Effect of 3-formylchromone derivatives on neuroinflammation reactions and JNK and NF-κB regulatory pathways

Dmitry I. Pozdnyakov

Medical academic journal ›› 2022, Vol. 22 ›› Issue (1) : 7 -15.

PDF
Medical academic journal ›› 2022, Vol. 22 ›› Issue (1) : 7 -15. DOI: 10.17816/MAJ97256
Original research
research-article

Effect of 3-formylchromone derivatives on neuroinflammation reactions and JNK and NF-κB regulatory pathways

Author information +
History +
PDF

Abstract

BACKGROUND: Neuroinflammation is a significant component of the pathogenesis of cerebral ischemia. The JNK and NF-κB signaling pathways play a leading role in the progression of brain tissue inflammation, which may represent a promising target for therapeutic effects.

AIM: To evaluate the effect of new derivatives of 3-formylchromone on the course of neuroinflammation reactions and the activity of JNK and NF-κB translational pathways in brain tissue in rats with cerebral ischemia.

MATERIALS AND METHODS: Cerebral ischemia was modeled in Wistar rats by irreversible right-sided occlusion of the middle cerebral artery. The studied compounds and the reference (ethylmethylhydroxypyridine succinate) were administered per os at doses of 30 and 100 mg/kg, respectively. After 72 hours of ischemia, changes in the concentration of proinflammatory cytokines were evaluated in the cerebrospinal fluid: IL-6, IL-1β, IL-8 and TNF-α. The content of JNK and NF-κB in brain tissue was determined by enzyme immunoassay.

RESULTS: The use of the test compounds 3FC1, 3FC2, 3FC4 and 3FC5, as well as the reference medicine, contributed to a decrease in the content of proinflammatory markers in the liquor. At the same time, the most significant decrease was noted when the compound 3FC5 was administered to animals, namely, the concentration of IL-1β, IL-6, IL-8 and TNF-α was lower relative to similar indicators of the group of animals without treatment by 30.0% (p < 0.05); 64.5% (p < 0.05); 48.5% (p < 0.05) and 56.6% (p < 0.05), respectively. The use of the fluorine-containing compound 3FC3 did not significantly affect the course of brain tissue inflammation reactions in rats. Evaluation of changes in the activity of JNK and NF-κB showed that the studied substances inhibit the NF-κB translational pathway and do not affect JNK, which is probably due to the activation of these signaling pathways and the antioxidant potential of the studied molecules.

CONCLUSIONS: The use of compounds that are derivatives of 3-formylchromone in conditions of experimental cerebral ischemia contributes to the reduction of neuroinflammation reactions by inhibiting the NF-κB pathway, without affecting the activity of the JNK-dependent signaling system. The substance with the highest pharmacological effects is the compound 3FC5, which contains a spatially hindered phenolic hydroxyl in its structure.

Keywords

cerebral ischemia / neuroprotection / neuroinflammation / chromone derivatives

Cite this article

Download citation ▾
Dmitry I. Pozdnyakov. Effect of 3-formylchromone derivatives on neuroinflammation reactions and JNK and NF-κB regulatory pathways. Medical academic journal, 2022, 22(1): 7-15 DOI:10.17816/MAJ97256

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hayashi K, Nikolos F, Lee YC, et al. Tipping the immunostimulatory and inhibitory DAMP balance to harness immunogenic cell death. Nat Commun. 2020;11(1):6299. DOI: 10.1038/s41467-020-19970-9

[2]

Hayashi K., Nikolos F., Lee Y.C. et al. Tipping the immunostimulatory and inhibitory DAMP balance to harness immunogenic cell death // Nat. Commun. 2020. Vol. 11, No. 1. P. 6299. DOI: 10.1038/s41467-020-19970-9

[3]

Jayaraj RL, Azimullah S, Beiram R, et al. Neuroinflammation: friend and foe for ischemic stroke. J Neuroinflammation. 2019;16(1):142. DOI: 10.1186/s12974-019-1516-2

[4]

Jayaraj R.L., Azimullah S., Beiram R. et al. Neuroinflammation: friend and foe for ischemic stroke // J. Neuroinflammation. 2019. Vol. 16, No. 1. P. 142. DOI: 10.1186/s12974-019-1516-2

[5]

Maida CD, Norrito RL, Daidone M, et al. Neuroinflammatory mechanisms in ischemic stroke: focus on cardioembolic stroke, background, and therapeutic approaches. Int J Mol Sci. 2020;21(18):6454. DOI: 10.3390/ijms21186454

[6]

Maida C.D., Norrito R.L., Daidone M. et al. Neuroinflammatory mechanisms in ischemic stroke: focus on cardioembolic stroke, background, and therapeutic approaches // Int. J. Mol. Sci. 2020. Vol. 21, No. 18. P. 6454. DOI: 10.3390/ijms21186454

[7]

Garcia-Bonilla L, Moore JM, Racchumi G, et al. Inducible nitric oxide synthase in neutrophils and endothelium contributes to ischemic brain injury in mice. J Immunol. 2014;193(5):2531–2537. DOI: 10.4049/jimmunol.1400918

[8]

Garcia-Bonilla L., Moore J.M., Racchumi G. et al. Inducible nitric oxide synthase in neutrophils and endothelium contributes to ischemic brain injury in mice // J. Immunol. 2014. Vol. 193, No. 5. P. 2531–2537. DOI: 10.4049/jimmunol.1400918

[9]

Mázala DA, Grange RW, Chin ER. The role of proteases in excitation-contraction coupling failure in muscular dystrophy. Am J Physiol Cell Physiol. 2015;308(1):C33–C40. DOI: 10.1152/ajpcell.00267.2013

[10]

Mázala D.A., Grange R.W., Chin E.R. The role of proteases in excitation-contraction coupling failure in muscular dystrophy // Am. J. Physiol. Cell Physiol. 2015. Vol. 308, No. 1. P. C33–C40. DOI: 10.1152/ajpcell.00267.2013

[11]

Dong X, Gao J, Zhang CY, et al. Neutrophil membrane-derived nanovesicles alleviate inflammation to protect mouse brain injury from ischemic stroke. ACS Nano. 2019;13(2):1272–1283. DOI: 10.1021/acsnano.8b06572

[12]

Dong X., Gao J., Zhang C.Y. et al. Neutrophil membrane-derived nanovesicles alleviate inflammation to protect mouse brain injury from ischemic stroke // ACS Nano. 2019. Vol. 13, No. 2. P. 1272–1283. DOI: 10.1021/acsnano.8b06572

[13]

Emsley HC, Smith CJ, Georgiou RF, et al. A randomised phase II study of interleukin-1 receptor antagonist in acute stroke patients. J Neurol Neurosurg Psychiatry. 2005;76(10):1366–1372. DOI: 10.1136/jnnp.2004.054882

[14]

Emsley H.C., Smith C.J., Georgiou R.F. et al. A randomised phase II study of interleukin-1 receptor antagonist in acute stroke patients // J. Neurol. Neurosurg. Psychiatry. 2005. Vol. 76, No. 10. P. 1366–1372. DOI: 10.1136/jnnp.2004.054882

[15]

Tuttolomondo A, Di Sciacca R, Di Raimondo D, et al. Inflammation as a therapeutic target in acute ischemic stroke treatment. Curr Top Med Chem. 2009;9(14):1240–1260. DOI: 10.2174/156802609789869619

[16]

Tuttolomondo A., Di Sciacca R., Di Raimondo D. et al. Inflammation as a therapeutic target in acute ischemic stroke treatment // Curr. Top. Med. Chem. 2009. Vol. 9, No. 14. P. 1240–1260. DOI: 10.2174/156802609789869619

[17]

Bath PM, Iddenden R, Bath FJ, et al. Tirilazad for acute ischaemic stroke. Cochrane Database Syst Rev. 2001;(4):CD002087. DOI: 10.1002/14651858.CD002087

[18]

Bath P.M., Iddenden R., Bath F.J. et al. Tirilazad for acute ischaemic stroke // Cochrane Database Syst. Rev. 2001. Vol. 4. P. CD002087. DOI: 10.1002/14651858.CD002087

[19]

Seregin VI, Dronova TV. The use of mexidol in intensive care of acute severe ischemic stroke. Zh Nevrol Psikhiatr Im SS Korsakova. 2015;115(3 Pt 2):85–87. (In Russ.) DOI: 10.17116/jnevro20151153285-87

[20]

Серегин В.И., Дронова Т.В. Применение мексидола в интенсивной терапии острого тяжелого ишемического инсульта // Журнал неврологии и психиатрии им. C.C. Корсакова. 2015. Т. 115, № 3–2. С. 85–87.

[21]

Lees KR, Diener HC, Asplund K, et al. UK-279,276, a neutrophil inhibitory glycoprotein, in acute stroke: tolerability and pharmacokinetics. Stroke. 2003;34(7):1704–1709. DOI: 10.1161/01.STR.0000078563.72650.61

[22]

Lees K.R., Diener H.C., Asplund K. et al. UK-279,276, a neutrophil inhibitory glycoprotein, in acute stroke: tolerability and pharmacokinetics // Stroke. 2003. Vol. 34, No. 7. P. 1704–1709. DOI: 10.1161/01.STR.0000078563.72650.61

[23]

Pozdnyakov DI, Voronkov AV, Rukovitsyna VM. Chromon-3-aldehyde derivatives restore mitochondrial function in rat cerebral ischemia. Iran J Basic Med Sci. 2020;23(9):1172–1183. DOI: 10.22038/ijbms.2020.46369.10710

[24]

Pozdnyakov D.I., Voronkov A.V., Rukovitsyna V.M. Chromon-3-aldehyde derivatives restore mitochondrial function in rat cerebral ischemia // Iran J. Basic Med. Sci. 2020. Vol. 23, No. 9. P. 1172–1183. DOI: 10.22038/ijbms.2020.46369.10710

[25]

Percie du Sert N, Hurst V, Ahluwalia A, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 2020;18(7):e3000410. DOI: 10.1371/journal.pbio.3000410

[26]

Percie du Sert N., Hurst V., Ahluwalia A. et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research // PLoS Biol. 2020. Vol. 18, No. 7. P. e3000410. DOI: 10.1371/journal.pbio.3000410

[27]

Tamura A, Graham DI, McCulloch J, Teasdale GM. Focal cerebral ischaemia in the rat: 1. Description of technique and early neuropathological consequences following middle cerebral artery occlusion. J Cereb Blood Flow Metab. 1981;1(1):53–60. DOI: 10.1038/jcbfm.1981.6

[28]

Tamura A., Graham D.I., McCulloch J., Teasdale G.M. Focal cerebral ischaemia in the rat: 1. Description of technique and early neuropathological consequences following middle cerebral artery occlusion // J. Cereb. Blood Flow Metab. 1981. Vol. 1, No. 1. P. 53–60. DOI: 10.1038/jcbfm.1981.6

[29]

Pozdnyakov DI. The use of 4-hydroxy-3,5-di-tert butylcoric acid reduces the intensity of neuroinflammation in rats with cerebral ischemia. Transbaikalian Medical Bulletin. 2021;1:59–67. (In Russ.) DOI: 10.52485/19986173_2021_1_59

[30]

Поздняков Д.И. Применение 4-гирокси-3,5-ди-третбутил коричной кислоты уменьшает интенсивность нейровоспаления у крыс при церебральной ишемии // Забайкальский медицинский вестник. 2021. № 1. С. 59–67. DOI: 10.52485/19986173_2021_1_59

[31]

Voronkov AV, Pozdnyakov DI, Oganesyan ET, et al. Antiapoptotic effect of 3-formylchromone derivatives in conditions of experimental cerebral ischemia. Experimental and clinical pharmacology. 2021;84(7):6–10. (In Russ.) DOI: 10.30906/0869-2092-2021-84-7-6-10

[32]

Воронков А.В., Поздняков Д.И., Оганесян Э.Т. и др. Анти-апоптотическое действие производных 3-формилхромона в условиях экспериментальной ишемии головного мозга // Экспериментальная и клиническая фармакология. 2021. Т. 84, № 7. С. 6–10. DOI: 10.30906/0869-2092-2021-84-7-6-10

[33]

Li Y, Zhang B, Liu XW, et al. An applicable method of drawing cerebrospinal fluid in rats. J Chem Neuroanat. 2016;74:18–20. DOI: 10.1016/j.jchemneu.2016.01.009

[34]

Li Y., Zhang B., Liu X.W. et al. An applicable method of drawing cerebrospinal fluid in rats // J. Chem. Neuroanat. 2016. Vol. 74. P. 18–20. DOI: 10.1016/j.jchemneu.2016.01.009

[35]

Sun J, Nan G. The mitogen-activated protein kinase (MAPK) signaling pathway as a discovery target in stroke. J Mol Neurosci. 2016;59(1):90–98. DOI: 10.1007/s12031-016-0717-8

[36]

Sun J., Nan G. The mitogen-activated protein kinase (MAPK) signaling pathway as a discovery target in stroke // J. Mol. Neurosci. 2016. Vol. 59, No. 1. P. 90–98. DOI: 10.1007/s12031-016-0717-8

[37]

Harari OA, Liao JK. NF-κB and innate immunity in ischemic stroke. Ann NY Acad Sci. 2010;1207:32–40. DOI: 10.1111/j.1749-6632.2010.05735.x

[38]

Harari O.A., Liao J.K. NF-κB and innate immunity in ischemic stroke // Ann. N.Y. Acad. Sci. 2010. Vol. 1207. P. 32–40. DOI: 10.1111/j.1749-6632.2010.05735.x

[39]

Chen T, Zhang X, Zhu G, et al. Quercetin inhibits TNF-α induced HUVECs apoptosis and inflammation via downregulating NF-κB and AP-1 signaling pathway in vitro. Medicine (Baltimore). 2020;99(38):e22241. DOI: 10.1097/MD.0000000000022241

[40]

Chen T., Zhang X., Zhu G. et al. Quercetin inhibits TNF-α induced HUVECs apoptosis and inflammation via downregulating NF-κB and AP-1 signaling pathway in vitro // Medicine (Baltimore). 2020. Vol. 99, No. 38. P. e22241. DOI: 10.1097/MD.0000000000022241

[41]

Al-Rasheed NM, Fadda LM, Al-Rasheed NM, et al. Down-regulation of NFKB, Bax, TGF-β, Smad-2mRNA expression in the livers of carbon tetrachloride treated rats using different natural antioxidants. Brazilian Archives of Biology and Technology. 2016;59. DOI: 10.1590/1678-4324-2016150553

[42]

Al-Rasheed N.M., Fadda L.M., Al-Rasheed N.M. et al. Down-regulation of NFκB, Bax, TGF-β, Smad-2mRNA expression in the livers of carbon tetrachloride treated rats using different natural antioxidants // Brazilian Archives of Biology and Technology. 2016. Vol. 59. DOI: 10.1590/1678-4324-2016150553

[43]

Torshin IJ, Gromova OA, Sardaryan IS, et al. Comparative chemoreactome analysis of mexidol. Pharmacokinetics and Pharmacodynamics. 2016;(4):19–30. (In Russ.)

[44]

Торшин И.Ю., Громова О.А., Сардарян И.С. и др. Сравнительный хемореактомный анализ мексидола // Фармакокинетика и Фармакодинамика. 2016. Т. 4. С. 19–30.

[45]

Yang ZH, Lu YJ, Gu KP, et al. Effect of ulinastatin on myocardial ischemia-reperfusion injury through JNK and P38 MAPK signaling pathways. Eur Rev Med Pharmacol Sci. 2019;23(19):8658–8664. DOI: 10.26355/eurrev_201910_19183

[46]

Yang Z.H., Lu Y.J., Gu K.P. et al. Effect of ulinastatin on myocardial ischemia-reperfusion injury through JNK and P38 MAPK signaling pathways // Eur. Rev. Med. Pharmacol. Sci. 2019. Vol. 23, No. 19. P. 8658–8664. DOI: 10.26355/eurrev_201910_19183

[47]

Oganesyan ET, Shatokhin SS, Glushko AA. Using quantum-chemical parameters for predicting anti-radical (НО∙) activity of related structures containing a cinnamic mold fragment I. derivatives of cinnamic acid, chalcon and flavanon. Pharmacy and Pharmacology. 2019;7(1):53–66. (In Russ.) DOI: 10.19163/2307-9266-2019-7-1-53-66

[48]

Оганесян Э.Т., Шатохин С.С., Глушко А.А. Использование квантово-химических параметров для прогнозирования антирадикальной (НО·) активности родственных структур, содержащих циннамоильный фрагмент. I. Производные коричной кислоты, халкона и флаванона // Фармация и фармакология. 2019. Т. 7, № 1. С. 53–66. DOI: 10.19163/2307-9266-2019-7-1-53-66

RIGHTS & PERMISSIONS

Pozdnyakov D.I.

AI Summary AI Mindmap
PDF

56

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/