Res. 2021;199(2):550–558. doi: 10.1007/s12011-020-02194-9 |
| [36] |
Rahman M.T., Idid S.Z. Can Zn be a critical element in COVID-19 treatment? // Biol Trace Elem Res. 2021. Vol. 199, N 2. P. 550–558. doi: 10.1007/s12011-020-02194-9 |
| [37] |
Lake MA. What we know so far: COVID-19 current clinical knowledge and research. Clin Med (Lond.) 2020;20(2):124–127. doi: 10.7861/clinmed.2019-coron |
| [38] |
Lake M.A. What we know so far: COVID-19 current clinical knowledge and research // Clin Med (Lond.) 2020. Vol. 20, N 2. P. 124–127. doi: 10.7861/clinmed.2019-coron |
| [39] |
Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 2020;109:102433. doi: 10.1016/j.jaut.2020.102433 |
| [40] |
Rothan H.A., Byrareddy S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak // J Autoimmun. 2020. N 109. P. 102433. doi: 10.1016/j.jaut.2020.102433 |
| [41] |
Nedjimi B. Can trace element supplementations (Cu, Se, and Zn) enhance human immunity against COVID-19 and its new variants? Beni Suef Univ J Basic Appl Sci. 2021;10(1):33. doi: 10.1186/s43088-021-00123-w |
| [42] |
Nedjimi B. Can trace element supplementations (Cu, Se, and Zn) enhance human immunity against COVID-19 and its new variants? // Beni Suef Univ J Basic Appl Sci. 2021. Vol. 10, N 1. P. 33. doi: 10.1186/s43088-021-00123-w |
| [43] |
Gromova OA, Torshin IY. The importance of zinc for maintaining the activity of proteins of innate antiviral immunity: analysis of publications on COVID-19. Preventive Med. 2020;23(3):131–139. (In Russ). doi: 10.17116/profmed202023031131 |
| [44] |
Громова О.А. Торшин И.Ю. Важность цинка для поддержания активности белков врожденного противовирусного иммунитета: анализ публикаций, посвященных COVID-19 // Профилактическая медицина. 2020. Т. 23, № 3. C. 131–139. doi: 10.17116/profmed202023031131 |
| [45] |
Chaturvedi UC, Shrivastava R, Upreti RK. Viral infections and trace elements: a complex interaction. Cur Sci. 2004;87(10):1536–1554. |
| [46] |
Chaturvedi U.C., Shrivastava R., Upreti R.K. Viral infections and trace elements: a complex interaction // Cur Sci. 2004. Vol. 87, N 10. P. 1536–1554. |
| [47] |
Calder PC. Nutrition, immunity and COVID-19. BMJ Nutr Prev Health. 2020;3(1):74–92. doi: 10.1136/bmjnph-2020-000085 |
| [48] |
Calder P.C. Nutrition, immunity and COVID-19 // BMJ Nutr Prev Health. 2020. Vol. 3, N 1. P. 74–92. doi: 10.1136/bmjnph-2020-000085 |
| [49] |
Dharmalingam K, Birdi A, Tomo S, et al. Trace elements as immunoregulators in SARS-CoV-2 and other viral infections. Indian J Clin Biochem. 2021;36(4):416–426. doi: 10.1007/s12291-021-00961-6 |
| [50] |
Dharmalingam K., Birdi A., Tomo S., et al. Trace elements as immunoregulators in SARS-CoV-2 and other viral infections // Indian J Clin Biochem. 2021. Vol. 36, N 4. P. 416–426. doi: 10.1007/s12291-021-00961-6 |
| [51] |
Skalny AV, Rink L, Ajsuvakova OP, et al. Zinc and respiratory tract infections: perspectives for COVID-19 (Review). Int J Mol Med. 2020;46(1):17–26. doi: 10.3892/ijmm.2020.4575 |
| [52] |
Skalny A.V., Rink L., Ajsuvakova O.P., et al. Zinc and respiratory tract infections: Perspectives for COVID19 (Review) // Int J Mol Med. 2020. Vol. 46, N 1. P. 17–26. doi: 10.3892/ijmm.2020.4575 |
| [53] |
Tang CF, Ding H, Jiao RQ, et al. Possibility of magnesium supplementation for supportive treatment in patients with COVID-19. Eur J Pharmacol. 2020;886:173546. doi: 10.1016/j.ejphar.2020.173546 |
| [54] |
Tang C.F., Ding H., Jiao R.Q., et al. Possibility of magnesium supplementation for supportive treatment in patients with COVID-19 // Eur J Pharmacol. 2020. N 886. P. 173546. doi: 10.1016/j.ejphar.2020.173546 |
| [55] |
Jeong IK, Yoon KH, Lee MK. Diabetes and COVID-19: global and regional perspectives. Diabetes Res Clin Pract. 2020;166:108303. doi: 10.1016/j.diabres.2020.108303 |
| [56] |
Jeong I.K., Yoon K.H., Lee M.K. Diabetes and COVID-19: global and regional perspectives // Diabetes Res Clin Pract. 2020. N 166. P. 108303. doi: 10.1016/j.diabres.2020.108303 |
| [57] |
Fernández-Cao JC, Warthon-Medina M, Moran V, et al. Zinc intake and status and risk of type 2 diabetes mellitus: a systematic review and meta-analysis. Nutrients. 2019;11(5):1027. doi: 10.3390/nu11051027 |
| [58] |
Fernández-Cao J.C., Warthon-Medina M., Moran V., et al. Zinc intake and status and risk of type 2 diabetes mellitus: a systematic review and meta-analysis // Nutrients. 2019. Vol. 11, N 5. P. 1027. doi: 10.3390/nu11051027 |
| [59] |
Dubey P, Thakur V, Chattopadhyay M. Role of minerals and trace elements in diabetes and insulin resistance. Nutrients. 2020;12(6):1864. doi: 10.3390/nu12061864 |
| [60] |
Dubey P., Thakur V., Chattopadhyay M. Role of minerals and trace elements in diabetes and insulin resistance // Nutrients. 2020. Vol. 12, N 6. P. 1864. doi: 10.3390/nu12061864 |
| [61] |
Gromova OA, Torshin IY, Kalacheva AG. Magnesium subsidies to increase the reserve of adaptation and stress resistance of the body during a pandemic. RMZh. 2020. (In Russ). Available from: https://www.rmj.ru/articles/infektsionnye_bolezni/dotatsii-magniya-dlya-povysheniya-rezerva-adaptatsii-i-stressoustoychivosti-organizma-v-period-pandemii/#ixzz79qOfPGI1. Accessed: 15.12.2021. |
| [62] |
Громова О.А., Торшин И.Ю., Калачева А.Г. Дотации магния для повышения резерва адаптации и стрессоустойчивости организма в период пандемии // РМЖ. 2020. Режим доступа: https://www.rmj.ru/articles/infektsionnye_bolezni/dotatsii-magniya-dlya-povysheniya-rezerva-adaptatsii-i-stressoustoychivosti-organizma-v-period-pandemii/#ixzz79qOfPGI1. Дата обращения: 15.02.2021. |
| [63] |
Mathew AA, Panonnummal R. ‘Magnesium’-the master cation-as a drug-possibilities and evidences. Biometals. 2021;34(5):955–986. doi: 10.1007/s10534-021-00328-7 |
| [64] |
Mathew A.A., Panonnummal R. ‘Magnesium’-the master cation-as a drug-possibilities and evidences // Biometals. 2021. Vol. 34, N 5. P. 955–986. doi: 10.1007/s10534-021-00328-7 |
| [65] |
Tezcan ME, Dogan Gokce G, Sen N, et al. Baseline electrolyte abnormalities would be related to poor prognosis in hospitalized coronavirus disease 2019 patients. New Microbes New Infect. 2020;37:100753. doi: 10.1016/j.nmni.2020.100753 |
| [66] |
Tezcan M.E., Dogan Gokce G., Sen N., et al. Baseline electrolyte abnormalities would be related to poor prognosis in hospitalized coronavirus disease 2019 patients // New Microbes New Infect. 2020. N 37. P. 100753. doi: 10.1016/j.nmni.2020.100753 |
| [67] |
Kumar P, Kumar M, Bedi O, et al. Role of vitamins and minerals as immunity boosters in COVID-19. Inflammopharmacology. 2021;29(4):1001–1016. doi: 10.1007/s10787-021-00826-7 |
| [68] |
Kumar P., Kumar M., Bedi O., et al. Role of vitamins and minerals as immunity boosters in COVID-19 // Inflammopharmacology. 2021. Vol. 29, N 4. P. 1001–1016. doi: 10.1007/s10787-021-00826-7 |
| [69] |
Houillier P. Sodium homeostasis. (In French). Nephrol Ther. 2007;3(Suppl 2):S91–93. doi: 10.1016/s1769-7255(07)80014-9 |
| [70] |
Houillier P. Sodium homeostasis. (In French) // Nephrol Ther. 2007. Vol. 3, Suppl 2. P. S91–93. doi: 10.1016/s1769-7255(07)80014-9 |
| [71] |
Voets PJ, Vogtländer NP, Kaasjager KA. Understanding dysnatremia. J Clin Monit Comput. 2021;35(3):655–659. doi: 10.1007/s10877-020-00512-z |
| [72] |
Voets P.J., Vogtländer N.P., Kaasjager K.A. Understanding dysnatremia // J Clin Monit Comput. 2021. Vol. 35, N 3. P. 655–659. doi: 10.1007/s10877-020-00512-z |
| [73] |
Ruiz-Sánchez JG, Núñez-Gil IJ, Cuesta M, et al. Prognostic impact of hyponatremia and hypernatremia in COVID-19 pneumonia. A HOPE-COVID-19 (Health Outcome Predictive Evaluation for COVID-19) registry analysis. Front Endocrinol (Lausanne). 2020;11:599255. doi: 10.3389/fendo.2020.599255 |
| [74] |
Ruiz-Sánchez J.G., Núñez-Gil I.J., Cuesta M., et al. Prognostic impact of hyponatremia and hypernatremia in COVID-19 pneumonia. A HOPE-COVID-19 (Health Outcome Predictive Evaluation for COVID-19) registry analysis // Front Endocrinol (Lausanne). 2020. N 11. P. 599255. doi: 10.3389/fendo.2020.599255 |
| [75] |
Hu W, Lv X, Li C, et al. Disorders of sodium balance and its clinical implications in COVID-19 patients: a multicenter retrospective study. Intern Emerg Med. 2021;16(4):853–862. doi: 10.1007/s11739-020-02515-9 |
| [76] |
Hu W., Lv X., Li C., et al. Disorders of sodium balance and its clinical implications in COVID-19 patients: a multicenter retrospective study // Intern Emerg Med. 2021. Vol. 16, N 4. P. 853–862. doi: 10.1007/s11739-020-02515-9 |
| [77] |
Aggarwal S, Garcia-Telles N, Aggarwal G, et al. Clinical features, laboratory characteristics, and outcomes of patients hospitalized with coronavirus disease 2019 (COVID-19): early report from the United States. Diagnosis (Berl). 2020;7(2):91–96. doi: 10.1515/dx-2020-0046 |
| [78] |
Aggarwal S., Garcia-Telles N., Aggarwal G., et al. Clinical features, laboratory characteristics, and outcomes of patients hospitalized with coronavirus disease 2019 (COVID-19): early report from the United States // Diagnosis (Berl). 2020. Vol. 7, N 2. P. 91–96. doi: 10.1515/dx-2020-0046 |
| [79] |
De Carvalho H, Letellier T, Karakachoff M, et al. Hyponatremia is associated with poor outcome in COVID-19. J Nephrology. 2021;34(4):991–998. doi: 10.1007/s40620-021-01036-8 |
| [80] |
De Carvalho H., Letellier T., Karakachoff M., et al. Hyponatremia is associated with poor outcome in COVID-19 // J Nephrology. 2021. Vol. 34, N 4. P. 991–998. doi: 10.1007/s40620-021-01036-8 |
| [81] |
Berni A, Malandrino D, Parenti G, et al. Hyponatremia, IL-6, and SARS-CoV-2 (COVID-19) infection: may all fit together? J Endocrinol Invest. 2020;43(8):1137–1139. doi: 10.1007/s40618-020-01301-w |
| [82] |
Berni A., Malandrino D., Parenti G., et al. Hyponatremia, IL-6, and SARS-CoV-2 (COVID-19) infection: may all fit together? // J Endocrinol Invest. 2020. Vol. 43, N 8. P. 1137–1139. doi: 10.1007/s40618-020-01301-w |
| [83] |
Zimmer MA, Zink AK, Weißer CW, et al. Hypernatremia-A manifestation of COVID-19: a case series. Pract. 2020;14(9):e01295. doi: 10.1213/XAA.0000000000001295 |
| [84] |
Zimmer M.A., Zink A.K., Weißer C.W., et al. Hypernatremia-A manifestation of COVID-19: a case series // Pract. 2020. Vol. 14, N 9. P. e01295. doi: 10.1213/XAA.0000000000001295 |
| [85] |
Post A, Dullaart RP, Bakker SJ. Is low sodium intake a risk factor for severe and fatal COVID-19 infection? Eur J Intern Med. 2020;75:109. doi: 10.1016/j.ejim.2020.04.003 |
| [86] |
Post A., Dullaart R.P., Bakker S.J. Is low sodium intake a risk factor for severe and fatal COVID-19 infection? // Eur J Intern Med. 2020. N 75. P. 109. doi: 10.1016/j.ejim.2020.04.003 |
| [87] |
Gheorghe G, Ilie M, Bungau S, et al. Is There a relationship between COVID-19 and hyponatremia? Medicina (Kaunas). 2021;57(1):55. doi: 10.3390/medicina57010055 |
| [88] |
Gheorghe G., Ilie M., Bungau S., et al. Is there a relationship between COVID-19 and hyponatremia? // Medicina (Kaunas). 2021. Vol. 57, N 1. P. 55. doi: 10.3390/medicina57010055 |
| [89] |
Crespi B, Alcock J. Conflicts over calcium and the treatment of COVID-19. Evol Med Public Health. 2020;9(1):149–156. doi: 10.1093/emph/eoaa046 |
| [90] |
Crespi B., Alcock J. Conflicts over calcium and the treatment of COVID-19 // Evol Med Public Health. 2020. Vol. 9, N 1. P. 149–156. doi: 10.1093/emph/eoaa046 |
| [91] |
Sun JK, Zhang WH, Zou L, et al. Serum calcium as a biomarker of clinical severity and prognosis in patients with coronavirus disease 2019. Aging (Albany NY). 2020;12(12):11287–11295. doi: 10.18632/aging.103526 |
| [92] |
Sun J.K., Zhang W.H., Zou L., et al. Serum calcium as a biomarker of clinical severity and prognosis in patients with coronavirus disease 2019 // Aging (Albany NY). 2020. Vol. 12, N 12. P. 11287–11295. doi: 10.18632/aging.103526 |
| [93] |
Elham AS, Azam K, Azam J, et al. Serum vitamin D, calcium, and zinc levels in patients with COVID-19. Clin Nutr ESPEN. 2021;43:276–282. doi: 10.1016/j.clnesp.2021.03.040 |
| [94] |
Elham A.S., Azam K., Azam J., et al. Serum vitamin D, calcium, and zinc levels in patients with COVID-19 // Clin Nutr ESPEN. 2021. N 43. P. 276–282. doi: 10.1016/j.clnesp.2021.03.040 |
| [95] |
Zhou X, Chen D, Wang L, et al. Low serum calcium: a new, important indicator of COVID-19 patients from mild/moderate to severe/critical. Biosci Rep. 2020;40(12):BSR20202690. doi: 10.1042/BSR20202690 |
| [96] |
Zhou X., Chen D., Wang L., et al. Low serum calcium: a new, important indicator of COVID-19 patients from mild/moderate to severe/critical // Biosci Rep. 2020. Vol. 40, N 12. P. BSR20202690. doi: 10.1042/BSR20202690 |
| [97] |
Skalny AV, Timashev PS, Aschner M, et al. Serum zinc, copper, and other biometals are associated with COVID-19 severity markers. Metabolites. 2021;11(4):244. doi: 10.3390/metabo11040244 |
| [98] |
Skalny A.V., Timashev P.S., Aschner M., et al. Serum zinc, copper, and other biometals are associated with COVID-19 severity markers // Metabolites. 2021. Vol. 11, N 4. P. 244. doi: 10.3390/metabo11040244 |
| [99] |
Liu J, Han P, Wu J, et al. Prevalence and predictive value of hypocalcemia in severe COVID-19 patients. J Infect Public Health. 2020;13(9):1224–1228. doi: 10.1016/j.jiph.2020.05.029 |
| [100] |
Liu J., Han P., Wu J., et al. Prevalence and predictive value of hypocalcemia in severe COVID-19 patients // J Infect Public Health. 2020. Vol. 13, N 9. P. 1224–1228. doi: 10.1016/j.jiph.2020.05.029 |
| [101] |
Pal R, Ram S, Zohmangaihi D, et al. High prevalence of hypocalcemia in non-severe COVID-19 patients: a retrospective case-control study. Front Med (Lausanne). 2021;7:590805. doi: 10.3389/fmed.2020.590805 |
| [102] |
Pal R., Ram S., Zohmangaihi D., et al. High prevalence of hypocalcemia in non-severe COVID-19 patients: a retrospective case-control study // Front Med (Lausanne). 2021. N 7. P. 590805. doi: 10.3389/fmed.2020.590805 |
| [103] |
Noori M, Nejadghaderi SA, Sullman MJ, et al. Epidemiology, prognosis and management of potassium disorders in COVID-19. Rev Med Virol. 2021;32(1):e2262. doi: 10.1002/rmv.2262 |
| [104] |
Noori M., Nejadghaderi S.A., Sullman M.J., et al. Epidemiology, prognosis and management of potassium disorders in Covid-19 // Rev Med Virol. 2021. Vol. 32, N 1. P. e2262. doi: 10.1002/rmv.2262 |
| [105] |
Nasomsong W, Ungthammakhun C, Phiboonbanakit D, et al. Low serum potassium among patients with COVID-19 in Bangkok, Thailand: coincidence or clinically relevant? Trop Doct. 2021;51(2):212–215. doi: 10.1177/0049475520978174 |
| [106] |
Nasomsong W., Ungthammakhun C., Phiboonbanakit D., et al. Low serum potassium among patients with COVID-19 in Bangkok, Thailand: Coincidence or clinically relevant? // Trop Doct. 2021. Vol. 51, N 2. P. 212–215. doi: 10.1177/0049475520978174 |
| [107] |
Tsiberkin AI, Klyaus NA, Sazonova YV, Semenov AP. Hypokalemia in hospitalized patients with pneumonia on the background of COVID-19. Arterial Hypertension. 2020;26(4):462–467. (In Russ). doi: 10.18705/1607-419X-2020-26-4-462-467 |
| [108] |
Циберкин А.И., Кляус Н.А., Сазонова Ю.В., Семенов А.П. Гипокалиемия у госпитализированных пациентов с пневмонией на фоне COVID-19 // Артериальная гипертензия. 2020. Т. 26, № 4. С. 462–467. doi: 10.18705/1607-419X-2020-26-4-462-467 |
| [109] |
Alfano G, Ferrari A, Fontana F, et al. Hypokalemia in patients with COVID-19. Clin Exp Nephrol. 2021;25(4):401–409. doi: 10.1007/s10157-020-01996-4 |
| [110] |
Alfano G., Ferrari A., Fontana F., et al. Hypokalemia in patients with COVID-19 // Clin Exp Nephrol. 2021. Vol. 25, N 4. P. 401–409. doi: 10.1007/s10157-020-01996-4 |
| [111] |
Chen D, Li X, Song Q, et al. Assessment of hypokalemia and clinical characteristics in patients with coronavirus disease 2019 in Wenzhou, China. JAMA Netw Open. 2020;3(6):e2011122. doi: 10.1001/jamanetworkopen.2020.11122 |
| [112] |
Chen D., Li X., Song Q., et al. Assessment of hypokalemia and clinical characteristics in patients with coronavirus disease 2019 in Wenzhou, China // JAMA Netw Open. 2020. Vol. 3, N 6. P. e2011122. doi: 10.1001/jamanetworkopen.2020.11122 |
| [113] |
Moreno PO, Leon-Ramirez JM, Fuertes-Kenneally L, et al. Hypokalemia as a sensitive biomarker of disease severity and the requirement for invasive mechanical ventilation requirement in COVID-19 pneumonia: a case series of 306 Mediterranean patients. Int J Infect Dis. 2020;100: 449–454. doi: 10.1016/j.ijid.2020.09.033 |
| [114] |
Moreno-Pérez O., Leon-Ramirez J.M., Fuertes-Kenneally L., et al. Hypokalemia as a sensitive biomarker of disease severity and the requirement for invasive mechanical ventilation requirement in COVID-19 pneumonia: a case series of 306 Mediterranean patients // Int J Infect Dis. 2020. N 100. P. 449–454. doi: 10.1016/j.ijid.2020.09.033 |
| [115] |
Nakanishi H, Suzuki M, Maeda H, et al. Differential diagnosis of COVID-19: importance of measuring blood lymphocytes, serum electrolytes, and olfactory and taste functions. Tohoku J Exp Med. 2020;252(2):109–119. doi: 10.1620/tjem.252.109 |
| [116] |
Nakanishi H., Suzuki M., Maeda H., et al. Differential diagnosis of COVID-19: importance of measuring blood lymphocytes, serum electrolytes, and olfactory and taste functions // Tohoku J Exp Med. 2020. Vol. 252, N 2. P. 109–119. doi: 10.1620/tjem.252.109 |
| [117] |
Wang Y, Chen L, Wang J, et al. Electrocardiogram analysis of patients with different types of COVID-19. Ann Noninvasive Electrocardiol. 2020;25(6):e12806. doi: 10.1111/anec.12806 |
| [118] |
Wang Y., Chen L., Wang J., et al. Electrocardiogram analysis of patients with different types of COVID-19 // Ann Noninvasive Electrocardiol. 2020. Vol. 25, N 6. P. e12806. doi: 10.1111/anec.12806 |
| [119] |
Silhol F, Sarlon G, Deharo JC, Vaïsse B. Downregulation of ACE2 induces overstimulation of the renin-angiotensin system in COVID-19: should we block the renin-angiotensin system? Hypertens Res. 2020;43(8):854–856. doi: 10.1038/s41440-020-0476-3 |
| [120] |
Silhol F., Sarlon G., Deharo J.C., Vaïsse B. Downregulation of ACE2 induces overstimulation of the renin-angiotensin system in COVID-19: should we block the renin-angiotensin system? // Hypertens Res. 2020. Vol. 43, N 8. P. 854–856. doi: 10.1038/s41440-020-0476-3 |
| [121] |
Di Nicolantonio JJ, O’Keefe JH. Magnesium and vitamin D deficiency as a potential cause of immune dysfunction, cytokine storm and disseminated intravascular coagulation in COVID-19 patients. Mo Med. 2021;118(1):68–73. |
| [122] |
Di Nicolantonio J.J., O’Keefe J.H. Magnesium and vitamin D deficiency as a potential cause of immune dysfunction, cytokine storm and disseminated intravascular coagulation in COVID-19 patients // Mo Med. 2021. Vol. 118, N 1. P. 68–73. |
| [123] |
Story MJ. Essential sufficiency of zinc, ω-3 polyunsaturated fatty acids, vitamin D and magnesium for prevention and treatment of COVID-19, diabetes, cardiovascular diseases, lung diseases and cancer. Biochimie. 2021;187:94–109. doi: 10.1016/j.biochi.2021.05.013 |
| [124] |
Story M.J. Essential sufficiency of zinc, ω-3 polyunsaturated fatty acids, vitamin D and magnesium for prevention and treatment of COVID-19, diabetes, cardiovascular diseases, lung diseases and cancer // Biochimie. 2021. N 187. P. 94–109. doi: 10.1016/j.biochi.2021.05.013 |
| [125] |
Micke O, Vormann J, Kisters K. Magnesium and COVID-19 ― some further comments ― a commentary on wallace tc. Combating COVID-19 and building immune resilience: a potential role for magnesium nutrition? J Am Coll Nutr. 2021;40(8):732–734. doi: 10.1080/07315724.2020.1816230. |
| [126] |
Micke O., Vormann J., Kisters K. Magnesium and COVID-19 ― some further comments ― a commentary on wallace tc. combating COVID-19 and building immune resilience: a potential role for magnesium nutrition? // J Am Coll Nutr. 2021. Vol. 40, N 8. P. 732–734. doi: 10.1080/07315724.2020.1816230 |
| [127] |
Zeng HL, Yang Q, Yuan P, et al. Associations of essential and toxic metals/metalloids in whole blood with both disease severity and mortality in patients with COVID-19. FASEB J. 2021;35(3):e21392. doi: 10.1096/fj.202002346RR |
| [128] |
Zeng H.L., Yang Q., Yuan P., et al. Associations of essential and toxic metals/metalloids in whole blood with both disease severity and mortality in patients with COVID-19 // FASEB J. 2021. Vol. 35, N 3. P. e21392. doi: 10.1096/fj.202002346RR |
| [129] |
Quilliot D, Bonsack O, Jaussaud R, Mazur A. Dysmagnesemia in COVID-19 cohort patients: prevalence and associated factors. Magnes Res. 2020;33(4):114–122. doi: 10.1684/mrh.2021.0476 |
| [130] |
Quilliot D., Bonsack O., Jaussaud R., Mazur A. Dysmagnesemia in COVID-19 cohort patients: prevalence and associated factors // Magnes Res. 2020. Vol. 33, N 4. P. 114–122. doi: 10.1684/mrh.2021.0476 |
| [131] |
Van Kempen TA, Deixler E. SARS-CoV-2: influence of phosphate and magnesium, moderated by vitamin D, on energy (ATP) metabolism and on severity of COVID-19. Am J Physiol Endocrinol Metab. 2021;320(1):E2–E6. doi: 10.1152/ajpendo.00474.2020 |
| [132] |
Van Kempen T.A., Deixler E. SARS-CoV-2: influence of phosphate and magnesium, moderated by vitamin D, on energy (ATP) metabolism and on severity of COVID-19 // Am J Physiol Endocrinol Metab. 2021. Vol. 320, N 1. P. E2–E6. doi: 10.1152/ajpendo.00474.2020 |
| [133] |
Iotti S, Wolf F, Mazur A, Maier JA. The COVID-19 pandemic: is there a role for magnesium? Hypotheses and perspectives. Magnes Res. 2020;33(2):21–27. doi: 10.1684/mrh.2020.0465 |
| [134] |
Iotti S., Wolf F., Mazur A., Maier J.A. The COVID-19 pandemic: is there a role for magnesium? Hypotheses and perspectives // Magnes Res. 2020. Vol. 33, N 2. P. 21–27. doi: 10.1684/mrh.2020.0465 |
| [135] |
Sankova MV, Kytko OV, Meylanova RD, et al. Possible prospects for using modern magnesium preparations for increasing stress resistance during COVID-19 pandemic. Research Results in Pharmacology. 2020;6(4):65–76. doi: 10.3897/rrpharmacology6.59407 |
| [136] |
Sankova M.V., Kytko O.V., Meylanova R.D., et al. Possible prospects for using modern magnesium preparations for increasing stress resistance during COVID-19 pandemic // Research Results in Pharmacology. 2020. Vol. 6, N 4. P. 65–76. doi: 10.3897/rrpharmacology6.59407 |
| [137] |
Tarasov EA, Blinov DV, Zimovina UV, Sandakova EA. Magnesium deficiency and stress: relationship issues, diagnostic tests, and treatment approaches. Therapeutic Archive. 2015;87(9):114–122. (In Russ). doi: 10.17116/terarkh2015879114-122 |
| [138] |
Тарасов Е.А., Блинов Д.В., Зимовина У.В., Сандакова Е.А. Дефицит магния и стресс: вопросы взаимосвязи, тесты для диагностики и подходы к терапии // Терапевтический архив. 2015. Т. 87, № 9. C. 114–122. doi: 10.17116/terarkh2015879114-122 |
| [139] |
Jose J, Magoon R, Kapoor PM. Magnesium: the neglected cation in COVID-19? J Anaesthesiol Clin Pharmacol. 2021;37(1):141–142. doi: 10.4103/joacp.JOACP_628_20 |
| [140] |
Jose J., Magoon R., Kapoor P.M. Magnesium: the neglected cation in COVID-19? // J Anaesthesiol Clin Pharmacol. 2021. Vol. 37, N 1. P. 141–142. doi: 10.4103/joacp.JOACP_628_20 |
Romanov A.O., Sharipova M.M., Ivkina M.V., Arkhangelskaya A.N., Gurevich K.G.
/
| 〈 |
|
〉 |