The effect of vital stress on the bioelectric activity of the brain and the behavior of female rats
Tatyana V. Avaliani , Nataliya K. Apraksina , Sergey G. Tsikunov
Medical academic journal ›› 2022, Vol. 22 ›› Issue (1) : 43 -50.
The effect of vital stress on the bioelectric activity of the brain and the behavior of female rats
BACKGROUND: Identification of possible biomarkers that assess the severity of post-traumatic stress symptoms is an urgent task for the early diagnosis of post-traumatic stress disorders. The manifestation of emotional states, both human and animal, is reflected in altered behavior and in the violation of the ratio of basic rhythms and cross-correlation connections in the brain electroencephalogram, which indicates the development of pathological processes.
AIM: The aim of the study was to analyze the behavior and electrocorticogram indicators of rats in the delayed period (on day 7) after life-threatening stress, as a way to predict the formation of post-traumatic stress disorder.
MATERIALS AND METHODS: The study was performed on mature female Wistar rats weighing 180–200 g (n = 40). Mental trauma was modeled by the circumstances of experiencing the situation of the death of a partner from the action of a predator and the threat to their own life when placing rats in a terrarium with a tiger python. In rats, the behavior in the “Open Field” test and the bioelectric activity of the brain in the frontal and occipital regions on the left and right were analyzed before and on the 7th day after stress exposure.
RESULTS: It is shown that in the delayed period after vital stress in female rats, there is a decrease in motor and research activity and altered emotional behavior in the “Open Field” test. Reduction of interhemispheric asymmetry in the index of theta and delta activity and changes in cross-correlation connections in the right hemisphere, as well as changes in the ratio of the main rhythms and cross-correlation connections of the electroencephalography. The revealed changes in the delayed period indicate a pronounced aversive nature of the psychotraumatic effect.
CONCLUSIONS: Life-threatening stress is caused by changes in electrophysiological and behavioral parameters in experimental animals not only at the time of exposure, but also in the long-term period.
vital stress / delayed period / electrocorticogram / animal behavior / female rats
| [1] |
Lokhov MI, Fesenko YuA, Fesenko EV. Intellekt rebenka i profilaktika ego narusheniy. Saint Petersburg: ELBI-SPb.; 2008. (In Russ.) |
| [2] |
Лохов М.И., Фесенко Ю.А., Фесенко Е.В. Интеллект ребенка и профилактика его нарушений. СПб.: ЭЛБИ-СПб., 2008. |
| [3] |
Nedelcovych MT, Gould RW, Zhan X, et al. A rodent model of traumatic stress induces lasting sleep and quantitative electroencephalographic disturbances. ACS Chem Neurosci. 2015;6(3):485–493. DOI: 10.1021/cn500342u |
| [4] |
Nedelcovych M.T., Gould R.W., Zhan X. et al. A rodent model of traumatic stress induces lasting sleep and quantitative electroencephalographic disturbances // ACS Chem. Neurosci. 2015. Vol. 6, No. 3. P. 485–493. DOI: 10.1021/cn500342u |
| [5] |
Sudakov KV, Umryukhin PE. Sistemnye osnovy ehmocional’nogo stressa. Moscow: GEOTAR-Media; 2010. (In Russ.) |
| [6] |
Судаков К.В., Умрюхин П.Е. Системные основы эмоционального стресса. М.: ГЭОТАР-Медиа, 2010. |
| [7] |
Yehuda R, Brand S, Golier JA, Yang R-K. Clinical correlates of DHEA associated with post-traumatic stress disorder. Acta Psychiatr Scand. 2006;114(3):187–193. DOI: 10.1111/j.1600-0447.2006.00801.x |
| [8] |
Yehuda R., Brand S., Golier J.A., Yang R.-K. Clinical correlates of DHEA associated with post-traumatic stress disorder // Acta Psychiatr. Scand. 2006. Vol. 114, No. 3. P. 187–193. DOI: 10.1111/j.1600-0447.2006.00801.x |
| [9] |
Lommen MJJ, Engelhard IM, Sijbrandij M, et al. Pre-trauma individual differences in extinction learning predict posttraumatic stress. Behav Res Ther. 2013;51(2):63–67. DOI: 10.1016/j.brat.2012.11.004 |
| [10] |
Lommen M.J.J., Engelhard I.M., Sijbrandij M. et al. Pre-trauma individual differences in extinction learning predict posttraumatic stress // Behav. Res. Ther. 2013. Vol. 51, No. 2. P. 63–67. DOI: 10.1016/j.brat.2012.11.004 |
| [11] |
Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 6th ed. Academic press; 2007. |
| [12] |
Paxinos G., Watson C. The rat brain in stereotaxic coordinates. 6th ed. Academic press, 2007. |
| [13] |
Tsikunov SG, Pshenichnaya AG, Klyueva NN, et al. Vital stress causes long-lasting behavioral disorders and lipid metabolism deviations in female rats. Reviews on Clinical Pharmacology and Drug Therapy. 2016;14(4):32–41. (In Russ.) DOI: 10.17816/RCF14432-41 |
| [14] |
Цикунов С.Г., Пшеничная А.Г., Клюева Н.Н. и др. Витальный стресс вызывает длительные расстройства поведения и обмена липидов у самок крыс // Обзоры по клинической фармакологии и лекарственной терапии. 2016. Т. 14, № 4. C. 32–41. DOI: 10.17816/RCF14432-41 |
| [15] |
Kirkpatrick HA, Heller GM. Post-traumatic stress disorder: Theory and treatment update. Int J Psychiatry Med. 2014;47(4):337–346. DOI: 10.2190/PM.47.4.h |
| [16] |
Kirkpatrick H.A., Heller G.M. Post-traumatic stress disorder: Theory and treatment update // Int. J. Psychiatry Med. 2014. Vol. 47, No. 4. P. 337–346. DOI: 10.2190/PM.47.4.h |
| [17] |
Nabiev RG, Kondrateva OG, Shibkova DZ. Changes in the functional state of the central nervous system in the formation of post-traumatic stress disorder. Modern problems of science and education. 2015;(3):595–602. (In Russ.) |
| [18] |
Набиев Р.Г., Кондратьева О.Г., Шибкова Д.З. Изменения функционального состояния центральной нервной системы при формировании посттравматического стрессового расстройства // Современные проблемы науки и образования. 2015. № 3. C. 595–602. |
| [19] |
Shadrina IV, Dedova KN, Pugachev AN. Neurophysiological of feature of work of a brain (by results of the analysis of indicators electroencephalography) and their influence on psychological characteristics at patients with posttraumatic stressful frustration. Bulletin of The South Ural State University. Series: Education, health care, physical education. 2011;(7(224)):84–86. (In Russ.) |
| [20] |
Шадрина И.В., Дедова К.Н., Пугачёв А.Н. Нейрофизиологические особенности работы головного мозга (по результатам анализа показателей ЭЭГ) и их влияние на психологические характеристики у пациентов с посттравматическим стрессовым расстройством // Вестник Южно-Уральского государственного университета. Серия: Образование, здравоохранение, физическая культура. 2011. № 7(224). C. 84–86. |
| [21] |
Lobo I, Portugal LC, Figueira I, et al. EEG correlates of the severity of posttraumatic stress symptoms: a systematic review of the dimensional PTSD literature. J Affect Disord. 2015;1(183):210–220. DOI: 10.1016/j.jad.2015.05.015 |
| [22] |
Lobo I., Portugal L.C., Figueira I. et al. EEG correlates of the severity of posttraumatic stress symptoms: a systematic review of the dimensional PTSD literature // J. Affect Disord. 2015. Vol. 1, No. 183. P. 210–220. DOI: 10.1016/j.jad.2015.05.015 |
| [23] |
Knyazev GG. EEG delta oscillations as a correlate of basic homeostatic and motivational processes. Neurosci Biobehav Rev. 2012;36(1):677–695. DOI: 10.1016/j.neubiorev.10.002 |
| [24] |
Knyazev G.G. EEG delta oscillations as a correlate of basic homeostatic and motivational processes // Neurosci. Biobehav. Rev. 2012. Vol. 36, No. 1. P. 677–695. DOI: 10.1016/j.neubiorev.10.002 |
| [25] |
Schutter D, van Honk J. Decoupling of midfrontal delta–beta oscillations after testosterone administration. Int J Psychophysiol. 2004;53(1):71–73. DOI: 10.1016/j.ijpsycho.2003.12.012 |
| [26] |
Schutter D., van Honk J. Decoupling of midfrontal delta–beta oscillations after testosterone administration // Int. J. Psychophysiol. 2004. Vol. 53, No. 1. P. 71–73. DOI: 10.1016/j.ijpsycho.2003.12.012 |
| [27] |
Aftanas LI, Reva NV, Varlamov AA, et al. Analysis of evoked EEG synchronization and desynchronization in conditions of emotional activation in humans: temporal and topographic characteristics. Neurosci Behav Physiol. 2004;34(8):859–867. DOI: 10.1023/b:neab.0000038139.39812.eb |
| [28] |
Aftanas L.I., Reva N.V., Varlamov A.A. et al. Analysis of evoked EEG synchronization and desynchronization in conditions of emotional activation in humans: temporal and topographic characteristics // Neurosci. Behav. Physiol. 2004. Vol. 34, No. 8. P. 859–867. DOI: 10.1023/b:neab.0000038139.39812.eb |
| [29] |
Egorov АYu. Functional asymmetry of the brain and the importance of developing a clinical direction in evolutionary physiology. Proceedings of Tendencies of development of physiological sciences: VI sessiya posvyashchennaya 150-letiyu so dnya rozhdeniya I.P. Pavlova; 1999 Nov 25–26; Saint Petersburg. Saint Petersburg: Nauka; 2000. P. 159–160. (In Russ.) |
| [30] |
Егоров А.Ю. Функциональная асимметрия мозга и важность развития клинического направления в эволюционной физиологии // Тенденции развития физиологических наук. VI сессия, посвященная 150-летию со дня рождения И.П. Павлова, Санкт-Петербург, 25–26 ноября 1999. СПб.: Наука, 2000. С. 159–160. |
| [31] |
Chuyan EN, Gornaya OI. Changes in the coefficient of motor asymmetry in rats during adaptation to hypoxic stress. Fizika zhivogo. 2009;17(1):165–168. (In Russ.) |
| [32] |
Чуян Е.Н., Горная О.И. Изменение коэффициента моторной асимметрии у крыс при адаптации к гипоксическому стрессу // Физика живого. 2009. Т. 17, № 1. С. 165–168. |
| [33] |
Avaliani TV, Konstantinov KV, Bykova AV, et al. Correction of the functional state of female rats by the method of EEG-dependent acoustic exposure in the model of vital stress. Neurocomputers. 2014;(7):5–11. (In Russ.) |
| [34] |
Авалиани Т.В., Константинов К.В., Быкова А.В. и др. Коррекция функционального состояния самок крыс методом ЭЭГ-зависимого акустического воздействия в модели витального стресса // Нейрокомпьютеры: разработка, применение. 2014. № 7. C. 5–11. |
| [35] |
Spiridonova MD. Osobennosti spektrov moshchnosti EEG pri perezhivanii chuvstva strakha. Molodoj uchenyj. 2013;(8):130–132. (In Russ.) |
| [36] |
Спиридонова М.Д. Особенности спектров мощности ЭЭГ при переживании чувства страха // Молодой ученый. 2013. № 8. C. 130–132. |
| [37] |
Sysoev YuI, Pyankova VA, Kroshkina KA, et al. Crosscorrelation and coherent analysis of ECOG in rats with traumatic brain injury. Russian Journal of Physiology. 2020;106(3):315–328. (In Russ.) DOI: 10.31857/S0869813920030085 |
| [38] |
Сысоев Ю.И., Пьянкова В.А., Крошкина К.А. и др. Кросскорреляционный и когерентный анализ электрокортикограмм крыс, перенесших черепно-мозговую травму // Российский физиологический журнал им. И.М. Сеченова. 2020. Т. 106, № 3. C. 315–328. DOI: 10.31857/S0869813920030085 |
| [39] |
Avaliani TV, Klyueva NN, Apraksina NK, Tsikunov SG. Preconditioning of severe mental trauma by the method of sound exposure. Reviews on Clinical Pharmacology and Drug Therapy. 2018;16(S1):9–10. (In Russ.) |
| [40] |
Авалиани Т.В., Клюева Н.Н., Апраксина Н.К., Цикунов С.Г. Прекондиционирование тяжелой психической травмы методом звукового воздействия // Обзоры по клинической фармакологии и лекарственной терапии. 2018. Т. 16, № S1. С. 9–10. |
Avaliani T.V., Apraksina N.K., Tsikunov S.G.
/
| 〈 |
|
〉 |