Role of muscarinic antagonist methacine metabolites in regulation of inflammation

N S Sapronoѵ , G I Nezhinskaya , A L Vladykin

Medical academic journal ›› 2009, Vol. 9 ›› Issue (1) : 28 -32.

PDF
Medical academic journal ›› 2009, Vol. 9 ›› Issue (1) : 28 -32. DOI: 10.17816/MAJ9128-32
Articles
research-article

Role of muscarinic antagonist methacine metabolites in regulation of inflammation

Author information +
History +
PDF

Abstract

It is known, that synthetic muscarinic antagonists ipratropium bromide, trospium chloride, oxybutynin chloride form pharmacologically inactive metabolites and have slight side effects compared with muscarinic antagonists, which metabolites possess pharmacological activity. On the model of the quaternary muscarinic antagonist methacine we revealed that this drug undergoes hydrolysis at the ester bond to yield pharmacologically inactive 2-hydroxy-2,2-diphenylacetic acid and pharmacologically active muscarinic/nicotinic cholinoceptor agonist choline. Long-term course administration of methacine increases its antimuscarinic effects, connected with side effects extension. However single administration of methacine with cholinesterase inhibitor is an effective procedure to pathochemical stage of anaphylactic shock prevention. Methacine-induced immune response (non-neuronal effects) limits stress ulcer formation under water immersion stress influence. Obtained data may be significant for mechanism of new muscarinic antagonists action understanding and for scope evaluation of drug metabolites activity therapeutic application.

Keywords

muscarinic antagonist methacine / muscarinic and nicotinic agonist choline / anaphylactic shock / water immersion stress / B-lymphocytes

Cite this article

Download citation ▾
N S Sapronoѵ, G I Nezhinskaya, A L Vladykin. Role of muscarinic antagonist methacine metabolites in regulation of inflammation. Medical academic journal, 2009, 9(1): 28-32 DOI:10.17816/MAJ9128-32

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Адо А.Д., Гольдштейн М.М., Кравченко С.А. Возможность взаимодействия Р-адренергических и М- холинергических рецепторов на лимфоцитах мышей // Иммунология. 1996. №5. С. 71-72.

[2]

Лукьянчнкова Г.И. Экстракционно-фотометрическое определение метацина // Фарм. журн. 1973. Т. 28. № 1.С. 49-54.

[3]

Машковский М.Д. Лекарственные средства. 15-е изд. М.: ООО «Новая Волна», 2007.

[4]

Нежинская Г.И., Назаров П.Г., Евдокимова Н.Р. и др. Холинергическая регуляция анафилактического шока: влияние С-реактивного белка // Цитокины и воспаление. 2004. Т. 3. № 1. С. 44М-8.

[5]

Нежинская Г.И., Лосев Н.А., Назаров П.Г. и др. Влияние ацетилхолина и С-реактивного белка на регуляцию анафилактического шока у морских свинок // Экспер. и клин, фармакол. 2005. Т. 68. № 4. С. 49-52.

[6]

Нежинская Г.И., Лосев Н.А., Сапронов Н.С. Эффекты холинергических антагонистов при стрессе // Пат. физиол. и экспер. терапия. 2007. № 2. С. 12-13.

[7]

Allen D.D., Smith Q.R. Characterization of the blood- brain barrier choline transporter using the in situ rat brain perfusion technique // J. Neurochem. 2001. Vol. 76. P. 1032-1041.

[8]

Bhatia V, Tandon R.K. Stress and the gastrointestinal tract // J. Gastroenterol. Hepatol. 2005. Vol. 20. P. 332- 339.

[9]

Cansev M., Yilmaz M.S., Ilcol Y.O. et al. Cardiovascular effects of CDP-choline and its metabolites: involvement of peripheral autonomic nervous system // Eur. J. Pharmacol. 2007. Vol. 577. № 1-3. P. 129-142.

[10]

Cavun S., Savci. V., Ulus I.H. Centrally injected CDP- choline increases plasma vasopressin levels by central cholinergic activation. Fundam // Clin. Phannacol. 2004. Vol. 18. P 71-77.

[11]

Clarke’s analysis of drugs and poisons; ed.3 / Moffat A.C., Osselton M.D., Widdop B., Galichet L.Y. (eds.). Pharmaceutical Press. 2004.

[12]

Epstein B.J., Gums J.G., Molina E. Newer agents for the management of overactive bladder // Am. Fam. Physician. 2006. Vol. 74. № 12. P. 2061-2068.

[13]

Goodman, Gilman’s The Pharmacological Basis of Therapeutics / Brunton L.L., Parker K.L., Blumenthal D.K., Buxton I.L.O. (eds.), 11th ed., McGraw-Hill, New York, 2008.

[14]

GuayD.R. Clinical pharmacokinetics of drugs used to treat urge incontinence // Clin. Pharmacokinet. 2003. Vol. 42. № 14. P. 1243-1285.

[15]

Huang F, Browne C.E., Wu W.M. et al. Design, pharmacokinetic, and pharmacodynamic evaluation of a new class of soft anticholinergics // Pharm. Res. 2003. Vol. 20. № 10. P. 1681-1689.

[16]

JerneN., Henry C., Nordin A. et al. Plaque forming cells: methodology and theory // Transplant. Rev. 1974. Vol. 18. P. 130-191.

[17]

Mass spectrometry in medicinal chemistry / Wanner K.T. and I-Iofner G. (eds.). Wiley-Vch, Weinheim, 2007.

[18]

Nezhinskaya G.I., Vladykin A.L., Sapronov N.S. Cholinergic modulation of anaphylactic shock: plasma proteins influence // Life Sci. 2007. Vol. 80. P. 2342-2346.

[19]

Poole C.F. The essence of chromatography. Elsevier, Amsterdam, 2003.

[20]

Restrepo R.D. Use of inhaled anticholinergic agents in obstructive airway disease // Respir. Care. 2007. Vol. 52. № 7. P. 833-851.

[21]

Scapecchi S., Angeli P, Dei S. et al. SAR studies on the potent and selective muscarinic antagonist 2-eth- ylthio-2,2-diphenylacetic acid N,N-diethylaminoeth- yl ester//Arch. Pharm. (Weinheim). 1997. Vol. 330. № 5. P. 122-128.

[22]

Testa B., Mayer J.M. Hydrolysis in drug and prodrug metabolism. Verlag Helvetica Chimica Acta, Zurich, Switzerlaand, 2003.

RIGHTS & PERMISSIONS

Sapronoѵ N.S., Nezhinskaya G.I., Vladykin A.L.

AI Summary AI Mindmap
PDF

65

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/