Coumarins as a base for the drug development: yes or no?
Elena V. Litasova , Viktor V. Iljin , Leonid V. Myznikov , Maria A. Brusina , Levon B. Piotrovskiy
Medical academic journal ›› 2022, Vol. 22 ›› Issue (3) : 27 -36.
Coumarins as a base for the drug development: yes or no?
It is well known that coumarin derivatives are widely distributed in nature and have a wide spectrum of biological activity. At the same time, only a few compounds containing a coumarin fragment are used in the clinics. These compounds include for example the anticoagulant warfarin and the anthelmintic drug haloxon. In the present article is discussed the few examples of biological activity of coumarin derivatives, the mechanisms of action of these compounds and the problems that arise in the development of new drugs, as well as the prospects for using coumarins as leader compounds.
coumarins / lead-compound / toxicity / anticonvulsants / anti-inflammatory drugs
| [1] |
Zefirova ON, Balakin KV, Krasavin MJu, et al. Glossarii russkoyazychnykh terminov v meditsinskoi khimii. Russian Chemical Bulletin. 2019:(12):2381–2395. (In Russ.) |
| [2] |
Зефирова О.Н., Балакин К.В., Красавин М.Ю. и др. Глоссарий русскоязычных терминов в медицинской химии // Известия Академии наук СССР. Серия химическая. 2019. № 12. С. 2381–2395. |
| [3] |
Bourgaud F, Gravot A, Milesi S, Gontier E. Production of plant secondary metabolites: a historical perspective. Plant Science. 2001;161(5):839–851. DOI: 10.1016/S0168-9452(01)00490-3 |
| [4] |
Bourgaud F., Gravot A., Milesi S., Gontier E. Production of plant secondary metabolites: a historical perspective // Plant Science. 2001. Vol. 161, No. 5. P. 839–851. DOI: 10.1016/S0168-9452(01)00490-3 |
| [5] |
Dangl J, Jones J. Plant pathogens and integrated defense responses to infection. Nature. 2001;411(6839):826–833. DOI: 10.1038/35081161 |
| [6] |
Dangl J., Jones J. Plant pathogens and integrated defense responses to infection // Nature. 2001. Vol. 411, No. 6839. P. 826–833. DOI: 10.1038/35081161 |
| [7] |
Iqbal Z, Iqbal MS, Hashem A, et al. Plant defense responses to biotic stress and its interplay with fluctuating dark/light conditions. Front Plant Sci. 2021;12:631810. DOI: 10.3389/fpls.2021.631810 |
| [8] |
Iqbal Z., Iqbal M.S., Hashem A. et al. Plant defense responses to biotic stress and its interplay with fluctuating dark/light conditions // Front. Plant Sci. 2021. Vol. 12. P. 631810. DOI: 10.3389/fpls.2021.631810 |
| [9] |
Link KP. The discovery of dicumarol and its sequels. Circulation. 1959;19(1):97–107. DOI: 10.1161/01.CIR.19.1.97 |
| [10] |
Link K.P. The discovery of dicumarol and its sequels // Circulation. 1959. Vol. 19, No. 1. P. 97–107. DOI: 10.1161/01.CIR.19.1.97 |
| [11] |
Jain PK, Joshi H. Coumarin: chemical and pharmacological profile. J Appl Pharm Sci. 2012;2(6):236–240. DOI: 10.7324/JAPS.2012.2643 |
| [12] |
Jain P.K., Joshi H. Coumarin: chemical and pharmacological profile // J. Appl. Pharm. Sci. 2012. Vol. 2, No. 6. P. 236–240. DOI: 10.7324/JAPS.2012.2643 |
| [13] |
Medina FG, Marrero JG, Macías-Alonso M, et al. Coumarin heterocyclic derivatives: chemical synthesis and biological activity. Nat Prod Rep. 2015;32(10):1472–1507. DOI: 10.1039/c4np00162a |
| [14] |
Medina F.G., Marrero J.G., Macías-Alonso M. et al. Coumarin heterocyclic derivatives: chemical synthesis and biological activity // Nat. Prod. Rep. 2015. Vol. 32, No. 10. P. 1472–1507. DOI: 10.1039/c4np00162a |
| [15] |
Deng M, Xie L, Zhong L, et al. Imperatorin: A review of its pharmacology, toxicity and pharmacokinetics. Eur J Pharmacol. 2020;879:173124. DOI: 10.1016/j.ejphar.2020.173124 |
| [16] |
Deng M., Xie L., Zhong L. et al. Imperatorin: A review of its pharmacology, toxicity and pharmacokinetics // Eur. J. Pharmacol. 2020. Vol. 879. P. 173124. DOI: 10.1016/j.ejphar.2020.173124 |
| [17] |
Bryda J, Zagaja M, Szewczyk A, Andres-Mach M. Coumarins as potential supportive medication for the treatment of epilepsy. Acta Neurobiol Exp (Wars). 2019;79(2):126–132. DOI: 10.21307/ane-2019-011 |
| [18] |
Bryda J., Zagaja M., Szewczyk A., Andres-Mach M. Coumarins as potential supportive medication for the treatment of epilepsy // Acta Neurobiol. Exp. (Wars). 2019. Vol. 79, No. 2. P. 126–132. DOI: 10.21307/ane-2019-011 |
| [19] |
Kostova I. Studying plant derived coumarins for their pharmacological and therapeutic properties as potential anticancer drugs. Expert Opin Drug Discov. 2007;2(12):1605–1618. DOI: 10.1517/17460441.2.12.1605 |
| [20] |
Kostova I. Studying plant derived coumarins for their pharmacological and therapeutic properties as potential anticancer drugs // Expert. Opin. Drug Discov. 2007. Vol. 2, No. 12. P. 1605–1618. DOI: 10.1517/17460441.2.12.1605 |
| [21] |
Akkol EK, Genc Y, Karpuz B, et al. Coumarins and coumarin-related compounds in pharmacotherapy of cancer. Cancers (Basel). 2020;12(7):1959. DOI: 10.3390/cancers12071959 |
| [22] |
Akkol E.K., Genc Y., Karpuz B. et al. Coumarins and coumarin-related compounds in pharmacotherapy of cancer // Cancers (Basel). 2020. Vol. 12, No. 7. P. 1959. DOI: 10.3390/cancers12071959 |
| [23] |
Al-Warhi T, Sabt A, Elkaeed EB, Eldehna WM. Recent advancements of coumarin-based anticancer agents: An up-to-date review. Bioorg Chem. 2020;103:104163. DOI: 10.1016/j.bioorg.2020.104163 |
| [24] |
Al-Warhi T., Sabt A., Elkaeed E.B., Eldehna W.M. Recent advancements of coumarin-based anticancer agents: An up-to-date review // Bioorg. Chem. 2020. Vol. 103. P. 104163. DOI: 10.1016/j.bioorg.2020.104163 |
| [25] |
Venkata Sairam K, Gurupadayya BM, Chandan RS, et al. A Review on chemical profile of coumarins and their therapeutic role in the treatment of cancer. Curr Drug Deliv. 2016;13(2):186–201. DOI: 10.2174/1567201812666150702102800 |
| [26] |
Venkata Sairam K., Gurupadayya B.M., Chandan R.S. et al. A Review on chemical profile of coumarins and their therapeutic role in the treatment of cancer // Curr. Drug Deliv. 2016. Vol. 13, No. 2. P. 186–201. DOI: 10.2174/1567201812666150702102800 |
| [27] |
Thakur A, Singla R, Jaitak V. Coumarins as anticancer agents: a review on synthetic strategies, mechanism of action and SAR studies. Eur J Med Chem. 2015;28;101:476–495. DOI: 10.1016/j.ejmech.2015.07.010 |
| [28] |
Thakur A., Singla R., Jaitak V. Coumarins as anticancer agents: a review on synthetic strategies, mechanism of action and SAR studies // Eur. J. Med. Chem. 2015. Vol. 28, No. 101. P. 476–495. DOI: 10.1016/j.ejmech.2015.07.010 |
| [29] |
Hassan MZ, Osman H, Ali MA, Ahsan MJ. Therapeutic potential of coumarins as antiviral agents. Eur J Med Chem. 2016;123:236–255. DOI: 10.1016/j.ejmech.2016.07.056 |
| [30] |
Hassan M.Z., Osman H., Ali M.A., Ahsan M.J. Therapeutic potential of coumarins as antiviral agents // Eur. J. Med. Chem. 2016. Vol. 123. P. 236–255. DOI: 10.1016/j.ejmech.2016.07.056 |
| [31] |
Mishra S, Pandey A, Manvati S. Coumarin: an emerging antiviral agent. Heliyon. 2020;6(1):e03217. DOI: 10.1016/heliyon.2020.e03217 |
| [32] |
Mishra S., Pandey A., Manvati S. Coumarin: an emerging antiviral agent // Heliyon. 2020. Vol. 6, No. 1. P. e03217. DOI: 10.1016/heliyon.2020.e03217 |
| [33] |
Kostova I, Bhatia S, Grigorov P, et al. Coumarins as antioxidants. Curr Med Chem. 2011;18(25):3929–3951. DOI: 10.2174/092986711803414395 |
| [34] |
Kostova I., Bhatia S., Grigorov P. et al. Coumarins as antioxidants // Curr. Med. Chem. 2011. Vol. 18, No. 25. P. 3929–3951. DOI: 10.2174/092986711803414395 |
| [35] |
Luszczki JJ, Andres-Mach M, Cisowski W, et al. Osthole suppresses seizures in the mouse maximal electroshock seizure model. Eur J Pharmacol. 2009;607(1–3):107–109. DOI: 10.1016/j.ejphar.2009.02.022 |
| [36] |
Luszczki J.J., Andres-Mach M., Cisowski W. et al. Osthole suppresses seizures in the mouse maximal electroshock seizure model // Eur. J. Pharmacol. 2009. Vol. 607, No. 1–3. P. 107–109. DOI: 10.1016/j.ejphar.2009.02.022 |
| [37] |
Luszczki JJ, Wojda E, Andres-Mach M, et al. Anticonvulsant and acute neurotoxic effects of imperatorin, osthole and valproate in the maximal electroshock seizure and chimney tests in mice: a comparative study. Epilepsy Res. 2009;85(2–3):293–299. DOI: 10.1016/j.eplepsyres.2009.03.027 |
| [38] |
Luszczki J.J., Wojda E., Andres-Mach M. et al. Anticonvulsant and acute neurotoxic effects of imperatorin, osthole and valproate in the maximal electroshock seizure and chimney tests in mice: a comparative study // Epilepsy Res. 2009. Vol. 85, No. 2–3. P. 293–299. DOI: 10.1016/j.eplepsyres.2009.03.027 |
| [39] |
Mokrov GV, Savel’ev VL, Voronina TA, et al. Synthesis and anticonvulsant activity of N-substituted 4-amino-3-nitrocoumarins. Pharm Chem J. 2019;53(2):118–124. DOI: 10.1007/s11094-019-01964-7 |
| [40] |
Mokrov G.V., Savel’ev V.L., Voronina T.A. et al. Synthesis and anticonvulsant activity of N-substituted 4-amino-3-nitrocoumarins // Pharm. Chem. J. 2019. Vol. 53, No. 2. P. 118–124. DOI: 10.1007/s11094-019-01964-7 |
| [41] |
Mokrov GV, Litvinova SA, Voronina TA, et al. Design, synthesis, and anticonvulsant evaluation of 4-GABA-3-nitrocoumarines, 1-thiocoumarines, quinolone-2-ones, and their derivatives. Med Chem Res. 2019;28(11):1901–1911. DOI: 10.1007/s00044-019-02422-5 |
| [42] |
Mokrov G.V., Litvinova S.A., Voronina T.A. et al. Design, synthesis, and anticonvulsant evaluation of 4-GABA-3-nitrocoumarines, 1-thiocoumarines, quinolone-2-ones, and their derivatives // Med. Chem. Res. 2019. Vol. 28, No. 11. P. 1901–1911. DOI: 10.1007/s00044-019-02422-5 |
| [43] |
Yakovleva EE, Myznikov LV, Shabanov PD. Comparison of the anticonvulsant activities of substituted hydroxycoumarins and 4-[(3-nitro-2-oxo-2h-chromen-4-yl)amino] butanoic acid. Pharm Chem J. 2020;54(9):904–908. DOI: 10.1007/s11094-020-02294-9 |
| [44] |
Yakovleva E.E., Myznikov L.V., Shabanov P.D. Comparison of the anticonvulsant activities of substituted hydroxycoumarins and 4-[(3-nitro-2-oxo-2h-chromen-4-yl)amino] butanoic acid // Pharm. Chem. J. 2020. Vol. 54, No. 9. P. 904–908. DOI: 10.1007/s11094-020-02294-9 |
| [45] |
Woo TS, Yoon SY, de la Pena IC, et al. Anticonvulsant effect of Artemisia capillaris Herba in mice. Biomol Ther. 2011;19(3):342–347. DOI: 10.4062/biomolther.2011.19.3.342 |
| [46] |
Woo T.S., Yoon S.Y., de la Pena I.C. et al. Anticonvulsant effect of Artemisia capillaris Herba in mice // Biomol. Ther. 2011. Vol. 19, No. 3. P. 342–347. DOI: 10.4062/biomolther.2011.19.3.342 |
| [47] |
Tosun F, Kızılaya CA, Erol K, et al. Anticonvulsant activity of furanocoumarins and the essential oil obtained from the fruits of Heracleum crenatifolium. Food Chem. 2008;107(3):990–993. DOI: 10.1016/j.foodchem.2007.08.085 |
| [48] |
Tosun F., Kızılaya C.A., Erol K. et al. Anticonvulsant activity of furanocoumarins and the essential oil obtained from the fruits of Heracleum crenatifolium // Food Chem. 2008. Vol. 107, No. 3. P. 990–993. DOI: 10.1016/j.foodchem.2007.08.085 |
| [49] |
Egan D, O’Kennedy R, Moran E, et al. The pharmacology, metabolism, analysis, and applications of coumarin and coumarin-related compounds. Drug Metab Rev. 1990;22(5):503–529. DOI: 10.3109/03602539008991449 |
| [50] |
Egan D., O’Kennedy R., Moran E. et al. The pharmacology, metabolism, analysis, and applications of coumarin and coumarin-related compounds // Drug Metab. Rev. 1990. Vol. 22, No. 5. P. 503–529. DOI: 10.3109/03602539008991449 |
| [51] |
Kirsch G, Abdelwahab AB, Chaimbault P. Natural and synthetic coumarins with effects on inflammation. Molecules. 2016;21(10):1322. DOI: 10.3390/molecules21101322 |
| [52] |
Kirsch G., Abdelwahab A.B., Chaimbault P. Natural and synthetic coumarins with effects on inflammation // Molecules. 2016. Vol. 21, No. 10. P. 1322. DOI: 10.3390/molecules21101322 |
| [53] |
Zhao D, Islam MN, Ahn BR, et al. In vitro antioxidant and anti-inflammatory activities of Angelica decursiva. Arch Pharm Res. 2012;35(1):179–192. DOI: 10.1007/s12272-012-0120-0 |
| [54] |
Zhao D., Islam M.N., Ahn B.R. et al. In vitro antioxidant and anti-inflammatory activities of Angelica decursiva // Arch. Pharm. Res. 2012. Vol. 35, No. 1. P. 179–192. DOI: 10.1007/s12272-012-0120-0 |
| [55] |
Liang C, Ju W, Pei S, et al. Pharmacological activities and synthesis of esculetin and its derivatives: a mini-review. Molecules. 2017;22(3):387. DOI: 10.3390/molecules22030387 |
| [56] |
Liang C., Ju W., Pei S. et al. Pharmacological activities and synthesis of esculetin and its derivatives: a mini-review // Molecules. 2017. Vol. 22, No. 3. P. 387. DOI: 10.3390/molecules22030387 |
| [57] |
Iranshahi M, Askari M, Sahebkar A, et al. Evaluation of antioxidant, anti-inflammatory and lipoxygenase inhibitory activities of the prenylated coumarin umbelliprenin. DARU J Pharm Sci. 2015;17(2):99–103. |
| [58] |
Iranshahi M., Askari M., Sahebkar A. et al. Evaluation of antioxidant, anti-inflammatory and lipoxygenase inhibitory activities of the prenylated coumarin umbelliprenin // DARU J. Pharm. Sci. 2015. Vol. 17, No. 2. P. 99–103. |
| [59] |
Jarboe CH, Zirvi KA, Nicholson JA, et al. Scopoletin, an antispasmodic component of Viburnum opulus and Prunifolium. J Med Chem. 1967;10(3):488–489. DOI: 10.1021/jm00315a045 |
| [60] |
Jarboe C.H., Zirvi K.A., Nicholson J.A. et al. Scopoletin, an antispasmodic component of Viburnum opulus and Prunifolium // J. Med. Chem. 1967. Vol. 10, No. 3. P. 488–489. DOI: 10.1021/jm00315a045 |
| [61] |
Khan S, Shehzad O, Cheng MS, et al. Pharmacological mechanism underlying anti-inflammatory properties of two structurally divergent coumarins through the inhibition of pro-inflammatory enzymes and cytokines. J Inflamm (Lond). 2015;12:47. DOI: 10.1186/s12950-015-0087-y |
| [62] |
Khan S., Shehzad O., Cheng M.S. et al. Pharmacological mechanism underlying anti-inflammatory properties of two structurally divergent coumarins through the inhibition of pro-inflammatory enzymes and cytokines // J. Inflamm. (Lond). 2015. Vol. 12. P. 47. DOI: 10.1186/s12950-015-0087-y |
| [63] |
Fylaktakidou KC, Hadjipavlou-Litina DJ, Litinas KE, et al. Natural and synthetic coumarin derivatives with anti-inflammatory/antioxidant activities. Curr Pharm Des. 2004;10(30):3813–3833. DOI: 10.2174/1381612043382710 |
| [64] |
Fylaktakidou K.C., Hadjipavlou-Litina D.J., Litinas K.E. et al. Natural and synthetic coumarin derivatives with anti-inflammatory/antioxidant activities // Curr. Pharm. Des. 2004. Vol. 10, No. 30. P. 3813–3833. DOI: 10.2174/1381612043382710 |
| [65] |
Kancheva VD, Slavova-Kazakova AK, Angelova SE, et al. Protective effects of 4-methylcoumarins and related compounds as radical scavengers and chain-breaking antioxidants. Biochimie. 2017;140:133–145. DOI: 10.1016/j.biochi.2017.07.010 |
| [66] |
Kancheva V.D., Slavova-Kazakova A.K., Angelova S.E. et al. Protective effects of 4-methylcoumarins and related compounds as radical scavengers and chain-breaking antioxidants // Biochimie. 2017. Vol. 140. P. 133–145. DOI: 10.1016/j.biochi.2017.07.010 |
| [67] |
Li H, Yao Y, Li L. Coumarins as potential antidiabetic agents. J Pharm Pharmacol. 2017;69(10):1253–1264. DOI: 10.1111/jphp.12774 |
| [68] |
Li H., Yao Y., Li L. Coumarins as potential antidiabetic agents // J. Pharm. Pharmacol. 2017. Vol. 69, No. 10. P. 1253–1264. DOI: 10.1111/jphp.12774 |
| [69] |
Seema PV, Sudha B, Padayatti PS, et al Kinetic studies of purified malate dehydrogenase in liver of streptozotocin-diabetic rats and the effect of leaf extract of Aegle marmelose (L.) Correa ex Roxb. Indian J Exp Biol. 1996;34(6):600–602. |
| [70] |
Seema P.V., Sudha B., Padayatti P.S. et al Kinetic studies of purified malate dehydrogenase in liver of streptozotocin-diabetic rats and the effect of leaf extract of Aegle marmelose (L.) Correa ex Roxb // Indian J. Exp. Biol. 1996. Vol. 34, No. 6. P. 600–602. |
| [71] |
Kamalakkannan N, Prince PS. Hypoglycaemic effect of water extracts of Aegle marmelos fruits in streptozotocin diabetic rats. J Ethnopharmacol. 2003;87(2–3):207–210. DOI: 10.1016/s0378-8741(03)00148-x |
| [72] |
Kamalakkannan N., Prince P.S. Hypoglycaemic effect of water extracts of Aegle marmelos fruits in streptozotocin diabetic rats // J. Ethnopharmacol. 2003. Vol. 87, No. 2–3. P. 207–210. DOI: 10.1016/s0378-8741(03)00148-x |
| [73] |
Yao Y, Zhao X, Xin J, et al. Coumarins improved type 2 diabetes induced by high-fat diet and streptozotocin in mice via antioxidation. Can J Physiol Pharmacol. 2018;96(8):765–771. DOI: 10.1139/cjpp-2017-0612 |
| [74] |
Yao Y., Zhao X., Xin J. et al. Coumarins improved type 2 diabetes induced by high-fat diet and streptozotocin in mice via antioxidation // Can. J. Physiol. Pharmacol. 2018. Vol. 96, No. 8. P. 765–771. DOI: 10.1139/cjpp-2017-0612 |
| [75] |
Nurul Islam M, Jung HA, Sohn HS, et al. Potent α-glucosidase and protein tyrosine phosphatase 1B inhibitors from Artemisia capillaris. Arch Pharm Res. 2013;36(5):542–552. DOI: 10.1007/s12272-013-0069-7 |
| [76] |
Nurul Islam M., Jung H.A., Sohn H.S. et al. Potent α-glucosidase and protein tyrosine phosphatase 1B inhibitors from Artemisia capillaris // Arch. Pharm. Res. 2013. Vol. 36, No. 5. P. 542–552. DOI: 10.1007/s12272-013-0069-7 |
| [77] |
Wu SJ. Osthole attenuates inflammatory responses and regulates the expression of inflammatory mediators in hepg2 cells grown in differentiated medium from 3T3-L1 preadipocytes. J Med Food. 2015;18(9):972–979. DOI: 10.1089/jmf.2014.3314 |
| [78] |
Wu S.J. Osthole attenuates inflammatory responses and regulates the expression of inflammatory mediators in hepg2 cells grown in differentiated medium from 3T3-L1 preadipocytes // J. Med. Food. 2015. Vol. 18, No. 9. P. 972–979. DOI: 10.1089/jmf.2014.3314 |
| [79] |
Prabakaran D, Ashokkumar N. Protective effect of esculetin on hyperglycemia-mediated oxidative damage in the hepatic and renal tissues of experimental diabetic rats. Biochimie. 2013;95(2):366–373. DOI: 10.1016/j.biochi.2012.10.008 |
| [80] |
Prabakaran D., Ashokkumar N. Protective effect of esculetin on hyperglycemia-mediated oxidative damage in the hepatic and renal tissues of experimental diabetic rats // Biochimie. 2013. Vol. 95, No. 2. P. 366–373. DOI: 10.1016/j.biochi.2012.10.008 |
| [81] |
Liang HJ, Suk FM, Wang CK, et al. Osthole, a potential antidiabetic agent, alleviates hyperglycemia in db/db mice. Chem Biol Interact. 2009;181(3):309–315. DOI: 10.1016/j.cbi.2009.08.003 |
| [82] |
Liang H.J., Suk F.M., Wang C.K. et al. Osthole, a potential antidiabetic agent, alleviates hyperglycemia in db/db mice // Chem. Biol. Interact. 2009. Vol. 181, No. 3. P. 309–315. DOI: 10.1016/j.cbi.2009.08.003 |
| [83] |
Zhang WY, Lee JJ, Kim Y, et al. Amelioration of insulin resistance by scopoletin in high-glucose-induced, insulin-resistant HepG2 cells. Horm Metab Res. 2010;42(13):930–935. DOI: 10.1055/s-0030-1265219 |
| [84] |
Zhang W.Y., Lee J.J., Kim Y. et al. Amelioration of insulin resistance by scopoletin in high-glucose-induced, insulin-resistant HepG2 cells // Horm. Metab. Res. 2010. Vol. 42, No. 13. P. 930–935. DOI: 10.1055/s-0030-1265219 |
| [85] |
Hammerschmidt R. Phytoalexins: what have we learned after 60 years? Annu Rev Phytopathol. 1999;37:285–306. DOI: 10.1146/annurev.phyto.37.1.285 |
| [86] |
Hammerschmidt R. Phytoalexins: what have we learned after 60 years? // Annu. Rev. Phytopathol. 1999. Vol. 37. P. 285–306. DOI: 10.1146/annurev.phyto.37.1.285 |
| [87] |
Asif M. Pharmacological activities and phytochemistry of various plants containing coumarin derivatives. Curr Sci Perspectives. 2015;1(3):77–90. |
| [88] |
Asif M. Pharmacological activities and phytochemistry of various plants containing coumarin derivatives // Curr. Sci. Perspectives. 2015. Vol. 1, No. 3. P. 77–90. |
| [89] |
Davis RA, Vullo D, Supuran CT, Poulsen SA. Natural product polyamines that inhibit human carbonic anhydrases. Biomed Res Int. 2014;2014:374079. DOI: 10.1155/2014/374079 |
| [90] |
Davis R.A., Vullo D., Supuran C.T., Poulsen S.A. Natural product polyamines that inhibit human carbonic anhydrases // Biomed. Res. Int. 2014. Vol. 2014. P. 374079. DOI: 10.1155/2014/374079 |
| [91] |
Pochet L, Frédérick R, Masereel B. Coumarin and isocoumarin as serine protease inhibitors. Curr Pharm Des. 2004;10(30):3781–3796. DOI: 10.2174/1381612043382684 |
| [92] |
Pochet L., Frédérick R., Masereel B. Coumarin and isocoumarin as serine protease inhibitors // Curr. Pharm. Des. 2004. Vol. 10, No. 30. P. 3781–3796. DOI: 10.2174/1381612043382684 |
| [93] |
Tan X, Soualmia F, Furio L, et al. Toward the first class of suicide inhibitors of kallikreins involved in skin diseases. J Med Chem. 2015;58:598–612. DOI: 10.1021/jm500988d |
| [94] |
Tan X., Soualmia F., Furio L. et al. Toward the first class of suicide inhibitors of kallikreins involved in skin diseases // J. Med. Chem. 2015. Vol. 58. P. 598–612. DOI: 10.1021/jm500988d |
| [95] |
Xu Z, Chen Q, Zhang Y, Liang C. Coumarin-based derivatives with potential.anti-HIV activity. Fitoterapia. 2021;150:104863. DOI: 10.1016/j.fitote.2021.104863 |
| [96] |
Xu Z., Chen Q., Zhang Y., Liang C. Coumarin-based derivatives with potential.anti-HIV activity // Fitoterapia. 2021. Vol. 150. P. 104863. DOI: 10.1016/j.fitote.2021.104863 |
| [97] |
Kang SY, Kim YC. Neuroprotective coumarins from the root of Angelica gigas: structure-activity relationships. Arch Pharm Res. 2007;30(11):1368–1373. DOI: 10.1007/BF02977358 |
| [98] |
Kang S.Y., Kim Y.C. Neuroprotective coumarins from the root of Angelica gigas: structure-activity relationships // Arch. Pharm. Res. 2007. Vol. 30, No. 11. P. 1368–1373. DOI: 10.1007/BF02977358 |
| [99] |
Marumoto S, Miyazawa M. Structure-activity relationships for naturally occurring coumarins as β-secretase inhibitor. Bioorg Med Chem. 2012;20(2):784–788. DOI: 10.1016/j.bmc.2011.12.002 |
| [100] |
Marumoto S., Miyazawa M. Structure-activity relationships for naturally occurring coumarins as β-secretase inhibitor // Bioorg. Med. Chem. 2012. Vol. 20, No. 2. P. 784–788. DOI: 10.1016/j.bmc.2011.12.002 |
| [101] |
Holbrook AM, Pereira JA, Labiris R, et al. Systematic overview of warfarin and its drug and food interactions. Arch Intern Med. 2005;165(10):1095–1106. DOI: 10.1001/archinte.165.10.1095 |
| [102] |
Holbrook A.M., Pereira J.A., Labiris R. et al. Systematic overview of warfarin and its drug and food interactions // Arch. Intern. Med. 2005. Vol. 165, No. 10. P. 1095–1106. DOI: 10.1001/archinte.165.10.1095 |
| [103] |
Gage BF, Fihn SD, White RH. Management and dosing of warfarin therapy. Am J Med. 2000;109(6):481–488. DOI: 10.1016/S0002-9343(00)00545-3 |
| [104] |
Gage B.F., Fihn S.D., White R.H. Management and dosing of warfarin therapy // Am. J. Med. 2000. Vol. 109, No. 6. P. 481–488. DOI: 10.1016/S0002-9343(00)00545-3 |
Eco-Vector
/
| 〈 |
|
〉 |