Metabolic precursors of nicotinamide adenine dinucleotide and the potential for their clinical use
Iryna P. Sutsko , Alexey G. Shlyahtun , Igor N. Semenenya
Medical academic journal ›› 2022, Vol. 22 ›› Issue (3) : 15 -25.
Metabolic precursors of nicotinamide adenine dinucleotide and the potential for their clinical use
Nicotinamide adenine dinucleotide (NAD+) is present in all living cells and is a central signaling molecule and enzyme cofactor that is involved in many fundamental biological processes, including energy production, DNA repair, gene expression, and calcium-dependent signaling. It is known that NAD+ levels decrease in many pathological conditions, as well as with age in many tissues of rodents and humans, which contributes to the development of age-related pathology. There is evidence that an increase in intracellular NAD+ levels prevents the development of various pathological conditions. The review presents an analysis of modern data on the possibility of using precursors of NAD+ biosynthesis to provide the required level in body tissues in order to correct various disorders of vital functions.
nicotinamide adenine dinucleotide / NAD+ / metabolic precursors of nicotinamide adenine dinucleotide / nicotinamide / nicotinamide riboside / nicotinamide mononucleotide / nicotinic acid / nicotinic acid riboside
| [1] |
Nikiforov A, Kulikova V, Ziegler M. The human NAD metabolome: Functions, metabolism and compartmentalization. Crit Rev Biochem Mol Biol. 2015;50(4):284–297. DOI: 10.3109/10409238.2015.1028612 |
| [2] |
Nikiforov A., Kulikova V., Ziegler M. The human NAD metabolome: Functions, metabolism and compartmentalization // Crit. Rev. Biochem. Mol. Biol. 2015. Vol. 50, No. 4. P. 284–297. DOI: 10.3109/10409238.2015.1028612 |
| [3] |
Kulikova VA, Gromyko DV, Nikiforov AA. The regulatory role of NAD in human and animal cells. Biochemistry (Moscow). 2018;83(7):800–812. DOI: 10.1134/S0006297918070040 |
| [4] |
Kulikova V.A., Gromyko D.V., Nikiforov A.A. The regulatory role of NAD in human and animal cells // Biochemistry (Moscow). 2018. Vol. 83, No. 7. P. 800–812. DOI: 10.1134/S0006297918070040 |
| [5] |
Belenky P, Bogan KL, Brenner C. NAD+ metabolism in health and disease. Trends Biochem Sci. 2007;32(1):12–19. DOI: 10.1016/j.tibs.2006.11.006 |
| [6] |
Belenky P., Bogan K.L., Brenner C. NAD+ metabolism in health and disease // Trends Biochem. Sci. 2007. Vol. 32, No. 1. P. 12–19. DOI: 10.1016/j.tibs.2006.11.006 |
| [7] |
Zhang N, Sauve AA. Regulatory effects of NAD+ metabolic pathways on sirtuin activity. Prog Mol Biol Transl Sci. 2018;154:71–104. DOI: 10.1016/bs.pmbts.2017.11.012 |
| [8] |
Zhang N., Sauve A.A. Regulatory effects of NAD+ metabolic pathways on sirtuin activity // Prog. Mol. Biol. Transl Sci. 2018. Vol. 154. P. 71–104. DOI: 10.1016/bs.pmbts.2017.11.012 |
| [9] |
Fliegert R, Gasser A, Guse AH. Regulation of calcium signalling by adenine-based second messengers. Biochem Soc Trans. 2007;35(Pt 1):109–114. DOI: 10.1042/BST0350109 |
| [10] |
Fliegert R., Gasser A., Guse A.H. Regulation of calcium signalling by adenine-based second messengers // Biochem. Soc. Trans. 2007. Vol. 35, No. Pt 1. P. 109–114. DOI: 10.1042/BST0350109 |
| [11] |
Cantó C, Menzies KJ, Auwerx J. NAD(+) metabolism and the control of energy homeostasis: A balancing act between mitochondria and the nucleus. Cell Metab. 2015;22(1):31–53. DOI: 10.1016/j.cmet.2015.05.023 |
| [12] |
Cantó C., Menzies K.J., Auwerx J. NAD(+) metabolism and the control of energy homeostasis: A balancing act between mitochondria and the nucleus // Cell Metab. 2015. Vol. 22. No. 1. P. 31–53. DOI: 10.1016/j.cmet.2015.05.023 |
| [13] |
Liu L, Su X, Quinn WJ III, et al. Quantitative analysis of NAD synthesis-breakdown fluxes. Cell Metab. 2018;27(5):1067–1080.e5. DOI: 10.1016/j.cmet.2018.03.018 |
| [14] |
Liu L., Su X., Quinn W.J. III et al. Quantitative analysis of NAD synthesis-breakdown fluxes // Cell. Metab. 2018. Vol. 27, No. 5. P. 1067–1080.e5. DOI: 10.1016/j.cmet.2018.03.018 |
| [15] |
Tannous C, Booz GW, Altara R, et al. Nicotinamide adenine dinucleotide: Biosynthesis, consumption and therapeutic role in cardiac diseases. Acta Physiol (Oxf). 2021;231(3):e13551. DOI: 10.1111/apha.13551 |
| [16] |
Tannous C., Booz G.W., Altara R. et al. Nicotinamide adenine dinucleotide: Biosynthesis, consumption and therapeutic role in cardiac diseases // Acta Physiol. (Oxf). 2021. Vol. 231, No. 3. P. e13551. DOI: 10.1111/apha.13551 |
| [17] |
Gasperi V, Sibilano M, Savini I, Catani MV. Niacin in the central nervous system: An update of biological aspects and clinical applications. Int J Mol Sci. 2019;20(4):974. DOI: 10.3390/ijms20040974 |
| [18] |
Gasperi V., Sibilano M., Savini I., Catani M.V. Niacin in the central nervous system: An update of biological aspects and clinical applications // Int. J. Mol. Sci. 2019. Vol. 20, No. 4. P. 974. DOI: 10.3390/ijms20040974 |
| [19] |
Kulikova V, Shabalin K, Nerinovski K, et al. Generation, release, and uptake of the NAD precursor nicotinic acid riboside by human cells. J Biol Chem. 2015;290(45):27124–27137. DOI: 10.1074/jbc.M115.664458 |
| [20] |
Kulikova V., Shabalin K., Nerinovski K. et al. Generation, release, and uptake of the NAD precursor nicotinic acid riboside by human cells // J. Biol. Chem. 2015. Vol. 290, No. 45. P. 27124–27137. DOI: 10.1074/jbc.M115.664458 |
| [21] |
Katsyuba E, Auwerx J. Modulating NAD+ metabolism, from bench to bedside. EMBO J. 2017;36(18):2670–2683. DOI: 10.15252/embj.201797135 |
| [22] |
Katsyuba E., Auwerx J. Modulating NAD+ metabolism, from bench to bedside // EMBO J. 2017. Vol. 36, No. 18. P. 2670–2683. DOI: 10.15252/embj.201797135 |
| [23] |
Yoshino J, Mills KF, Yoon MJ, Imai S. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 2011;14(4):528–536. DOI: 10.1016/j.cmet.2011.08.014 |
| [24] |
Yoshino J., Mills K.F., Yoon M.J, Imai S. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice // Cell. Metab. 2011. Vol. 14, No. 4. P. 528–536. DOI: 10.1016/j.cmet.2011.08.014 |
| [25] |
Gomes AP, Price NL, Ling AJ, et al. Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell. 2013;155(7):1624–1638. DOI: 10.1016/j.cell.2013.11.037 |
| [26] |
Gomes A.P., Price N.L., Ling A.J. et al. Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging // Cell. 2013. Vol. 155, No. 7. P. 1624–1638. DOI: 10.1016/j.cell.2013.11.037 |
| [27] |
Clement J, Wong M, Poljak A, et al. The plasma NAD+ metabolome is dysregulated in “normal” aging. Rejuvenation Res. 2019;22(2):121–130. DOI: 10.1089/rej.2018.2077 |
| [28] |
Clement J., Wong M., Poljak A. et al. The plasma NAD+ metabolome is dysregulated in “normal” aging // Rejuvenation. Res. 2019. Vol. 22, No. 2. P. 121–130. DOI: 10.1089/rej.2018.2077 |
| [29] |
Covarrubias AJ, Perrone R, Grozio A, Verdin E. NAD+ metabolism and its roles in cellular processes during ageing. Nat Rev Mol Cell Biol. 2021;22(2):119–141. DOI: 10.1038/s41580-020-00313-x |
| [30] |
Covarrubias A.J., Perrone R., Grozio A., Verdin E. NAD+ metabolism and its roles in cellular processes during ageing // Nat. Rev. Mol. Cell Biol. 2021. Vol. 22, No. 2. P. 119–141. DOI: 10.1038/s41580-020-00313-x |
| [31] |
Mukherjee S, Chellappa K, Moffitt A, et al. Nicotinamide adenine dinucleotide biosynthesis promotes liver regeneration. Hepatology. 2017;65(2):616–663. DOI: 10.1002/hep.28912 |
| [32] |
Mukherjee S., Chellappa K., Moffitt A. et al. Nicotinamide adenine dinucleotide biosynthesis promotes liver regeneration // Hepatology. 2017. Vol. 65, No. 2. P. 616–663. DOI: 10.1002/hep.28912 |
| [33] |
Cantó C, Houtkooper RH, Pirinen E, et al. The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 2012;15(6):838–847. DOI: 10.1016/j.cmet.2012.04.022 |
| [34] |
Cantó C., Houtkooper R.H., Pirinen E. et al. The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity // Cell. Metab. 2012. Vol. 15, No. 6. P. 838–847. DOI: 10.1016/j.cmet.2012.04.022 |
| [35] |
Braidy N, Berg J, Clement J, et al. Role of nicotinamide adenine dinucleotide and related precursors as therapeutic targets for age-related degenerative diseases: Rationale, biochemistry, pharmacokinetics, and outcomes. Antioxid Redox Signal. 2019;30(2):251–294. DOI: 10.1089/ars.2017.7269 |
| [36] |
Braidy N., Berg J., Clement J. et al. Role of nicotinamide adenine dinucleotide and related precursors as therapeutic targets for age-related degenerative diseases: Rationale, biochemistry, pharmacokinetics, and outcomes // Antioxid. Redox. Signal. 2019. Vol. 30, No. 2. P. 251–294. DOI: 10.1089/ars.2017.7269 |
| [37] |
Bieganowski P, Brenner C. Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans. Cell. 2004;117(4):495–550. DOI: 10.1016/s0092-8674(04)00416-7 |
| [38] |
Bieganowski P., Brenner C. Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans // Cell. 2004. Vol. 117, No. 4. P. 495–550. DOI: 10.1016/s0092-8674(04)00416-7 |
| [39] |
Trammell SA, Yu L, Redpath P, et al. Nicotinamide riboside is a major NAD+ precursor vitamin in cow milk. J Nutr. 2016;146(5):957–963. DOI: 10.3945/jn.116.230078 |
| [40] |
Trammell S.A., Yu L., Redpath P. et al. Nicotinamide riboside is a major NAD+ precursor vitamin in cow milk // J. Nutr. 2016. Vol. 146, No. 5. P. 957–963. DOI: 10.3945/jn.116.230078 |
| [41] |
Trammell SA, Schmidt MS, Weidemann BJ, et al. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans. Nat Commun. 2016;7:12948. DOI: 10.1038/ncomms12948 |
| [42] |
Trammell S.A., Schmidt M.S., Weidemann B. et al. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans // Nat. Commun. 2016. Vol. 7. P. 12948. DOI: 10.1038/ncomms12948 |
| [43] |
Kropotov A, Kulikova V, Nerinovski K, et al. Equilibrative nucleoside transporters mediate the import of nicotinamide riboside and nicotinic acid riboside into human cells. Int J Mol Sci. 2021;22(3):1391. DOI: 10.3390/ijms22031391 |
| [44] |
Kropotov A., Kulikova V., Nerinovski K. et al. Equilibrative nucleoside transporters mediate the import of nicotinamide riboside and nicotinic acid riboside into human cells // Int. J. Mol. Sci. 2021. Vol. 22, No. 3. P. 1391. DOI: 10.3390/ijms22031391 |
| [45] |
Yoshino J, Baur JA, Imai SI. NAD+ Intermediates: The biology and therapeutic potential of NMN and NR. Cell Metab. 2018;27(3):513–528. DOI: 10.1016/j.cmet.2017.11.002 |
| [46] |
Yoshino J., Baur J.A., Imai S.I. NAD+ Intermediates: The biology and therapeutic potential of NMN and NR // Cell Metab. 2018. Vol. 27, No. 3. P. 513–528. DOI: 10.1016/j.cmet.2017.11.002 |
| [47] |
Gong B, Pan Y, Vempati P, et al. Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-γ coactivator 1α regulated β-secretase 1 degradation and mitochondrial gene expression in Alzheimer’s mouse models. Neurobiol Aging. 2013;34(6):1581–1588. DOI: 10.1016/j.neurobiolaging.2012.12.005 |
| [48] |
Gong B., Pan Y., Vempati P. et al. Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-γ coactivator 1α regulated β-secretase 1 degradation and mitochondrial gene expression in Alzheimer’s mouse models // Neurobiol. Aging. 2013. Vol. 34, No. 6. P. 1581–1588. DOI: 10.1016/j.neurobiolaging.2012.12.005 |
| [49] |
Schöndorf DC, Ivanyuk D, Baden P, et al. The NAD+ precursor nicotinamide riboside rescues mitochondrial defects and neuronal loss in iPSC and fly models of Parkinson’s disease. Cell Rep. 2018;23(10):2976–2988. DOI: 10.1016/j.celrep.2018.05.009 |
| [50] |
Schöndorf D.C., Ivanyuk D., Baden P. et al. The NAD+ precursor nicotinamide riboside rescues mitochondrial defects and neuronal loss in iPSC and fly models of Parkinson’s disease // Cell Rep. 2018. Vol. 23, No. 10. P. 2976–2988. DOI: 10.1016/j.celrep.2018.05.009 |
| [51] |
Lloret A, Beal MF. PGC-1α, sirtuins and PARPs in Huntington’s disease and other neurodegenerative conditions: NAD+ to rule them all. Neurochem Res. 2019;44(10):2423–2434. DOI: 10.1007/s11064-019-02809-1 |
| [52] |
Lloret A., Beal M.F. PGC-1α, sirtuins and PARPs in Huntington’s disease and other neurodegenerative conditions: NAD+ to rule them all // Neurochem. Res. 2019. Vol. 44, No. 10. P. 2423–2434. DOI: 10.1007/s11064-019-02809-1 |
| [53] |
Elhassan YS, Kluckova K, Fletcher RS, et al. Nicotinamide riboside augments the aged human skeletal muscle NAD+ metabolome and induces transcriptomic and anti-inflammatory signatures. Cell Rep. 2019;28(7):1717–1728.e6. DOI: 10.1016/j.celrep.2019.07.043 |
| [54] |
Elhassan Y.S., Kluckova K., Fletcher R.S. et al. Nicotinamide riboside augments the aged human skeletal muscle NAD+ metabolome and induces transcriptomic and anti-inflammatory signatures // Cell Rep. 2019. Vol. 28, No. 7. P. 1717–1728.e6. DOI: 10.1016/j.celrep.2019.07.043 |
| [55] |
Brown KD, Maqsood S, Huang JY, et al. Activation of SIRT3 by the NAD⁺ precursor nicotinamide riboside protects from noise-induced hearing loss. Cell Metab. 2014;20(6):1059–1068. DOI: 10.1016/j.cmet.2014.11.003 |
| [56] |
Brown K.D., Maqsood S., Huang J.Y. et al. Activation of SIRT3 by the NAD⁺ precursor nicotinamide riboside protects from noise-induced hearing loss // Cell Metab. 2014. Vol. 20, No. 6. P. 1059–1068. DOI: 10.1016/j.cmet.2014.11.003 |
| [57] |
Khan NA, Auranen M, Paetau I, et al. Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3. EMBO Mol Med. 2014;6(6):721–731. DOI: 10.1002/emmm.201403943 |
| [58] |
Khan N.A., Auranen M., Paetau I. et al. Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3 // EMBO Mol. Med. 2014. Vol. 6, No. 6. P. 721–731. DOI: 10.1002/emmm.201403943 |
| [59] |
Trammell SA, Weidemann BJ, Chadda A, et al. Nicotinamide riboside opposes type 2 diabetes and neuropathy in mice. Sci Rep. 2016;6:26933. DOI: 10.1038/srep26933 |
| [60] |
Trammell S.A., Weidemann B.J., Chadda A. et al. Nicotinamide riboside opposes type 2 diabetes and neuropathy in mice // Sci. Rep. 2016. Vol. 6. P. 26933. DOI: 10.1038/srep26933 |
| [61] |
Zhou CC, Yang X, Hua X, et al. Hepatic NAD(+) deficiency as a therapeutic target for non-alcoholic fatty liver disease in ageing. Br J Pharmacol. 2016;173(15):2352–2368. DOI: 10.1111/bph.13513 |
| [62] |
Zhou C.C., Yang X., Hua X. et al. Hepatic NAD(+) deficiency as a therapeutic target for non-alcoholic fatty liver disease in ageing // Br. J. Pharmacol. 2016. Vol. 173, No. 15. P. 2352–2368. DOI: 10.1111/bph.13513 |
| [63] |
Tummala KS, Gomes AL, Yilmaz M, et al. Inhibition of de novo NAD(+) synthesis by oncogenic URI causes liver tumorigenesis through DNA damage. Cancer Cell. 2014;26(6):826–839. DOI: 10.1016/j.ccell.2014.10.002 |
| [64] |
Tummala K.S., Gomes A.L., Yilmaz M. et al. Inhibition of de novo NAD(+) synthesis by oncogenic URI causes liver tumorigenesis through DNA damage // Cancer Cell. 2014. Vol. 26, No. 6. P. 826–839. DOI: 10.1016/j.ccell.2014.10.002 |
| [65] |
Diguet N, Trammell SAJ, Tannous C, et al. Nicotinamide riboside preserves cardiac function in a mouse model of dilated cardiomyopathy. Circulation. 2018;137(21):2256–2273. DOI: 10.1161/CIRCULATIONAHA.116.026099 |
| [66] |
Diguet N., Trammell S.A.J., Tannous C. et al. Nicotinamide riboside preserves cardiac function in a mouse model of dilated cardiomyopathy // Circulation. 2018. Vol. 137, No. 21. P. 2256–2273. DOI: 10.1161/CIRCULATIONAHA.116.026099 |
| [67] |
Frederick DW, Loro E, Liu L, et al. Loss of NAD homeostasis leads to progressive and reversible degeneration of skeletal muscle. Cell Metab. 2016;24(2):269–282. DOI: 10.1016/j.cmet.2016.07.005 |
| [68] |
Frederick D.W., Loro E., Liu L. et al. Loss of NAD homeostasis leads to progressive and reversible degeneration of skeletal muscle // Cell Metab. 2016. Vol. 24, No. 2. P. 269–282. DOI: 10.1016/j.cmet.2016.07.005 |
| [69] |
Martens CR, Denman BA, Mazzo MR, et al. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD+ in healthy middle-aged and older adults. Nat Commun. 2018;9(1):1286. DOI: 10.1038/s41467-018-03421-7 |
| [70] |
Martens C.R., Denman B.A., Mazzo M.R. et al. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD+ in healthy middle-aged and older adults // Nat. Commun. 2018. Vol. 9, No. 1. P. 1286. DOI: 10.1038/s41467-018-03421-7 |
| [71] |
Airhart SE, Shireman LM, Risler LJ, et al. An open-label, non-randomized study of the pharmacokinetics of the nutritional supplement nicotinamide riboside (NR) and its effects on blood NAD+ levels in healthy volunteers. PLoS One. 2017;12(12):e0186459. DOI: 10.1371/journal.pone.0186459 |
| [72] |
Airhart S.E., Shireman L.M., Risler L.J. et al. An open-label, non-randomized study of the pharmacokinetics of the nutritional supplement nicotinamide riboside (NR) and its effects on blood NAD+ levels in healthy volunteers // PLoS One. 2017. Vol. 12, No. 12. P. e0186459. DOI: 10.1371/journal.pone.0186459 |
| [73] |
Chi Y, Sauve AA. Nicotinamide riboside, a trace nutrient in foods, is a vitamin B3 with effects on energy metabolism and neuroprotection. Curr Opin Clin Nutr Metab Care. 2013;16(6):657–666. DOI: 10.1097/MCO.0b013e32836510c0 |
| [74] |
Chi Y., Sauve A.A. Nicotinamide riboside, a trace nutrient in foods, is a vitamin B3 with effects on energy metabolism and neuroprotection // Curr. Opin. Clin. Nutr. Metab. Care. 2013. Vol. 16, No. 6. P. 657–666. DOI: 10.1097/MCO.0b013e32836510c0 |
| [75] |
Effects of nicotinamide riboside on the clinical outcome of Covid-19 in the elderly [Internet]. ClinicalTrials.gov Identifier: NCT04407390; 2021 Nov 5. Available from: https://clinicaltrials.gov/ct2/show/NCT04407390. Accessed: 21.09.2022. |
| [76] |
Effects of nicotinamide riboside on the clinical outcome of COVID-19 in the elderly [Электронный ресурс]. ClinicalTrials.gov Identifier: NCT04407390; 2021 Nov 5. Режим доступа: https://clinicaltrials.gov/ct2/show/NCT04407390. Дата обращения: 21.09.2022. |
| [77] |
Poddar SK, Sifat AE, Haque S, et al. Nicotinamide mononucleotide: Exploration of diverse therapeutic applications of a potential molecule. Biomolecules. 2019;9(1):34. DOI: 10.3390/biom9010034 |
| [78] |
Poddar S.K., Sifat A.E., Haque S. et al. Nicotinamide mononucleotide: Exploration of diverse therapeutic applications of a potential molecule // Biomolecules. 2019. Vol. 9, No. 1. P. 34. DOI: 10.3390/biom9010034 |
| [79] |
Mills KF, Yoshida S, Stein LR, et al. Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metab. 2016;24(6):795–806. DOI: 10.1016/j.cmet.2016.09.013 |
| [80] |
Mills K.F., Yoshida S., Stein L.R. et al. Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice // Cell Metab. 2016. Vol. 24, No. 6. P. 795–806. DOI: 10.1016/j.cmet.2016.09.013 |
| [81] |
De Picciotto NE, Gano LB, Johnson LC, et al. Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice. Aging Cell. 2016;15(3):522–530. DOI: 10.1111/acel.12461 |
| [82] |
De Picciotto N.E., Gano L.B., Johnson L.C. et al. Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice // Aging Cell. 2016. Vol. 15, No. 3. P. 522–530. DOI: 10.1111/acel.12461 |
| [83] |
Guan Y, Wang SR, Huang XZ, et al. Nicotinamide mononucleotide, an NAD+ precursor, rescues age-associated susceptibility to AKI in a sirtuin 1-dependent manner. J Am Soc Nephrol. 2017;28(8):2337–2352. DOI: 10.1681/ASN.2016040385 |
| [84] |
Guan Y., Wang S.R., Huang X.Z. et al. Nicotinamide mononucleotide, an NAD+ precursor, rescues age-associated susceptibility to AKI in a sirtuin 1-dependent manner // J. Am. Soc. Nephrol. 2017. Vol. 28, No. 8. P. 2337–2352. DOI: 10.1681/ASN.2016040385 |
| [85] |
Stromsdorfer KL, Yamaguchi S, Yoon MJ, et al. NAMPT-mediated NAD(+) biosynthesis in adipocytes regulates adipose tissue function and multi-organ insulin sensitivity in mice. Cell Rep. 2016;16(7):1851–1860. DOI: 10.1016/j.celrep.2016.07.027 |
| [86] |
Stromsdorfer K.L., Yamaguchi S., Yoon M.J. et al. NAMPT-mediated NAD(+) biosynthesis in adipocytes regulates adipose tissue function and multi-organ insulin sensitivity in mice // Cell Rep. 2016. Vol. 16, No. 7. P. 1851–1860. DOI: 10.1016/j.celrep.2016.07.027 |
| [87] |
Ratajczak J, Joffraud M, Trammell SA, et al. NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells. Nat Commun. 2016;7:13103. DOI: 10.1038/ncomms13103 |
| [88] |
Ratajczak J., Joffraud M., Trammell S.A. et al. NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells // Nat. Commun. 2016. Vol. 7. P. 13103. DOI: 10.1038/ncomms13103 |
| [89] |
Grozio A, Mills KF, Yoshino J, et al. Slc12a8 is a nicotinamide mononucleotide transporter. Nat Metab. 2019;1(1):47–57. DOI: 10.1038/s42255-018-0009-4 |
| [90] |
Grozio A., Mills K.F., Yoshino J. et al. Slc12a8 is a nicotinamide mononucleotide transporter // Nat. Metab. 2019. Vol. 1, No. 1. P. 47–57. DOI: 10.1038/s42255-018-0009-4 |
| [91] |
Martin AS, Abraham DM, Hershberger KA, et al. Nicotinamide mononucleotide requires SIRT3 to improve cardiac function and bioenergetics in a Friedreich’s ataxia cardiomyopathy model. JCI Insight. 2017;2(14):e93885. DOI: 10.1172/jci.insight.93885 |
| [92] |
Martin A.S., Abraham D.M., Hershberger K.A. et al. Nicotinamide mononucleotide requires SIRT3 to improve cardiac function and bioenergetics in a Friedreich’s ataxia cardiomyopathy model // JCI Insight. 2017. Vol. 2, No. 14. P. e93885. DOI: 10.1172/jci.insight.93885 |
| [93] |
Park JH, Long A, Owens K, Kristian T. Nicotinamide mononucleotide inhibits post-ischemic NAD(+) degradation and dramatically ameliorates brain damage following global cerebral ischemia. Neurobiol Dis. 2016;95:102–110. DOI: 10.1016/j.nbd.2016.07.018 |
| [94] |
Park J.H., Long A., Owens K., Kristian T. Nicotinamide mononucleotide inhibits post-ischemic NAD(+) degradation and dramatically ameliorates brain damage following global cerebral ischemia // Neurobiol. Dis. 2016. Vol. 95. P. 102–110. DOI: 10.1016/j.nbd.2016.07.018 |
| [95] |
Wang X, Hu X, Yang Y, et al. Nicotinamide mononucleotide protects against β-amyloid oligomer-induced cognitive impairment and neuronal death. Brain Res. 2016;1643:1–9. DOI: 10.1016/j.brainres.2016.04.060 |
| [96] |
Wang X., Hu X., Yang Y. et al. Nicotinamide mononucleotide protects against β-amyloid oligomer-induced cognitive impairment and neuronal death // Brain Res. 2016. Vol. 1643. P. 1–9. DOI: 10.1016/j.brainres.2016.04.060 |
| [97] |
Yao Z, Yang W, Gao Z, Jia P. Nicotinamide mononucleotide inhibits JNK activation to reverse Alzheimer disease. Neurosci Lett. 2017;647:133–140. DOI: 10.1016/j.neulet.2017.03.027 |
| [98] |
Yao Z., Yang W., Gao Z., Jia P. Nicotinamide mononucleotide inhibits JNK activation to reverse Alzheimer disease // Neurosci. Lett. 2017. Vol. 647. P. 133–140. DOI: 10.1016/j.neulet.2017.03.027 |
| [99] |
Assiri MA, Ali HR, Marentette JO, et al. Investigating RNA expression profiles altered by nicotinamide mononucleotide therapy in a chronic model of alcoholic liver disease. Hum Genomics. 2019;13(1):6. DOI: 10.1186/s40246-019-0251-1 |
| [100] |
Assiri M.A., Ali H.R., Marentette J.O. et al. Investigating RNA expression profiles altered by niotinamide mononucleotide therapy in a chronic model of alcoholic liver disease // Hum. Genomics. 2019. Vol. 13, No. 1. P. 6. DOI: 10.1186/s40246-019-0251-1 |
| [101] |
Lin JB, Kubota S, Ban N, et al. NAMPT-mediated NAD(+) biosynthesis is essential for vision in mice. Cell Rep. 2016;17(1):69–85. DOI: 10.1016/j.celrep.2016.08.073 |
| [102] |
Lin J.B., Kubota S., Ban N. et al. NAMPT-mediated NAD(+) biosynthesis is essential for vision in mice // Cell Rep. 2016. Vol. 17, No. 1. P. 69–85. DOI: 10.1016/j.celrep.2016.08.073 |
| [103] |
Klimova N, Long A, Kristian T. Nicotinamide mononucleotide alters mitochondrial dynamics by SIRT3-dependent mechanism in male mice. J Neurosci Res. 2019;97(8):975–990. DOI: 10.1002/jnr.24397 |
| [104] |
Klimova N., Long A., Kristian T. Nicotinamide mononucleotide alters mitochondrial dynamics by SIRT3-dependent mechanism in male mice // J. Neurosci. Res. 2019. Vol. 97, No. 8. P. 975–990. DOI: 10.1002/jnr.24397 |
| [105] |
Hacioglu C, Kar F, Kanbak G. Reproductive effects of nicotinamide on testicular function and structure in old male rats: Oxidative, apoptotic, hormonal, and morphological analyses. Reprod Sci. 2021;28(12):3352–3360. DOI: 10.1007/s43032-021-00647-7 |
| [106] |
Hacioglu C., Kar F., Kanbak G. Reproductive effects of nicotinamide on testicular function and structure in old male rats: Oxidative, apoptotic, hormonal, and morphological analyses // Reprod. Sci. 2021. Vol. 28, No. 12. P. 3352–3360. DOI: 10.1007/s43032-021-00647-7 |
| [107] |
Kiss T, Balasubramanian P, Valcarcel-Ares MN, et al. Nicotinamide mononucleotide (NMN) treatment attenuates oxidative stress and rescues angiogenic capacity in aged cerebromicrovascular endothelial cells: a potential mechanism for the prevention of vascular cognitive impairment. Geroscience. 2019;41(5):619–630. DOI: 10.1007/s11357-019-00074-2 |
| [108] |
Kiss T., Balasubramanian P., Valcarcel-Ares M.N. et al. Nicotinamide mononucleotide (NMN) treatment attenuates oxidative stress and rescues angiogenic capacity in aged cerebromicrovascular endothelial cells: a potential mechanism for the prevention of vascular cognitive impairment // Geroscience. 2019. Vol. 41, No. 5. P. 619–630. DOI: 10.1007/s11357-019-00074-2 |
| [109] |
Liao B, Zhao Y, Wang D, et al. Nicotinamide mononucleotide supplementation enhances aerobic capacity in amateur runners: a randomized, double-blind study. J Int Soc Sports Nutr. 2021;18(1):54. DOI: 10.1186/s12970-021-00442-4 |
| [110] |
Liao B., Zhao Y., Wang D. et al. Nicotinamide mononucleotide supplementation enhances aerobic capacity in amateur runners: a randomized, double-blind study // J. Int. Soc. Sports Nutr. 2021. Vol. 18, No. 1. P. 54. DOI: 10.1186/s12970-021-00442-4 |
| [111] |
Das A, Huang GX, Bonkowski MS, et al. Impairment of an endothelial NAD+-H2S signaling network is a reversible cause of vascular aging. Cell. 2019;176(4):944–945. DOI: 10.1016/j.cell.2019.01.026 |
| [112] |
Das A., Huang G.X., Bonkowski M.S. et al. Impairment of an endothelial NAD+-H2S signaling network is a reversible cause of vascular aging // Cell. 2019. Vol. 176, No. 4. P. 944–945. DOI: 10.1016/j.cell.2019.01.026 |
| [113] |
Eldridge AL. Comparison of 1989 RDAs and DRIs for water-soluble vitamins. Nutr Today. 2004;39(2):88–93. DOI: 10.1097/00017285-200403000-00011 |
| [114] |
Eldridge A.L. Comparison of 1989 RDAs and DRIs for water-soluble vitamins // Nutr. Today. 2004. Vol. 39, No. 2. P. 88–93. DOI: 10.1097/00017285-200403000-00011 |
| [115] |
Guyton JR. Niacin in cardiovascular prevention: mechanisms, efficacy, and safety. Curr Opin Lipidol. 2007;18(4):415–442. DOI: 10.1097/MOL.0b013e3282364add |
| [116] |
Guyton J.R. Niacin in cardiovascular prevention: mechanisms, efficacy, and safety // Curr. Opin. Lipidol. 2007. Vol. 18, No. 4. P. 415–442. DOI: 10.1097/MOL.0b013e3282364add |
| [117] |
Kamanna VS, Ganji SH, Kashyap ML. The mechanism and mitigation of niacin-induced flushing. Int J Clin Pract. 2009;63(9):1369–1377. DOI: 10.1111/j.1742-1241.2009.02099.x |
| [118] |
Kamanna V.S., Ganji S.H., Kashyap M.L. The mechanism and mitigation of niacin-induced flushing // Int. J. Clin. Pract. 2009. Vol. 63, No. 9. P. 1369–1377. DOI: 10.1111/j.1742-1241.2009.02099.x |
| [119] |
Titcomb TJ, Tanumihardjo SA. Global concerns with B vitamin statuses: Biofortification, fortification, hidden hunger, interactions, and toxicity. Compr Rev Food Sci Food Saf. 2019;18(6):1968–1984. DOI: 10.1111/1541-4337.12491 |
| [120] |
Titcomb T.J., Tanumihardjo S.A. Global concerns with B vitamin statuses: Biofortification, fortification, hidden hunger, interactions, and toxicity // Compr. Rev. Food Sci. Food Saf. 2019. Vol. 18, No. 6. P. 1968–1984. DOI: 10.1111/1541-4337.12491 |
| [121] |
Revollo JR, Grimm AA, Imai S. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J Biol Chem. 2004;279(49):50754–50763. DOI: 10.1074/jbc.M408388200 |
| [122] |
Revollo J.R., Grimm A.A., Imai S. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells // J. Biol. Chem. 2004. Vol. 279, No. 49. P. 50754–50763. DOI: 10.1074/jbc.M408388200 |
| [123] |
Stein LR, Imai S. Specific ablation of Nampt in adult neural stem cells recapitulates their functional defects during aging. EMBO J. 2014;33(12):1321–1340. DOI: 10.1002/embj.201386917 |
| [124] |
Stein L.R., Imai S. Specific ablation of Nampt in adult neural stem cells recapitulates their functional defects during aging // EMBO J. 2014. Vol. 33, No. 12. P. 1321–1340. DOI: 10.1002/embj.201386917 |
| [125] |
Hwang ES, Song SB. Possible adverse effects of high-dose nicotinamide: Mechanisms and safety assessment. Biomolecules. 2020;10(5):687. DOI: 10.3390/biom10050687 |
| [126] |
Hwang E.S., Song S.B. Possible adverse effects of high-dose nicotinamide: Mechanisms and safety assessment // Biomolecules. 2020. Vol. 10, No. 5. P. 687. DOI: 10.3390/biom10050687 |
| [127] |
Fania L, Mazzanti C, Campione E, et al. Role of nicotinamide in genomic stability and skin cancer chemoprevention. Int J Mol Sci. 2019;20(23):5946. DOI: 10.3390/ijms20235946 |
| [128] |
Fania L., Mazzanti C., Campione E. et al. Role of nicotinamide in genomic stability and skin cancer chemoprevention // Int. J. Mol. Sci. 2019. Vol. 20, No. 23. P. 5946. DOI: 10.3390/ijms20235946 |
| [129] |
Agote M, Viaggi M, Kreimann E, et al. Influence of nicotinamide on the radiosensitivity of normal and goitrous thyroid in the rat. Thyroid. 2001;11(11):1003–1007. DOI: 10.1089/105072501753271671 |
| [130] |
Agote M., Viaggi M., Kreimann E. et al. Influence of nicotinamide on the radiosensitivity of normal and goitrous thyroid in the rat // Thyroid. 2001. Vol. 11, No. 11. P. 1003–1007. DOI: 10.1089/105072501753271671 |
| [131] |
Malesu R, Martin AJ, Lyons JG, et al. Nicotinamide for skin cancer chemoprevention: Effects of nicotinamide on melanoma in vitro and in vivo. Photochem Photobiol Sci. 2020;19(2):171–179. DOI: 10.1039/c9pp00388f |
| [132] |
Malesu R., Martin A.J., Lyons J.G. et al. Nicotinamide for skin cancer chemoprevention: Effects of nicotinamide on melanoma in vitro and in vivo // Photochem. Photobiol. Sci. 2020. Vol. 19, No. 2. P. 171–179. DOI: 10.1039/c9pp00388f |
| [133] |
Scatozza F, Moschella F, D’Arcangelo D, et al. Nicotinamide inhibits melanoma in vitro and in vivo. J Exp Clin Cancer Res. 2020;39(1):211. DOI: 10.1186/s13046-020-01719-3 |
| [134] |
Scatozza F., Moschella F., D’Arcangelo D. et al. Nicotinamide inhibits melanoma in vitro and in vivo // J. Exp. Clin. Cancer Res. 2020. Vol. 39, No. 1. P. 211. DOI: 10.1186/s13046-020-01719-3 |
| [135] |
Takahashi N, Li F, Fushima T, et al. Vitamin B3 nicotinamide: A promising candidate for treating preeclampsia and improving fetal growth. Tohoku J Exp Med. 2018;244(3):243–248. DOI: 10.1620/tjem.244.243 |
| [136] |
Takahashi N., Li F., Fushima T. et al. Vitamin B3 nicotinamide: A promising candidate for treating preeclampsia and improving fetal growth // Tohoku J. Exp. Med. 2018. Vol. 244, No. 3. P. 243–248. DOI: 10.1620/tjem.244.243 |
| [137] |
Forbat E, Al-Niaimi F, Ali FR. Use of nicotinamide in dermatology. Clin Exp Dermatol. 2017;42(2):137–144. DOI: 10.1111/ced.13021 |
| [138] |
Forbat E., Al-Niaimi F., Ali F.R. Use of nicotinamide in dermatology // Clin. Exp. Dermatol. 2017. Vol. 42, No. 2. P. 137–144. DOI: 10.1111/ced.13021 |
| [139] |
Ito TK, TomohitoSato T, Hakamata A, et al. A nonrandomized study of single oral supplementation within the daily tolerable upper level of nicotinamide affects blood nicotinamide and NAD+ levels in healthy subjects. Transl Med Aging. 2020;4:45–54. DOI: 10.1016/j.tma.2020.04.002 |
| [140] |
Ito T.K., TomohitoSato T., Hakamata A. et al. A nonrandomized study of single oral supplementation within the daily tolerable upper level of nicotinamide affects blood nicotinamide and NAD+ levels in healthy subjects // Transl. Med. Aging. 2020. Vol. 4. P. 45–54. DOI: 10.1016/j.tma.2020.04.002 |
| [141] |
Ranchoff RE, Tomecki KJ. Niacin or niacinamide? Nicotinic acid or nicotinamide? What is the difference? J Am Acad Dermatol. 1986;15(1):116–117. DOI: 10.1016/s0190-9622(86)80149-9 |
| [142] |
Ranchoff R.E., Tomecki K.J. Niacin or niacinamide? Nicotinic acid or nicotinamide? What is the difference? // J. Am. Acad. Dermatol. 1986. Vol. 15, No. 1. P. 116–117. DOI: 10.1016/s0190-9622(86)80149-9 |
| [143] |
Connell NJ, Houtkooper RH, Schrauwen P. NAD+ metabolism as a target for metabolic health: Have we found the silver bullet? Diabetologia. 2019;62(6):888–899. DOI: 10.1007/s00125-019-4831-3 |
| [144] |
Connell N.J., Houtkooper R.H., Schrauwen P. NAD+ metabolism as a target for metabolic health: Have we found the silver bullet? // Diabetologia. 2019. Vol. 62, No. 6. P. 888–899. DOI: 10.1007/s00125-019-4831-3 |
| [145] |
Roberti A, Fernández AF, Fraga MF. Nicotinamide N-methyltransferase: At the crossroads between cellular metabolism and epigenetic regulation. Mol Metab. 2021;45:101165. DOI: 10.1016/j.molmet.2021.101165 |
| [146] |
Roberti A., Fernández A.F., Fraga M.F. Nicotinamide N-methyltransferase: At the crossroads between cellular metabolism and epigenetic regulation // Mol Metab. 2021. Vol. 45. P. 101165. DOI: 10.1016/j.molmet.2021.101165 |
Eco-Vector
/
| 〈 |
|
〉 |