The impact of nebivolol, carvedilol and propranolol on pulmonary microhemodynamics in case of experimental pulmonary thromboembolism in rabbits

Vadim I. Evlakhov , Ilya Z. Poyassov , Tatiana P. Berezina

Medical academic journal ›› 2022, Vol. 22 ›› Issue (1) : 17 -27.

PDF (417KB)
Medical academic journal ›› 2022, Vol. 22 ›› Issue (1) : 17 -27. DOI: 10.17816/MAJ96368
Original research
research-article

The impact of nebivolol, carvedilol and propranolol on pulmonary microhemodynamics in case of experimental pulmonary thromboembolism in rabbits

Author information +
History +
PDF (417KB)

Abstract

BACKGROUND: Beta-adrenoblockers nebivolol, carvedilol and propranolol are used in clinical cardiology for the treatment of patients with ischemic heart disease. Pulmonary thromboembolism can develop in such patients. However, its unknown, what will be the pulmonary microcirculatory changes in case of pulmonary thromboembolism after pretreatment with beta-blockers.

AIM: The comparative analysis of the pulmonary microhemodynamics changes following experimental pulmonary thromboembolism in rabbits after pretreatment with nebovolol, carvedilol and propranolol.

MATERIAL AND METHODS: In 35 isolated perfused rabbit lungs we investigated the changes of pulmonary microcirculation in case of experimental pulmonary thromboembolism after pretreatment with β1-blocker — nebivolol, combined blocker of α1- and β1, 2-adrenoceptors — carvedilol, and blocker of β1, 2-adrenoceptors propranolol.

RESULTS: After administration of β1, 2-adrenoceptors blocker — propranolol and β1-blocker — nebivolol the most of the pulmonary microcirculatory parameters increased. Combined α1-, β1, 2-blocker carvedilol caused mainly vasodilatory effects of the pulmonary arterial vessels, however, the pulmonary venous resistance increased. Pulmonary thromboembolism after pretreatment with beta-blockers caused pronounced increase of pulmonary artery pressure, precapillary and pulmonary vascular resistance. In that case after pretreatment with carvedilol capillary filtration coefficient was increased two times more than after propranolol administration; after pretreatment with nebivolol capillary filtration coefficient increased less, than after propranolol administration.

CONCLUSIONS: Acute pulmonary embolism caused less pronounced increasing of capillary filtration coefficient in case of nebivolol administration, than after pretreatment with carvedilol and propranolol.

Keywords

pulmonary thromboembolism / pulmonary microhemodynamics / capillary filtration coefficient / nebivolol / carvedilol / propranolol

Cite this article

Download citation ▾
Vadim I. Evlakhov, Ilya Z. Poyassov, Tatiana P. Berezina. The impact of nebivolol, carvedilol and propranolol on pulmonary microhemodynamics in case of experimental pulmonary thromboembolism in rabbits. Medical academic journal, 2022, 22(1): 17-27 DOI:10.17816/MAJ96368

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dézsi CA, Szentes V. The Real Role of β-Blockers in daily cardiovascular therapy. Am J Cardiovasc Drugs. 2017;17(5):361–373. DOI: 10.1007/s40256-017-0221-8

[2]

Dézsi C.A., Szentes V. The real role of β-Blockers in daily cardiovascular therapy // Am. J. Cardiovasc. Drugs. 2017. Vol. 17, No. 5. P. 361–373. DOI: 10.1007/s40256-017-0221-8

[3]

DiNicolantonio JJ, Lavie CJ, Fares H, et al. Meta-analysis of carvedilol versus beta 1 selective beta-blockers (Atenolol, Bisoprolol, Metoprolol, and Nebivolol). Am J Cardiol. 2013;111(5):765–769. DOI: 10.1016/ j.amjcard.2012.11.031

[4]

DiNicolantonio J.J., Lavie C.J., Fares H. et al. Meta-analysis of carvedilol versus beta 1 selective beta-blockers (Atenolol, Bisoprolol, Metoprolol, and Nebivolol) // Am. J. Cardiol. 2013. Vol. 111, No. 5. P. 765–769. DOI: 10.1016/ j.amjcard.2012.11.031

[5]

Kamp O, Metra M, Bugatti S, et al. Nebivolol: haemodynamic effects and clinical significance of combined beta-blockade and nitric oxide release. Drugs. 2010;70(1):41–56. DOI: 10.2165/11530710-000000000-00000

[6]

Kamp O., Metra M., Bugatti S. et al. Nebivolol: haemodynamic effects and clinical significance of combined beta-blockade and nitric oxide release // Drugs. 2010. Vol. 70, No. 1. P. 41–56. DOI: 10.2165/11530710-000000000-00000

[7]

Fujio H, Nakamura K, Matsubara H, et al. Carvedilol inhibits proliferation of cultured pulmonary artery smooth muscle cells of patients with idiopathic pulmonary arterial hypertension. J Cardiovasc Pharmacol. 2006;47(2):250–255. DOI: 10.1097/01.fjc.0000201359.58174.c8

[8]

Fujio H., Nakamura K., Matsubara H. et al. Carvedilol inhibits proliferation of cultured pulmonary artery smooth muscle cells of patients with idiopathic pulmonary arterial hypertension // J. Cardiovasc. Pharmacol. 2006. Vol. 47, No. 2. P. 250–255. DOI: 10.1097/01.fjc.0000201359.58174.c8

[9]

Pankey EA, Edward JA, Swan KW, et al. Nebivolol has a beneficial effect in monocrotaline-induced pulmonary hypertension. Can J Physiol Pharmacol. 2016;94(7):758–768. DOI: 10.1139/cjpp-2015-0431

[10]

Pankey E.A., Edward J.A., Swan K.W. et al. Nebivolol has a beneficial effect in monocrotaline-induced pulmonary hypertension // Can. J. Physiol. Pharmacol. 2016. Vol. 94, No. 7. P. 758–768. DOI: 10.1139/cjpp-2015-0431

[11]

Al-Ogaili A, Ayoub A, Quintero LD, et al. Rate and impact of venous thromboembolism in patients with ST-segment elevation myocardial infarction: analysis of the nationwide inpatient sample database 2003–2013. Vasc Med. 2019;24(4):341–348. DOI: 10.1177/1358863X19833451

[12]

Al-Ogaili A., Ayoub A., Quintero L.D. et al. Rate and impact of venous thromboembolism in patients with ST-segment elevation myocardial infarction: analysis of the nationwide inpatient sample database 2003–2013 // Vasc. Med. 2019. Vol. 24, No. 4. P. 341–348. DOI: 10.1177/1358863X19833451

[13]

Chen HM, Duan YY, Li J, et al. A rabbit model with acute thrombo-embolic pulmonary hypertension created with echocardiography guidance. Ultrasound Med Biol. 2008;34(2):221–227. DOI: 10.1016/j.ultrasmedbio.2007.06.011

[14]

Chen H.M., Duan Y.Y., Li J. et al. A rabbit model with acute thrombo-embolic pulmonary hypertension created with echocardiography guidance // Ultrasound Med. Biol. 2008. Vol. 34, No. 2. P. 221–227. DOI: 10.1016/j.ultrasmedbio.2007.06.011

[15]

Dull RO, Cluff M, Kingston J, et al. Lung heparan sulfates modulate K(fc) during increased vascular pressure: evidence for glycocalyx-mediated mechanotransduction. Am J Physiol Lung Cell Mol Physiol. 2012;302(9):L816–L828. DOI: 10.1152/ajplung.00080.2011

[16]

Dull R.O., Cluff M., Kingston J. et al. Lung heparan sulfates modulate K(fc) during increased vascular pressure: evidence for glycocalyx-mediated mechanotransduction // Am. J. Physiol. Lung Cell. Mol. Physiol. 2012. Vol. 302, No. 9. P. L816–L828. DOI: 10.1152/ajplung.00080.2011

[17]

Ketabchi F, Ghofrani HA, Schermuly RT, et al. Effects of hypercapnia and NO synthase inhibition in sustained hypoxic pulmonary vasoconstriction. Respir Res. 2012;13(1):7. DOI: 10.1186/1465-9921-13-7

[18]

Ketabchi F., Ghofrani H.A., Schermuly R.T. et al. Effects of hypercapnia and NO synthase inhibition in sustained hypoxic pulmonary vasoconstriction // Respir. Res. 2012. Vol. 13, No. 1. P. 7. DOI: 10.1186/1465-9921-13-7

[19]

Bravo-Reyna CC, Torres-Villalobos G, Aguilar-Blas N, et al. Comparative study of capillary filtration coefficient (Kfc) determination by a manual and automatic perfusion system. Step by step technique review. Physiol Res. 2019;68(6):901–908. DOI: 10.33549/physiolres.933971

[20]

Bravo-Reyna C.C., Torres-Villalobos G., Aguilar-Blas N. et al. Comparative study of capillary filtration coefficient (Kfc) determination by a manual and automatic perfusion system. Step by step technique review // Physiol. Res. 2019. Vol. 68, No. 6. P. 901–908. DOI: 10.33549/physiolres.933971

[21]

Dvoretsky DP. A combined method for measuring transcapillary fluid exchange and regional hemodynamic parameters during constant pressure-flow conditions. Acta Physiol Hung. 1984;63(1):29–33.

[22]

Dvoretsky D.P. A combined method for measuring transcapillary fluid exchange and regional hemodynamic parameters during constant pressure-flow conditions // Acta. Physiol. Hung. 1984. Vol. 63, No. 1. P. 29–33.

[23]

Evlakhov VI, Berezina TP, Poyassov IZ, Ovsyannikov VI. Pulmonary microcirculation during experimental pulmonary thromboembolism under conditions of activation and blockade of muscarinic acetylcholine receptors. Bull Exp Biol Med. 2021;171(2):198–201. DOI: 10.1007/s10517-021-05194-4

[24]

Evlakhov V.I., Berezina T.P., Poyassov I.Z., Ovsyannikov V.I. Pulmonary microcirculation during experimental pulmonary thromboembolism under conditions of activation and blockade of muscarinic acetylcholine receptors // Bull. Exp. Biol. Med. 2021. Vol. 171, No. 2. P. 198–201. DOI: 10.1007/s10517-021-05194-4

[25]

Chen LY, Cheng CW, Liang JY. Effect of esterification condensation on the Folin-Ciocalteu method for the quantitative measurement of total phenols. Food Chem. 2015;170:10–15. DOI: 10.1016/j.foodchem.2014.08.038

[26]

Chen L.Y., Cheng C.W., Liang J.Y. Effect of esterification condensation on the Folin-Ciocalteu method for the quantitative measurement of total phenols // Food Chem. 2015. Vol. 170. P. 10–15. DOI: 10.1016/j.foodchem.2014.08.038

[27]

Wacker MJ, Best SR, Kosloski LM, et al. Thromboxane A2-induced arrhythmias in the anesthetized rabbit. Am J Physiol Heart Circ Physiol. 2006;290(4):H1353–H1361. DOI: 10.1152/ajpheart.00930.2005

[28]

Wacker M.J., Best S.R., Kosloski L.M. et al. Thromboxane A2-induced arrhythmias in the anesthetized rabbit // Am. J. Physiol. Heart. Circ. Physiol. 2006. Vol. 290, No. 4. P. H1353–H1361. DOI: 10.1152/ajpheart.00930.2005

[29]

Dal Negro R. Pulmonary effects of nebivolol. Ther Adv Cardiovasc Dis. 2009;3(4):329–334. DOI: 10.1177/1753944709339968

[30]

Dal Negro R. Pulmonary effects of nebivolol // Ther. Adv. Cardiovasc. Dis. 2009. Vol. 3, No. 4. P. 329–334. DOI: 10.1177/1753944709339968

[31]

Katsuda SI, Fujikura Y, Horikoshi Y, et al. Different responses of arterial stiffness between the aorta and the iliofemoral artery during the administration of phentolamine and atenolol in rabbits. J Atheroscler Thromb. 2021;28(6):611–621. DOI: 10.5551/jat.57364

[32]

Katsuda S.I., Fujikura Y., Horikoshi Y. et al. Different responses of arterial stiffness between the aorta and the iliofemoral artery during the administration of phentolamine and atenolol in rabbits // J. Atheroscler. Thromb. 2021. Vol. 28, No. 6. P. 611–621. DOI: 10.5551/jat.57364

[33]

Rezania S, Puskarich MA, Petrusca DN, et al. Platelet hyperactivation, apoptosis and hypercoagulability in patients with acute pulmonary embolism. Thromb Res. 2017;155:106–115. DOI: 10.1016/j.thromres.2017.05.009

[34]

Rezania S., Puskarich M.A., Petrusca D.N. et al. Platelet hyperactivation, apoptosis and hypercoagulability in patients with acute pulmonary embolism // Thromb. Res. 2017. Vol. 155. P. 106–115. DOI: 10.1016/j.thromres.2017.05.009

[35]

Wang Y, Yu D, Yu Y, et al. Potential role of sympathetic activity on the pathogenesis of massive pulmonary embolism with circulatory shock in rabbits. Respir Res. 2019;20(1):97. DOI: 10.1186/s12931-019-1069-z

[36]

Wang Y., Yu D., Yu Y. et al. Potential role of sympathetic activity on the pathogenesis of massive pulmonary embolism with circulatory shock in rabbits // Respir. Res. 2019. Vol. 20, No. 1. P. 97. DOI: 10.1186/s12931-019-1069-z

[37]

Görnemann T, Villalón CM, Centurión D, Pertz HH. Phenylephrine contracts porcine pulmonary veins via alpha(1B)-, alpha(1D)-, and alpha(2)-adrenoceptors. Eur J Pharmacol. 2009;613(1–3):86–92. DOI: 10.1016/j.ejphar.2009.04.011

[38]

Görnemann T., Villalón C.M., Centurión D., Pertz H.H. Phenylephrine contracts porcine pulmonary veins via alpha(1B)-, alpha(1D)-, and alpha(2)-adrenoceptors // Eur. J. Pharmacol. 2009. Vol. 613, No. 1–3. P. 86–92. DOI: 10.1016/j.ejphar.2009.04.011

[39]

Leblais V, Delannoy E, Fresquet F, et al. Beta-adrenergic relaxation in pulmonary arteries: preservation of the endothelial nitric oxide-dependent beta2 component in pulmonary hypertension. Cardiovasc Res. 2008;77(1):202–210. DOI: 0.1093/cvr/cvm008

[40]

Leblais V., Delannoy E., Fresquet F. et al. Beta-adrenergic relaxation in pulmonary arteries: preservation of the endothelial nitric oxide-dependent beta2 component in pulmonary hypertension // Cardiovasc. Res. 2008. Vol. 77, No. 1. P. 202–210. DOI: 0.1093/cvr/cvm008

[41]

Parker JC, Townsley MI. Physiological determinants of the pulmonary filtration coefficient. Am J Physiol Lung Cell Mol Physiol. 2008;295(2):L235–L237. DOI: 10.1152/ajplung.00064.2008

[42]

Parker J.C., Townsley M.I. Physiological determinants of the pulmonary filtration coefficient // Am. J. Physiol. Lung Cell. Mol. Physiol. 2008. Vol. 295, No. 2. P. L235–L237. DOI: 10.1152/ajplung.00064.2008

[43]

McGrath JC. Localization of alpha-adrenoceptors: JR Vane Medal Lecture. Br J Pharmacol. 2015;172(5):1179–1194. DOI: 10.1111/bph.13008

[44]

McGrath J.C. Localization of alpha-adrenoceptors: JR Vane Medal Lecture // Br. J. Pharmacol. 2015. Vol. 172, No. 5. P. 1179–1194. DOI: 10.1111/bph.13008

[45]

Pimentel AM, Costa CA, Carvalho LC, et al. The role of NO-cGMP pathway and potassium channels on the relaxation induced by clonidine in the rat mesenteric arterial bed. Vascul Pharmacol. 2007;46(5):353–359. DOI: 10.1016/j.vph.2006.12.003

[46]

Pimentel A.M., Costa C.A., Carvalho L.C. et al. The role of NO-cGMP pathway and potassium channels on the relaxation induced by clonidine in the rat mesenteric arterial bed // Vascul. Pharmacol. 2007. Vol. 46, No. 5. P. 353–359. DOI: 10.1016/j.vph.2006.12.003

[47]

Jantschak F, Pertz HH. Alpha2C-adrenoceptors play a prominent role in sympathetic constriction of porcine pulmonary arteries. Naunyn Schmiedebergs Arch Pharmacol. 2012;385(6):595–603. DOI: 10.1007/s00210-012-0741-3

[48]

Jantschak F., Pertz H.H. Alpha2C-adrenoceptors play a prominent role in sympathetic constriction of porcine pulmonary arteries // Naunyn. Schmiedebergs Arch. Pharmacol. 2012. Vol. 385, No. 6. P. 595–603. DOI: 10.1007/s00210-012-0741-3

[49]

Chen Q, Yi B, Ma J, et al. α2-adrenoreceptor modulated FAK pathway induced by dexmedetomidine attenuates pulmonary microvascular hyper-permeability following kidney injury. Oncotarget. 2016;7(35):55990–56001. DOI: 10.18632/oncotarget.10809

[50]

Chen Q., Yi B., Ma J. et al. α2-adrenoreceptor modulated FAK pathway induced by dexmedetomidine attenuates pulmonary microvascular hyper-permeability following kidney injury // Oncotarget. 2016. Vol. 7, No. 35. P. 55990–56001. DOI: 10.18632/oncotarget.10809

[51]

Ladage D, Brixius K, Hoyer H, et al. Mechanisms underlying nebivolol-induced endothelial nitric oxide synthase activation in human umbilical vein endothelial cells. Clin Exp Pharmacol Physiol. 2006;33(8):720–724. DOI: 10.1111/j.1440-1681.2006.04424.x

[52]

Ladage D., Brixius K., Hoyer H. et al. Mechanisms underlying nebivolol-induced endothelial nitric oxide synthase activation in human umbilical vein endothelial cells // Clin. Exp. Pharmacol. Physiol. 2006. Vol. 33, No. 8. P. 720–724. DOI: 10.1111/j.1440-1681.2006.04424.x

[53]

Bäck M, Walch L, Norel X, et al. Modulation of vascular tone and reactivity by nitric oxide in porcine pulmonary arteries and veins. Acta Physiol Scand. 2002;174(1):9–15. DOI: 10.1046/j.1365-201x.2002.00928.x

[54]

Bäck M., Walch L., Norel X. et al. Modulation of vascular tone and reactivity by nitric oxide in porcine pulmonary arteries and veins // Acta. Physiol. Scand. 2002. Vol. 174, No. 1. P. 9–15. DOI: 10.1046/j.1365-201x.2002.00928.x

[55]

Durán WN, Beuve AV, Sánchez FA. Nitric oxide, S-nitrosation, and endothelial permeability. IUBMB Life. 2013;65(10):819–826. DOI: 10.1002/iub.1204

[56]

Durán W.N., Beuve A.V., Sánchez F.A. Nitric oxide, S-nitrosation, and endothelial permeability // IUBMB Life. 2013. Vol. 65, No. 10. P. 819–826. DOI: 10.1002/iub.1204

[57]

Spindler V, Waschke J. Beta-adrenergic stimulation contributes to maintenance of endothelial barrier functions under baseline conditions. Microcirculation. 2011;18(2):118–127. DOI: 10.1111/j.1549-8719.2010.00072.x

[58]

Spindler V., Waschke J. Beta-adrenergic stimulation contributes to maintenance of endothelial barrier functions under baseline conditions // Microcirculation. 2011. Vol. 18, No. 2. P. 118–127. DOI: 10.1111/j.1549-8719.2010.00072.x

[59]

Yang J, Sun H, Zhang J, et al. Regulation of β-adrenergic receptor trafficking and lung microvascular endothelial cell permeability by Rab5 GTPase. Int J Biol Sci. 2015;11(8):868–878. DOI: 10.7150/ijbs.12045

[60]

Yang J., Sun H., Zhang J. et al. Regulation of β-adrenergic receptor trafficking and lung microvascular endothelial cell permeability by Rab5 GTPase // Int. J. Biol. Sci. 2015. Vol. 11, No. 8. P. 868–878. DOI: 10.7150/ijbs.12045

RIGHTS & PERMISSIONS

Evlakhov V.I., Poyassov I.Z., Berezina T.P.

AI Summary AI Mindmap
PDF (417KB)

99

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/