Molecular mechanisms of drug resistance of glial tumor of brain. Part 2: Proliferation, angiogenesis, metastasis and recurrency
Alexander N. Chernov , Elvira S. Galimova , Olga V. Shamova
Medical academic journal ›› 2022, Vol. 22 ›› Issue (1) : 89 -117.
Molecular mechanisms of drug resistance of glial tumor of brain. Part 2: Proliferation, angiogenesis, metastasis and recurrency
The main reason for the low efficiency of glioblastoma therapy is its resistance to therapeutic procedures. The development of multidrug resistance occurs as a result of the selection of tumor clones during therapy. The resistant cell clones to radiotherapy and chemotherapy can proliferate, leading to tumor growth, in which its own vascular network is formed (angiogenesis), which promotes cell migration, invasion and the appearance of metastases and recurrent glioblastoma. The review examines the relationship at the molecular level of multidrug resistance with proliferation, angiogenesis, migration, metastasis, and the formation of glioblastoma relapses, with an emphasis on identifying new targets among proteins, microRNAs, signal transduction kinases, transcription factors, tumor-supressor genes and oncogenes.
glioblastoma / multidrug resistance / chemotherapy drugs / proliferation / angiogenesis / metastasis / recurrence / growth factors / their receptors / signal transduction kinases / microRNA / transcription factors / oncogenes / suppressor genes
| [1] |
Griffin M, Khan R, Basu S, et al. Ion channels as therapeutic targets in high grade gliomas. Cancers (Basel). 2020;12(10):3068. DOI: 10.3390/cancers12103068 |
| [2] |
Griffin M., Khan R., Basu S. et al. Ion channels as therapeutic targets in high grade gliomas // Cancers (Basel). 2020. Vol. 12, No. 10. P. 3068. DOI: 10.3390/cancers12103068 |
| [3] |
Sottoriva A, Spiteri I, Piccirillo SG, et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci USA. 2013;110(10):4009–4014. DOI: 10.1073/pnas.1219747110 |
| [4] |
Sottoriva A., Spiteri I., Piccirillo S.G. et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics // Proc. Natl. Acad. Sci. USA. 2013. Vol. 110, No. 10. P. 4009–4014. DOI: 10.1073/pnas.1219747110 |
| [5] |
Verhaak RGW, Hoadley KA, Purdom E, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17:98–110. DOI: 10.1016/j.ccr.2009.12.020 |
| [6] |
Verhaak R.G.W., Hoadley K.A., Purdom E. et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1 // Cancer Cell. 2010. Vol. 17. P. 98–110. DOI: 10.1016/j.ccr.2009.12.020 |
| [7] |
Wang Z, Zhang H, Xu S, et al. The adaptive transition of glioblastoma stem cells and its implications on treatments. Signal Transduc Target Ther. 2021;6(1):124. DOI: 10.1038/s41392-021-00491-w |
| [8] |
Wang Z., Zhang H., Xu S. et al. The adaptive transition of glioblastoma stem cells and its implications on treatments // Signal Transduc. Target. Ther. 2021. Vol. 6, No. 1. P. 124. DOI: 10.1038/s41392-021-00491-w |
| [9] |
Mesrati MH, Behrooz B, Abuhamad AY, Syahir A. Understanding glioblastoma biomarkers: knocking a mountain with a hammer. Cells. 2020;9(5):1236. DOI: 10.3390/cells9051236 |
| [10] |
Mesrati M.H., Behrooz A.B., Abuhamad A.Y., Syahir A. Understanding glioblastoma biomarkers: knocking a mountain with a hammer // Cells. 2020. Vol. 9, No. 5. P. 1236. DOI: 10.3390/cells9051236 |
| [11] |
Suvà ML, Tirosh I. The Glioma stem cell model in the era of single-cell genomics. Cancer Cell. 2020;37(5):630–636. DOI: 10.1016/j.ccell.2020.04.001 |
| [12] |
Suvà M.L., Tirosh I. The Glioma stem cell model in the era of single-cell genomics // Cancer Cell. 2020. Vol. 37, No. 5. P. 630–636. DOI: 10.1016/j.ccell.2020.04.001 |
| [13] |
Park JC, Chang IB, Ahn JH, et al. Nerve growth factor stimulates glioblastoma proliferation through notch1 receptor signaling. J Korean Neurosurg Soc. 2018;61(4):441–449. DOI: 10.3340/jkns.2017.0219 |
| [14] |
Park J.C., Chang I.B., Ahn J.H. et al. Nerve growth factor stimulates glioblastoma proliferation through notch1 receptor signaling // J. Korean Neurosurg. Soc. 2018. Vol. 61, No. 4. P. 441–449. DOI: 10.3340/jkns.2017.0219 |
| [15] |
Watanabe T, Katayama Y, Kimura S, Yoshino A. Control of proliferation and survival of C6 glioma cells with modification of the nerve growth factor autocrine system. J Neurooncol. 1999;41(2):121–128. DOI: 10.1023/a:1006127624487 |
| [16] |
Watanabe T., Katayama Y., Kimura S., Yoshino A. Control of proliferation and survival of C6 glioma cells with modification of the nerve growth factor autocrine system // J. Neurooncol. 1999. Vol. 41, No. 2. P. 121–128. DOI: 10.1023/a:1006127624487 |
| [17] |
Garofalo S, Porzia A, Mainiero F, et al. Environmental stimuli shape microglial plasticity in glioma. Elife. 2017;6:e33415. DOI: 10.7554/eLife.33415 |
| [18] |
Garofalo S., Porzia A., Mainiero F. et al. Environmental stimuli shape microglial plasticity in glioma // Elife. 2017. Vol. 6. P. e33415. DOI: 10.7554/eLife.33415 |
| [19] |
Xiong J, Zhou L, Yang M, et al. ProBDNF and its receptors are upregulated in glioma and inhibit the growth of glioma cells in vitro. Neuro Oncol. 2013;15(8):990–1007. DOI: 10.1093/neuonc/not039 |
| [20] |
Xiong J., Zhou L., Yang M. et al. ProBDNF and its receptors are upregulated in glioma and inhibit the growth of glioma cells in vitro // Neuro. Oncol. 2013. Vol. 15, No. 8. P. 990–1007. DOI: 10.1093/neuonc/not039 |
| [21] |
Venkatesh HS, Johung TB, Caretti V, et al. Neuronal activity promotes glioma growth through neuroligin-3 secretion. Cell. 2015;161:803–816. DOI: 10.1016/j.cell.2015.04.012 |
| [22] |
Venkatesh H.S., Johung T.B., Caretti V. et al. Neuronal activity promotes glioma growth through neuroligin-3 secretion // Cell. 2015. Vol. 161. P. 803–816. DOI: 10.1016/j.cell.2015.04.012 |
| [23] |
Venkatesh HS, Morishita W, Geraghty AC, et al. Electrical and synaptic integration of glioma into neural circuits. Nature. 2019;573:539–545. DOI: 10.1038/s41586-019-1563-y |
| [24] |
Venkatesh H.S., Morishita W., Geraghty A.C. et al. Electrical and synaptic integration of glioma into neural circuits // Nature. 2019. Vol. 573. P. 539–545. DOI: 10.1038/s41586-019-1563-y |
| [25] |
Taylor KR, Barron T, Zhang H, et al. Glioma synapses recruit mechanisms of adaptive plasticity. BioRxiv. 2021. DOI: 10.1101/2021.11.04.467325 |
| [26] |
Taylor K.R., Barron T., Zhang H. et al. Glioma synapses recruit mechanisms of adaptive plasticity // BioRxiv. 2021. DOI: 10.1101/2021.11.04.467325 |
| [27] |
Wang Y, Liu YY, Chen MB, et al. Neuronal-driven glioma growth requires Gαi1 and Gαi3. Theranostics. 2021;11(17):8535–8549. DOI: 10.7150/thno.61452 |
| [28] |
Wang Y., Liu Y.Y., Chen M.B. et al. Neuronal-driven glioma growth requires Gαi1 and Gαi3 // Theranostics. 2021. Vol. 11, No. 17. P. 8535–8549. DOI: 10.7150/thno.61452 |
| [29] |
Lawn S, Krishna N, Pisklakova A, et al. Neurotrophin signaling via TrkB and TrkC receptors promotes the growth of brain tumor-initiating cells. J Biol Chem. 2015;290(6):3814–3824. DOI: 10.1074/jbc.M114.599373 |
| [30] |
Lawn S., Krishna N., Pisklakova A. et al. Neurotrophin signaling via TrkB and TrkC receptors promotes the growth of brain tumor-initiating cells // J. Biol. Chem. 2015. Vol. 290, No. 6. P. 3814–3824. DOI: 10.1074/jbc.M114.599373 |
| [31] |
Wang T-C, Luo S-J, Chang S-F. Bone morphogenetic protein 7 effect on human glioblastoma cell transmigration and migration. Life (Basel). 2021;11(7):708. DOI: 10.3390/life11070708 |
| [32] |
Wang T.-C., Luo S.-J., Chang S.-F. Bone morphogenetic protein 7 effect on human glioblastoma cell transmigration and migration // Life (Basel). 2021. Vol. 11, No. 7. P. 708. DOI: 10.3390/life11070708 |
| [33] |
Valter MM, Wiestler OD, Pietsche T. Differential control of VEGF synthesis and secretion in human glioma cells by IL-1 and EGF. Int J Dev Neurosci. 1999;17(5–6):565–577. DOI: 10.1016/s0736-5748(99)00048-9 |
| [34] |
Valter M.M., Wiestler O.D., Pietsche T. Differential control of VEGF synthesis and secretion in human glioma cells by IL-1 and EGF // Int. J. Dev. Neurosci. 1999. Vol. 17, No. 5–6. P. 565–577. DOI: 10.1016/s0736-5748(99)00048-9 |
| [35] |
Krcek R, Matschke V, Theis V, et al. Vascular endothelial growth factor, irradiation, and axitinib have diverse effects on motility and proliferation of glioblastoma multiforme cells. Front Oncol. 2017;7:182. DOI: 10.3389/fonc.2017.00182 |
| [36] |
Krcek R., Matschke V., Theis V. et al. Vascular endothelial growth factor, irradiation, and axitinib have diverse effects on motility and proliferation of glioblastoma multiforme cells // Front. Oncol. 2017. Vol. 7. P. 182. DOI: 10.3389/fonc.2017.00182 |
| [37] |
Audero E, Cascone I, Zanon I, et al. Expression of angiopoietin-1 in human glioblastomas regulates tumor-induced angiogenesis: in vivo and in vitro studies. Arterioscler Thromb Vasc Biol. 2001;21(4):536–541. DOI: 10.1161/01.atv.21.4.536 |
| [38] |
Audero E., Cascone I., Zanon I. et al. Expression of angiopoietin-1 in human glioblastomas regulates tumor-induced angiogenesis: in vivo and in vitro studies // Arterioscler. Thromb. Vasc. Biol. 2001. Vol. 21, No. 4. P. 536–541. DOI: 10.1161/01.atv.21.4.536 |
| [39] |
Hu B, Guo P, Fang Q, et al. Angiopoietin-2 induces human glioma invasion through the activation of matrix metalloprotease-2. Proc Natl Acad Sci USA. 2003;100(15):8904–8909. DOI: 10.1073/pnas.1533394100 |
| [40] |
Hu B., Guo P., Fang Q. et al. Angiopoietin-2 induces human glioma invasion through the activation of matrix metalloprotease-2 // Proc. Natl. Acad. Sci. USA. 2003. Vol. 100, No. 15. P. 8904–8909. DOI: 10.1073/pnas.1533394100 |
| [41] |
Hu B, Jarzynka MJ, Guo P, et al. Angiopoietin 2 induces glioma cell invasion by stimulating matrix metalloprotease 2 expression through the alphavbeta1 integrin and focal adhesion kinase signaling pathway. Cancer Res. 2006;66(2):775–783. DOI: 10.1158/0008-5472.CAN-05-1149 |
| [42] |
Hu B., Jarzynka M.J., Guo P. et al. Angiopoietin 2 induces glioma cell invasion by stimulating matrix metalloprotease 2 expression through the alphavbeta1 integrin and focal adhesion kinase signaling pathway // Cancer Res. 2006. Vol. 66, No. 2. P. 775–783. DOI: 10.1158/0008-5472.CAN-05-1149 |
| [43] |
Brunckhorst MK, Wang H, Lu R, Yu Q. Angiopoietin-4 promotes glioblastoma progression by enhancing tumor cell viability and angiogenesis. Cancer Res. 2010;70(18):7283–7293. DOI: 10.1158/0008-5472.CAN-09-4125 |
| [44] |
Brunckhorst M.K., Wang H., Lu R., Yu Q. Angiopoietin-4 Promotes Glioblastoma Progression by Enhancing Tumor Cell Viability and Angiogenesis // Cancer Res. 2010. Vol. 70, No. 18. P. 7283–7293. DOI: 10.1158/0008-5472.CAN-09-4125 |
| [45] |
Chen X-C, Wei X-T, Guan J-H, et al. EGF stimulates glioblastoma metastasis by induction of matrix metalloproteinase-9 in an EGFR-dependent mechanism. Oncotarget. 2017;8(39):65969–65982. DOI: 10.18632/oncotarget.19622 |
| [46] |
Chen X.-C., Wei X.-T., Guan J.-H. et al. EGF stimulates glioblastoma metastasis by induction of matrix metalloproteinase-9 in an EGFR-dependent mechanism // Oncotarget. 2017. Vol. 8, No. 39. P. 65969–65982. DOI: 10.18632/oncotarget.19622 |
| [47] |
Pudełek M, Król K, Catapano J, et al. Epidermal Growth Factor (EGF) augments the invasive potential of human glioblastoma multiforme cells via the activation of collaborative EGFR/ROS-dependent signaling. Int J Mol Sci. 2020;21(10):3605. DOI: 10.3390/ijms21103605 |
| [48] |
Pudełek M., Król K., Catapano J. et al. Epidermal Growth Factor (EGF) augments the invasive potential of human glioblastoma multiforme cells via the activation of collaborative EGFR/ROS-dependent signaling // Int. J. Mol. Sci. 2020. Vol. 21, No. 10. P. 3605. DOI: 10.3390/ijms21103605 |
| [49] |
An Z, Aksoy O, Zheng T, et al. Epidermal growth factor receptor and EGFRvIII in glioblastoma: signaling pathways and targeted therapies. Oncogene. 2018;37:1561–1575. DOI: 10.1038/s41388-017-0045-7 |
| [50] |
An Z., Aksoy O., Zheng T. et al. Epidermal growth factor receptor and EGFRvIII in glioblastoma: signaling pathways and targeted therapies // Oncogene. 2018. Vol. 37. P. 1561–1575. DOI: 10.1038/s41388-017-0045-7 |
| [51] |
Garnett J, Chumbalkar V, Vaillant B, et al. Regulation of HGF expression by DeltaEGFR-mediated c-Met activation in glioblastoma cells. Neoplasia. 2013;15(1):73–84. DOI: 10.1593/neo.121536 |
| [52] |
Garnett J., Chumbalkar V., Vaillant B. et al. Regulation of HGF expression by DeltaEGFR-mediated c-Met activation in glioblastoma cells // Neoplasia. 2013. Vol. 15, No. 1. P. 73–84. DOI: 10.1593/neo.121536 |
| [53] |
Jimenez-Pascual A, Siebzehnrubl FA. Fibroblast growth factor receptor functions in glioblastoma. Cells. 2019;8(7):715. DOI: 10.3390/cells8070715 |
| [54] |
Jimenez-Pascual A., Siebzehnrubl F.A. Fibroblast growth factor receptor functions in glioblastoma // Cells. 2019. Vol. 8, No. 7. P. 715. DOI: 10.3390/cells8070715 |
| [55] |
Jimenez-Pascual A, Mitchell K, Siebzehnrubl FA, Lathia JD. FGF2: a novel druggable target for glioblastoma? Expert Opin Ther Targets. 2020;24(4):311–318. DOI: 10.1080/14728222.2020.1736558 |
| [56] |
Jimenez-Pascual A., Mitchell K., Siebzehnrubl F.A., Lathia J.D. FGF2: a novel druggable target for glioblastoma? // Expert. Opin. Ther. Targets. 2020. Vol. 24, No. 4. P. 311–318. DOI: 10.1080/14728222.2020.1736558 |
| [57] |
Tiong KH, Mah LY, Leong CO. Functional roles of fibroblast growth factor receptors (FGFRs) signaling in human cancers. Apoptosis. 2013;18(12):1447–1468. DOI: 10.1007/s10495-013-0886-7 |
| [58] |
Tiong K.H., Mah L.Y., Leong C.O. Functional roles of fibroblast growth factor receptors (FGFRs) signaling in human cancers // Apoptosis. 2013. Vol. 18, No. 12. P. 1447–1468. DOI: 10.1007/s10495-013-0886-7 |
| [59] |
Tirrò E, Massimino M, Romano C, et al. Prognostic and therapeutic roles of the insulin growth factor system in glioblastoma. Front Oncol. 2021;10:612385. DOI: 10.3389/fonc.2020.612385 |
| [60] |
Tirrò E., Massimino M., Romano C. et al. Prognostic and therapeutic roles of the insulin growth factor system in glioblastoma // Front. Oncol. 2021. Vol. 10. P. 612385. DOI: 10.3389/fonc.2020.612385 |
| [61] |
Maris C, D’Haene N, Trepant AL, et al. IGF-IR: a new prognostic biomarker for human glioblastoma. Br J Cancer. 2015;113(5):729–737. DOI: 10.1038/bjc.2015.242 |
| [62] |
Maris C., D’Haene N., Trepant A.L. et al. IGF-IR: a new prognostic biomarker for human glioblastoma // Br. J. Cancer. 2015. Vol. 113, No. 5. P. 729–737. DOI: 10.1038/bjc.2015.242 |
| [63] |
Simpson AD, Soo YWJ, Rieunier G, et al. Type 1 IGF receptor associates with adverse outcome and cellular radioresistance in paediatric high-grade glioma. Br J Cancer. 2020;122(5):624–629. DOI: 10.1038/s41416-019-0677-1 |
| [64] |
Simpson A.D., Soo Y.W.J., Rieunier G. et al. Type 1 IGF receptor associates with adverse outcome and cellular radioresistance in paediatric high-grade glioma // Br. J. Cancer. 2020. Vol. 122, No. 5. P. 624–629. DOI: 10.1038/s41416-019-0677-1 |
| [65] |
Cruickshanks N, Zhang Y, Yuan F, et al. Role and therapeutic targeting of the HGF/MET pathway in glioblastoma. Cancers (Basel). 2017;9(7):87. DOI: 10.3390/cancers9070087 |
| [66] |
Cruickshanks N., Zhang Y., Yuan F. et al. Role and therapeutic targeting of the HGF/MET pathway in glioblastoma // Cancers (Basel). 2017. Vol. 9, No. 7. P. 87. DOI: 10.3390/cancers9070087 |
| [67] |
Navis AC, van Lith SA, van Duijnhoven SM, et al. Identification of a novel MET mutation in high-grade glioma resulting in an auto-active intracellular protein. Acta Neuropathol. 2015;130:131–144. DOI: 10.1007/s00401-015-1420-5 |
| [68] |
Navis A.C., van Lith S.A., van Duijnhoven S.M. et al. Identification of a novel MET mutation in high-grade glioma resulting in an auto-active intracellular protein // Acta Neuropathol. 2015. Vol. 130. P. 131–144. DOI: 10.1007/s00401-015-1420-5 |
| [69] |
Cantanhede IG, de Oliveira JRM. PDGF family expression in glioblastoma multiforme: data compilation from Ivy Glioblastoma Atlas Project Database. Sci Rep. 2017;7(1):15271. DOI: 10.1038/s41598-017-15045-w |
| [70] |
Cantanhede I.G., de Oliveira J.R.M. PDGF family expression in glioblastoma multiforme: data compilation from Ivy Glioblastoma Atlas Project Database // Sci. Rep. 2017. Vol. 7, No. 1. P. 15271. DOI: 10.1038/s41598-017-15045-w |
| [71] |
Bohm AK, DePetro J, Binding CE, et al. In vitro modeling of glioblastoma initiation using PDGF-AA and p53-null neural progenitors. Neuro Oncol. 2020;22(8):1150–1161. DOI: 10.1093/neuonc/noaa093 |
| [72] |
Bohm A.K., DePetro J., Binding C.E. et al. In vitro modeling of glioblastoma initiation using PDGF-AA and p53-null neural progenitors // Neuro. Oncol. 2020. Vol. 22, No. 8. P. 1150–1161. DOI: 10.1093/neuonc/noaa093 |
| [73] |
Clara CA, Marie SK, de Almeida JR, et al. Angiogenesis and expression of PDGF-C, VEGF, CD105 and HIF-1α in human glioblastoma. Neuropathology. 2014;34(4):343–352. DOI: 10.1111/neup.12111 |
| [74] |
Clara C.A., Marie S.K., de Almeida J.R. et al. Angiogenesis and expression of PDGF-C, VEGF, CD105 and HIF-1α in human glioblastoma // Neuropathology. 2014. Vol. 34, No. 4. P. 343–352. DOI: 10.1111/neup.12111 |
| [75] |
di Tomaso E, London N, Fuja D, et al. PDGF-C induces maturation of blood vessels in a model of glioblastoma and attenuates the response to anti-VEGF treatment. PLoS One. 2009;4(4):e5123. DOI: 10.1371/journal.pone.0005123 |
| [76] |
Di Tomaso E., London N., Fuja D. et al. PDGF-C induces maturation of blood vessels in a model of glioblastoma and attenuates the response to anti-VEGF treatment // PLoS One. 2009. Vol. 4, No. 4. P. e5123. DOI: 10.1371/journal.pone.0005123 |
| [77] |
Guérit E, Arts F, Dachy G, et al. PDGF receptor mutations in human diseases. Cell Mol Life Sci. 2021;78(8):3867–3881. DOI: 10.1007/s00018-020-03753-y |
| [78] |
Guérit E., Arts F., Dachy G. et al. PDGF receptor mutations in human diseases // Cell. Mol. Life Sci. 2021. Vol. 78, No. 8. P. 3867–3881. DOI: 10.1007/s00018-020-03753-y |
| [79] |
Dico AL, Martelli C, Diceglie C, et al. Hypoxia-Inducible Factor-1α Activity as a switch for glioblastoma responsiveness to temozolomide. Front Oncol. 2018;8:249. DOI: 10.3389/fonc.2018.00249 |
| [80] |
Dico A.L., Martelli C., Diceglie C. et al. Hypoxia-inducible factor-1α activity as a switch for glioblastoma responsiveness to temozolomide // Front. Oncol. 2018. Vol. 8. P. 249. DOI: 10.3389/fonc.2018.00249 |
| [81] |
Renfrow JJ, Soike MH, West JL, et al. Attenuating hypoxia driven malignant behavior in glioblastoma with a novel hypoxia-inducible factor 2 alpha inhibitor. Sci Rep. 2020;10(1): 15195. DOI: 10.1038/s41598-020-72290-2 |
| [82] |
Renfrow J.J., Soike M.H., West J.L. et al. Attenuating hypoxia driven malignant behavior in glioblastoma with a novel hypoxia-inducible factor 2 alpha inhibitor // Sci. Rep. 2020. Vol. 10, No. 1. P. 15195. DOI: 10.1038/s41598-020-72290-2 |
| [83] |
Cornelison RC, Brennan CE, Kingsmore K., Munson JM. Convective forces increase CXCR4-dependent glioblastoma cell invasion in GL261 murine model. Sci Rep. 2018;8:17057. DOI: 10.1038/s41598-018-35141-9 |
| [84] |
Cornelison R.C., Brennan C.E., Kingsmore K.M., Munson J.M. Convective forces increase CXCR4-dependent glioblastoma cell invasion in GL261 murine model // Sci. Rep. 2018. Vol. 8. P. 17057. DOI: 10.1038/s41598-018-35141-9 |
| [85] |
Chao M, Liu N, Sun Z, et al. TGF-β signaling promotes glioma progression through stabilizing Sox9. Front Immunol. 2021;11:592080. DOI: 10.3389/fimmu.2020.592080 |
| [86] |
Chao M., Liu N., Sun Z. et al. TGF-β signaling promotes glioma progression through stabilizing Sox9 // Front. Immunol. 2021. Vol. 11. P. 592080. DOI: 10.3389/fimmu.2020.592080 |
| [87] |
Yang R, Li X, Wu Y, et al. EGFR activates GDH1 transcription to promote glutamine metabolism through MEK/ERK/ELK1 pathway in glioblastoma. Oncogene. 2020;39(14):2975–2986. DOI: 10.1038/s41388-020-1199-2 |
| [88] |
Yang R., Li X., Wu Y. et al. EGFR activates GDH1 transcription to promote glutamine metabolism through MEK/ERK/ELK1 pathway in glioblastoma // Oncogene. 2020. Vol. 39, No. 14. P. 2975–2986. DOI: 10.1038/s41388-020-1199-2 |
| [89] |
Pace KR, Dutt R, Galileo DS. Exosomal L1CAM stimulates glioblastoma cell motility, proliferation, and invasiveness. Int J Mol Sci. 2019;20(16):3982. DOI: 10.3390/ijms20163982 |
| [90] |
Pace K.R., Dutt R., Galileo D.S. Exosomal L1CAM stimulates glioblastoma cell motility, proliferation, and invasiveness // Int. J. Mol. Sci. 2019. Vol. 20, No. 16. P. 3982. DOI: 10.3390/ijms20163982 |
| [91] |
Lee Y, Lee JK, Ahn S, et al. WNT signaling in glioblastoma and therapeutic opportunities. Lab Invest. 2016;96(2):137–150. DOI: 10.1038/labinvest.2015.140 |
| [92] |
Lee Y., Lee JK., Ahn S. et al. WNT signaling in glioblastoma and therapeutic opportunities // Lab. Invest. 2016. Vol. 96, No. 2. P. 137–150. DOI: 10.1038/labinvest.2015.140 |
| [93] |
Cenciarelli C, Marei HE, Felsani A, et al. PDGFRα depletion attenuates glioblastoma stem cells features by modulation of STAT3, RB1 and multiple oncogenic signals. Oncotarget. 2016;7(33):53047–53063. DOI: 10.18632/oncotarget.10132 |
| [94] |
Cenciarelli C., Marei H.E., Felsani A. et al. PDGFRα depletion attenuates glioblastoma stem cells features by modulation of STAT3, RB1 and multiple oncogenic signals // Oncotarget. 2016. Vol. 7, No. 33. P. 53047–53063. DOI: 10.18632/oncotarget.10132 |
| [95] |
Gong Y, Ma Y, Sinyuk M, et al. Insulin-mediated signaling promotes proliferation and survival of glioblastoma through Akt activation. Neuro Oncol. 2016;18(1):48–57. DOI: 10.1093/neuonc/nov096 |
| [96] |
Gong Y., Ma Y., Sinyuk M. et al. Insulin-mediated signaling promotes proliferation and survival of glioblastoma through Akt activation // Neuro. Oncol. 2016. Vol. 18, No. 1. P. 48–57. DOI: 10.1093/neuonc/nov096 |
| [97] |
Oliva CR, Halloran B, Hjelmeland AB, et al. IGFBP6 controls the expansion of chemoresistant glioblastoma through paracrine IGF2/IGF-1R signaling. Cell Commun Signal. 2018;16(1):61. DOI: 10.1186/s12964-018-0273-7 |
| [98] |
Oliva C.R., Halloran B., Hjelmeland A.B. et al. IGFBP6 controls the expansion of chemoresistant glioblastoma through paracrine IGF2/IGF-1R signaling // Cell. Commun. Signal. 2018. Vol. 16, No. 1. P. 61. DOI: 10.1186/s12964-018-0273-7 |
| [99] |
Sesen J, Cammas A, Scotland SJ, et al. Int6/eIF3e is essential for proliferation and survival of human glioblastoma cells. Int J Mol Sci. 2014;15(2):2172–2190. DOI: 10.3390/ijms15022172 |
| [100] |
Sesen J., Cammas A., Scotland S.J. et al. Int6/eIF3e is essential for proliferation and survival of human glioblastoma cells // Int. J. Mol. Sci. 2014. Vol. 15, No. 2. P. 2172–2190. DOI: 10.3390/ijms15022172 |
| [101] |
Pan PC, Magge RS. Mechanisms of EGFR Resistance in Glioblastoma. Int J Mol Sci. 2020;21(22):8471. DOI: 10.3390/ijms21228471 |
| [102] |
Pan P.C., Magge R.S. Mechanisms of EGFR Resistance in Glioblastoma // Int. J. Mol. Sci. 2020. Vol. 21, No. 22. P. 8471. DOI: 10.3390/ijms21228471 |
| [103] |
Radin DP, Patel P. BDNF: an oncogene or tumor suppressor? Anticancer Res. 2017;37(8):3983–3990. DOI: 10.21873/anticanres.11783 |
| [104] |
Radin D.P., Patel P. BDNF: an oncogene or tumor suppressor? // Anticancer Res. 2017. Vol. 37, No. 8. P. 3983–3990. DOI: 10.21873/anticanres.11783 |
| [105] |
Nie E, Jin X, Miao F, et al. TGF-β1 modulates temozolomide resistance in glioblastoma via altered microRNA processing and elevated MGMT. Neuro Oncol. 2021;23(3):435–446. DOI: 10.1093/neuonc/noaa198 |
| [106] |
Nie E., Jin X., Miao F. et al. TGF-β1 modulates temozolomide resistance in glioblastoma via altered microRNA processing and elevated MGMT // Neuro. Oncol. 2021. Vol. 23, No. 3. P. 435–446. DOI: 10.1093/neuonc/noaa198 |
| [107] |
Bai Y, Lathia JD, Zhang P, et al. Molecular targeting of TRF2 suppresses the growth and tumorigenesis of glioblastoma stem cells. Glia. 2014;62(10):1687–1698. DOI: 10.1002/glia.22708 |
| [108] |
Bai Y., Lathia J.D., Zhang P. et al. Molecular targeting of TRF2 suppresses the growth and tumorigenesis of glioblastoma stem cells // Glia. 2014. Vol. 62, No. 10. P. 1687–1698. DOI: 10.1002/glia.22708 |
| [109] |
Zhang L-H, Yin A-A, Cheng J-X, et al. TRIM24 promotes glioma progression and enhances chemoresistance through activation of the PI3K/Akt signaling pathway. Oncogene. 2015;34(5):600–610. DOI: 10.1038/onc.2013.593 |
| [110] |
Zhang L.-H., Yin A.-A., Cheng J.-X. et al. TRIM24 promotes glioma progression and enhances chemoresistance through activation of the PI3K/Akt signaling pathway // Oncogene. 2015. Vol. 34, No. 5. P. 600–610. DOI: 10.1038/onc.2013.593 |
| [111] |
Yu Z, Chen Y, Wang S, et al. Inhibition of NF-κB results in anti-glioma activity and reduces temozolomide-induced chemoresistance by down-regulating MGMT gene expression. Cancer Lett. 2018;428:77–89. DOI: 10.1016/j.canlet.2018.04.033 |
| [112] |
Yu Z., Chen Y., Wang S. et al. Inhibition of NF-κB results in anti-glioma activity and reduces temozolomide-induced chemoresistance by down-regulating MGMT gene expression // Cancer Lett. 2018. Vol. 428. P. 77–89. DOI: 10.1016/j.canlet.2018.04.033 |
| [113] |
Edwards LA, Kim S, Madany M, et al. ZEB1 is a transcription factor that is prognostic and predictive in diffuse gliomas. Front Neurol. 2019;9:1199. DOI: 10.3389/fneur.2018.01199 |
| [114] |
Edwards L.A., Kim S., Madany M. et al. ZEB1 is a transcription factor that is prognostic and predictive in diffuse gliomas // Front. Neurol. 2019. Vol. 9. P. 1199. DOI: 10.3389/fneur.2018.01199 |
| [115] |
Xu K, Zhang Z, Pei H, et al. FoxO3a induces temozolomide resistance in glioblastoma cells via the regulation of β-catenin nuclear accumulation. Oncol Rep. 2017;37(4):2391–2397. DOI: 10.3892/or.2017.5459 |
| [116] |
Xu K., Zhang Z., Pei H. et al. FoxO3a induces temozolomide resistance in glioblastoma cells via the regulation of β-catenin nuclear accumulation // Oncol. Rep. 2017. Vol. 37, No. 4. P. 2391–2397. DOI: 10.3892/or.2017.5459 |
| [117] |
Zhang X, Lv QL, Huang YT, et al. Akt/FoxM1 signaling pathway-mediated upregulation of MYBL2 promotes progression of human glioma. J Exp Clin Cancer Res. 2017;36:105. DOI: 10.1186/s13046-017-0573-6 |
| [118] |
Zhang X., Lv QL., Huang Y.T. et al. Akt/FoxM1 signaling pathway-mediated upregulation of MYBL2 promotes progression of human glioma // J. Exp. Clin. Cancer Res. 2017. Vol. 36. P. 105. DOI: 10.1186/s13046-017-0573-6 |
| [119] |
Zhang C, Han X, Xu X, et al. FoxM1 drives ADAM17/EGFR activation loop to promote mesenchymal transition in glioblastoma. Cell Death Dis. 2018;9:469. DOI: 10.1038/s41419-018-0482-4 |
| [120] |
Zhang C., Han X., Xu X. et al. FoxM1 drives ADAM17/EGFR activation loop to promote mesenchymal transition in glioblastoma // Cell Death Dis. 2018. Vol. 9. P. 469. DOI: 10.1038/s41419-018-0482-4 |
| [121] |
Kim J-K, Jin X, Ham SW, et al. IRF7 promotes glioma cell invasion by inhibiting AGO2 expression. Tumor Biol. 2015;36(7):5561–5569. DOI: 10.1007/s13277-015-3226-4 |
| [122] |
Kim J.-K., Jin X., Ham S.W. et al. IRF7 promotes glioma cell invasion by inhibiting AGO2 expression // Tumor Biol. 2015. Vol. 36, No. 7. P. 5561–5569. DOI: 10.1007/s13277-015-3226-4 |
| [123] |
Agnihotri S, Wolf A, Munoz DM, et al. A GATA4-regulated tumor suppressor network represses formation of malignant human astrocytomas. J Exp Med. 2011;208(4):689–702. DOI: 10.1084/jem.20102099 |
| [124] |
Agnihotri S., Wolf A., Munoz D.M. et al. A GATA4-regulated tumor suppressor network represses formation of malignant human astrocytomas // J. Exp. Med. 2011. Vol. 208, No. 4. P. 689–702. DOI: 10.1084/jem.20102099 |
| [125] |
Wu Z, Wang L, Li G, et al. Increased expression of microRNA-9 predicts an unfavorable prognosis in human glioma. Mol Cell Biochem. 2013;384(1–2):263–268. DOI: 10.1007/s11010-013-1805-5 |
| [126] |
Wu Z., Wang L., Li G. et al. Increased expression of microRNA-9 predicts an unfavorable prognosis in human glioma // Mol. Cell. Biochem. 2013. Vol. 384, No. 1–2. P. 263–268. DOI: 10.1007/s11010-013-1805-5 |
| [127] |
Wang G, Wang JJ, Tang HM, et al. Targeting strategies on miRNA-21 and PDCD4 for glioblastoma. Arch Biochem Biophys. 2015;580:64–74. DOI: 10.1016/j.abb.2015.07.001 |
| [128] |
Wang G., Wang J.J., Tang H.M. et al. Targeting strategies on miRNA-21 and PDCD4 for glioblastoma // Arch. Biochem. Biophys. 2015. Vol. 580. P. 64–74. DOI: 10.1016/j.abb.2015.07.001 |
| [129] |
Cheng Q, Ma X, Cao H, et al. Role of miR-223/paired box 6 signaling in temozolomide chemoresistance in glioblastoma multiforme cells. Mol Med Rep. 2017;15(2):597–604. DOI: 10.3892/mmr.2016.6078 |
| [130] |
Cheng Q., Ma X., Cao H. et al. Role of miR-223/paired box 6 signaling in temozolomide chemoresistance in glioblastoma multiforme cells // Mol. Med. Rep. 2017. Vol. 15, No. 2. P. 597–604. DOI: 10.3892/mmr.2016.6078 |
| [131] |
Mathew LK, Skuli N, Mucaj V, et al. MiR-218 opposes a critical RTK-HIF pathway in mesenchymal glioblastoma. Proc Natl Acad Sci USA. 2014;111(1):291–296. DOI: 10.1073/pnas.1314341111 |
| [132] |
Mathew L.K., Skuli N., Mucaj V. et al. MiR-218 opposes a critical RTK-HIF pathway in mesenchymal glioblastoma // Proc. Natl. Acad. Sci. USA. 2014. Vol. 111, No. 1. P. 291–296. DOI: 10.1073/pnas.1314341111 |
| [133] |
Wang Z, Li Z, Fu Y, et al. MiRNA-130a-3p inhibits cell proliferation, migration, and TMZ resistance in glioblastoma by targeting Sp1. Am J Transl Res. 2019;11(12):7272–7285. |
| [134] |
Wang Z., Li Z., Fu Y. et al. MiRNA-130a-3p inhibits cell proliferation, migration, and TMZ resistance in glioblastoma by targeting Sp1 // Am. J. Transl. Res. 2019. Vol. 11, No. 12. P. 7272–7285. |
| [135] |
Gao Y-T, Chen X-B, Liu H-L. Up-regulation of miR-370-3p restores glioblastoma multiforme sensitivity to temozolomide by influencing MGMT expression. Sci Rep. 2016;6:32972. DOI: 10.1038/srep32972 |
| [136] |
Gao Y.-T., Chen X.-B., Liu H.-L. Up-regulation of miR-370-3p restores glioblastoma multiforme sensitivity to temozolomide by influencing MGMT expression // Sci. Rep. 2016. Vol. 6. P. 32972. DOI: 10.1038/srep32972 |
| [137] |
Tian T, Mingyi M, Qiu X, et al. MicroRNA-101 reverses temozolomide resistance by inhibition of GSK3β in glioblastoma. Oncotarget. 2016;7(48):79584–79595. DOI: 10.18632/oncotarget.12861 |
| [138] |
Tian T., Mingyi M., Qiu X. et al. MicroRNA-101 reverses temozolomide resistance by inhibition of GSK3β in glioblastoma // Oncotarget. 2016. Vol. 7, No. 48. P. 79584–79595. DOI: 10.18632/oncotarget.12861 |
| [139] |
Nie E, Jin X, Wu W, et al. MiR-198 enhances temozolomide sensitivity in glioblastoma by targeting MGMT. J Neurooncol. 2017;133(1):59–68. DOI: 10.1007/s11060-017-2425-9 |
| [140] |
Nie E., Jin X., Wu W. et al. MiR-198 enhances temozolomide sensitivity in glioblastoma by targeting MGMT // J. Neurooncol. 2017. Vol. 133, No. 1. P. 59–68. DOI: 10.1007/s11060-017-2425-9 |
| [141] |
Wang G-H, Wang L-Y, Zhang C, et al. MiR-1225-5p acts as tumor suppressor in glioblastoma via targeting FNDC3B. Open Med (Wars). 2020;15(1):872–881. DOI: 10.1515/med-2020-0156 |
| [142] |
Wang G.-H., Wang L.-Y., Zhang C. et al. MiR-1225-5p acts as tumor suppressor in glioblastoma via targeting FNDC3B // Open Med. (Wars). 2020. Vol. 15, No. 1. P. 872–881. DOI: 10.1515/med-2020-0156 |
| [143] |
Tanaka S, Kobayashi I, Oka H, et al. Drug-resistance gene expression and progression of astrocytic tumors. Brain Tumor Pathol. 2001;18(2):131–137. DOI: 10.1007/BF02479426 |
| [144] |
Tanaka S., Kobayashi I., Oka H. et al. Drug-resistance gene expression and progression of astrocytic tumors // Brain Tumor Pathol. 2001. Vol. 18, No. 2. P. 131–137. DOI: 10.1007/BF02479426 |
| [145] |
Hegge B, Sjøttem E, Mikkola I. Generation of a PAX6 knockout glioblastoma cell line with changes in cell cycle distribution and sensitivity to oxidative stress. BMC Cancer. 2018;18(1):496. DOI: 10.1186/s12885-018-4394-6 |
| [146] |
Hegge B., Sjøttem E., Mikkola I. Generation of a PAX6 knockout glioblastoma cell line with changes in cell cycle distribution and sensitivity to oxidative stress // BMC Cancer. 2018. Vol. 18, No. 1. P. 496. DOI: 10.1186/s12885-018-4394-6 |
| [147] |
Talamillo A, Grande L, Ruiz-Ontañon P, et al. ODZ1 allows glioblastoma to sustain invasiveness through a Myc-dependent transcriptional upregulation of RhoA. Oncogene. 2017;36(12):1733–1744. DOI: 10.1038/onc.2016.341 |
| [148] |
Talamillo A., Grande L., Ruiz-Ontañon P. et al. ODZ1 allows glioblastoma to sustain invasiveness through a Myc-dependent transcriptional upregulation of RhoA // Oncogene. 2017. Vol. 36, No. 12. P. 1733–1744. DOI: 10.1038/onc.2016.341 |
| [149] |
Xia L, Huang Q, Nie D, et al. PAX3 is overexpressed in human glioblastomas and critically regulates the tumorigenicity of glioma cells. Brain Res. 2013;1521:68–78. DOI: 10.1016/j.brainres.2013.05.021 |
| [150] |
Xia L., Huang Q., Nie D. et al. PAX3 is overexpressed in human glioblastomas and critically regulates the tumorigenicity of glioma cells // Brain Res. 2013. Vol. 1521. P. 68–78. DOI: 10.1016/j.brainres.2013.05.021 |
| [151] |
Pojo M, Gonçalves CS, Xavier-Magalhães A, et al. A transcriptomic signature mediated by HOXA9 promotes human glioblastoma initiation, aggressiveness and resistance to temozolomide. Oncotarget. 2015;6(10):7657–7674. DOI: 10.18632/oncotarget.3150 |
| [152] |
Pojo M., Gonçalves C.S., Xavier-Magalhães A. et al. A transcriptomic signature mediated by HOXA9 promotes human glioblastoma initiation, aggressiveness and resistance to temozolomide // Oncotarget. 2015. Vol. 6, No. 10. P. 7657–7674. DOI: 10.18632/oncotarget.3150 |
| [153] |
Moiseeva NI, Susova OY, Mitrofanov AA, et al. Connection between proliferation rate and temozolomide sensitivity of primary glioblastoma cell culture and expression of YB-1 and LRP/MVP. Biochem (Mosc). 2016;81(6):628–635. DOI: 10.1134/S0006297916060109 |
| [154] |
Moiseeva N.I., Susova O.Y., Mitrofanov A.A. et al. Connection between proliferation rate and temozolomide sensitivity of primary glioblastoma cell culture and expression of YB-1 and LRP/MVP // Biochem. (Mosc). 2016. Vol. 81, No. 6. P. 628–635. DOI: 10.1134/S0006297916060109 |
| [155] |
Cao Y, Li X, Kong S. et al. CDK4/6 inhibition suppresses tumour growth and enhances the effect of temozolomide in glioma cells. J Cell Mol Med. 2020;24(9):5135–5145. DOI: 10.1111/jcmm.15156 |
| [156] |
Cao Y., Li X., Kong S. et al. CDK4/6 inhibition suppresses tumour growth and enhances the effect of temozolomide in glioma cells // J. Cell Mol. Med. 2020. Vol. 24, No. 9. P. 5135–5145. DOI: 10.1111/jcmm.15156 |
| [157] |
Farhad M, Rolig AS, Redmond WL. The role of Galectin-3 in modulating tumor growth and immunosuppression within the tumor microenvironment. Oncoimmunology. 2018;7(6):e1434467. DOI: 10.1080/2162402X.2018.1434467 |
| [158] |
Farhad M., Rolig A.S., Redmond W.L. The role of Galectin-3 in modulating tumor growth and immunosuppression within the tumor microenvironment // Oncoimmunology. 2018. Vol. 7, No. 6. P. e1434467. DOI: 10.1080/2162402X.2018.1434467 |
| [159] |
Wang H, Song X, Huang Q, et al. LGALS3 promotes treatment resistance in glioblastoma and is associated with tumor risk and prognosis. Cancer Epidemiol Biomarkers Prev. 2019;28(4):760–769. DOI: 10.1158/1055-9965.EPI-18-0638 |
| [160] |
Wang H., Song X., Huang Q. et al. LGALS3 promotes treatment resistance in glioblastoma and is associated with tumor risk and prognosis // Cancer Epidemiol. Biomarkers Prev. 2019. Vol. 28, No. 4. P. 760–769. DOI: 10.1158/1055-9965.EPI-18-0638 |
| [161] |
Zhang M, Zhao Y, Zhao J, et al. Impact of AKAP6 polymorphisms on Glioma susceptibility and prognosis. BMC Neurol. 2019;19:296. DOI: 10.1186/s12883-019-1504-2 |
| [162] |
Zhang M., Zhao Y., Zhao J. et al. Impact of AKAP6 polymorphisms on Glioma susceptibility and prognosis // BMC Neurol. 2019. Vol. 19. P. 296. DOI: 10.1186/s12883-019-1504-2 |
| [163] |
Mellai M, Cattaneo M, Storaci AM, et al. SEL1L SNP rs12435998, a predictor of glioblastoma survival and response to radio-chemotherapy. Oncotarget. 2015;6(14):12452–12467. DOI: 10.18632/oncotarget.3611 |
| [164] |
Mellai M., Cattaneo M., Storaci A.M. et al. SEL1L SNP rs12435998, a predictor of glioblastoma survival and response to radio-chemotherapy // Oncotarget. 2015. Vol. 6, No. 14. P. 12452–12467. DOI: 10.18632/oncotarget.3611 |
| [165] |
Riboni L, Hadi LA, Navone SE, et al. Sphingosine-1-phosphate in the tumor microenvironment: a signaling hub regulating cancer hallmarks. Cells. 2020;9(2):337. DOI: 10.3390/cells9020337 |
| [166] |
Riboni L., Hadi L.A., Navone S.E. et al. Sphingosine-1-phosphate in the tumor microenvironment: a signaling hub regulating cancer hallmarks // Cells. 2020. Vol. 9, No. 2. P. 337. DOI: 10.3390/cells9020337 |
| [167] |
Chen D. Tumor formation and drug resistance properties of human glioblastoma side population cells. Mol Med Rep. 2015;11(6):4309–4314. DOI: 10.3892/mmr.2015.3279 |
| [168] |
Chen D. Tumor formation and drug resistance properties of human glioblastoma side population cells // Mol. Med. Rep. 2015. Vol. 11, No. 6. P. 4309–4314. DOI: 10.3892/mmr.2015.3279 |
| [169] |
Kaneko S, Nakatani Y, Takezaki T, et al. Ceacam1L modulates STAT3 signaling to control the proliferation of glioblastoma-initiating cells. Cancer Res. 2015;75(19):4224–4234. DOI: 10.3892/mmr.2015.3279 |
| [170] |
Kaneko S., Nakatani Y., Takezaki T. et al. Ceacam1L modulates STAT3 signaling to control the proliferation of glioblastoma-initiating cells // Cancer Res. 2015. Vol. 75, No. 19. P. 4224–4234. DOI: 10.3892/mmr.2015.3279 |
| [171] |
Yu F, Li G, Gao J, et al. SPOCK1 is upregulated in recurrent glioblastoma and contributes to metastasis and temozolomide resistance. Cell Prolif. 2016;49(2):195–206. DOI: 10.1111/cpr.12241 |
| [172] |
Yu F., Li G., Gao J. et al. SPOCK1 is upregulated in recurrent glioblastoma and contributes to metastasis and temozolomide resistance // Cell Prolif. 2016. Vol. 49, No. 2. P. 195–206. DOI: 10.1111/cpr.12241 |
| [173] |
Afghani N, Mehta T, Wang J, et al. Microtubule actin cross-linking factor 1, a novel target in glioblastoma. Int J Oncol. 2017;50(1):310–316. DOI: 10.3892/ijo.2016.3798 |
| [174] |
Afghani N., Mehta T., Wang J. et al. Microtubule actin cross-linking factor 1, a novel target in glioblastoma // Int. J. Oncol. 2017. Vol. 50, No. 1. P. 310–316. DOI: 10.3892/ijo.2016.3798 |
| [175] |
Guerrero PA, Yin W, Camacho L, et al. Oncogenic role of Merlin/NF2 in glioblastoma. Oncogene. 2015;34(20):2621–2630. DOI: 10.1038/onc.2014.185 |
| [176] |
Guerrero P.A., Yin W., Camacho L. et al. Oncogenic role of Merlin/NF2 in glioblastoma // Oncogene. 2015. Vol. 34, No. 20. P. 2621–2630. DOI: 10.1038/onc.2014.185 |
| [177] |
Xie Z, Janczyk PŁ, Zhang Y, et al. A cytoskeleton regulator AVIL drives tumorigenesis in glioblastoma. Nat Commun. 2020;11:3457. DOI: 10.1038/s41467-020-17279-1 |
| [178] |
Xie Z., Janczyk P.Ł., Zhang Y. et al. A cytoskeleton regulator AVIL drives tumorigenesis in glioblastoma // Nat. Commun. 2020. Vol. 11. P. 3457. DOI: 10.1038/s41467-020-17279-1 |
| [179] |
Noh H, Yan J, Hong S, et al. Discovery of cell surface vimentin targeting mAb for direct disruption of GBM tumor initiating cells. Oncotarget. 2016;7(44):72021–72032. DOI: 10.18632/oncotarget.12458 |
| [180] |
Noh H., Yan J., Hong S. et al. Discovery of cell surface vimentin targeting mAb for direct disruption of GBM tumor initiating cells // Oncotarget. 2016. Vol. 7, No. 44. P. 72021–72032. DOI: 10.18632/oncotarget.12458 |
| [181] |
Zhao J, Zhang L, Dong X, et al. High expression of vimentin is associated with progression and a poor outcome in glioblastoma. Appl Immunohistochem Mol Morphol. 2018;26(5):337–344. DOI: 10.1097/PAI.0000000000000420 |
| [182] |
Zhao J., Zhang L., Dong X. et al. High expression of vimentin is associated with progression and a poor outcome in glioblastoma // Appl. Immunohistochem. Mol. Morphol. 2018. Vol. 26, No. 5. P. 337–344. DOI: 10.1097/PAI.0000000000000420 |
| [183] |
Satelli A, Li S. Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell Mol Life Sci. 2011;68(18):3033–3046. DOI: 10.1007/s00018-011-0735-1 |
| [184] |
Satelli A., Li S. Vimentin in cancer and its potential as a molecular target for cancer therapy// Cell. Mol. Life Sci. 2011. Vol. 68, No. 18. P. 3033–3046. DOI: 10.1007/s00018-011-0735-1 |
| [185] |
Zottel A, Jovčevska I, Šamec N, Komel R. Cytoskeletal proteins as glioblastoma biomarkers and targets for therapy: A systematic review. Crit Rev Oncol Hematol. 2021;160:103283. DOI: 10.1016/j.critrevonc.2021.103283 |
| [186] |
Zottel A., Jovčevska I., Šamec N., Komel R. Cytoskeletal proteins as glioblastoma biomarkers and targets for therapy: A systematic review // Crit. Rev. Oncol. Hematol. 2021. Vol. 160. P. 103283. DOI: 10.1016/j.critrevonc.2021.103283 |
| [187] |
Ahir BK, Engelhard HH, Lakka SS. Tumor development and angiogenesis in adult brain tumor: glioblastoma. Mol Neurobiol. 2020;57:2461–2478. DOI: 10.1007/s12035-020-01892-8 |
| [188] |
Ahir B.K., Engelhard H.H., Lakka S.S. Tumor development and angiogenesis in adult brain tumor: glioblastoma // Mol. Neurobiol. 2020. Vol. 57. P. 2461–2478. DOI: 10.1007/s12035-020-01892-8 |
| [189] |
Carmeliet P, Jain RK. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov. 2011;10(6):417–427. DOI: 10.1038/nrd3455 |
| [190] |
Carmeliet P., Jain R.K. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases // Nat. Rev. Drug Discov. 2011. Vol. 10, No. 6. P. 417–427. DOI: 10.1038/nrd3455 |
| [191] |
Loureiro LVM, Neder L, Callegaro-Filho D, et al. The immunohistochemical landscape of the VEGF family and its receptors in glioblastomas. Surg Exp Pathol. 2020;3:9. DOI: 10.1186/s42047-020-00060-5 |
| [192] |
Loureiro L.V.M., Neder L., Callegaro-Filho D. et al. The immunohistochemical landscape of the VEGF family and its receptors in glioblastomas // Surg. Exp. Pathol. 2020. Vol. 3. P. 9. DOI: 10.1186/s42047-020-00060-5 |
| [193] |
Arif SH, Pandith AA, Tabasum R, et al. Significant effect of anti-tyrosine Kinase Inhibitor (Gefitinib) on overall survival of the glioblastoma multiforme patients in the backdrop of mutational status of epidermal growth factor receptor and PTEN Genes. Asian J Neurosurg. 2018;13(1):46–52. DOI: 10.4103/ajns.AJNS_95_17 |
| [194] |
Arif S.H., Pandith A.A., Tabasum R. et al. Significant effect of anti-tyrosine Kinase Inhibitor (Gefitinib) on overall survival of the glioblastoma multiforme patients in the backdrop of mutational status of epidermal growth factor receptor and PTEN Genes // Asian J. Neurosurg. 2018. Vol. 13, No. 1. P. 46–52. DOI: 10.4103/ajns.AJNS_95_17 |
| [195] |
Krishnan S, Szabo E, Burghardt I, et al. Modulation of cerebral endothelial cell function by TGF-β in glioblastoma: VEGF-dependent angiogenesis versus endothelial mesenchymal transition. Oncotarget. 2015;6(26):22480–22495. DOI: 10.18632/oncotarget.4310 |
| [196] |
Krishnan S., Szabo E., Burghardt I. et al. Modulation of cerebral endothelial cell function by TGF-β in glioblastoma: VEGF-dependent angiogenesis versus endothelial mesenchymal transition // Oncotarget. 2015. Vol. 6, No. 26. P. 22480–22495. DOI: 10.18632/oncotarget.4310 |
| [197] |
Ichikawa K, Watanabe Miyano S, Minoshima Y, et al. Activated FGF2 signaling pathway in tumor vasculature is essential for acquired resistance to anti-VEGF therapy. Sci Rep. 2020;10:2939. DOI: 10.1038/s41598-020-59853-z |
| [198] |
Ichikawa K., Watanabe Miyano S., Minoshima Y. et al. Activated FGF2 signaling pathway in tumor vasculature is essential for acquired resistance to anti-VEGF therapy // Sci. Rep. 2020. Vol. 10. P. 2939. DOI: 10.1038/s41598-020-59853-z |
| [199] |
Goldman CK, Kim J, Wong WL, et al. Epidermal growth factor stimulates vascular endothelial growth factor production by human malignant glioma cells: a model of glioblastoma multiforme pathophysiology. Mol Biol Cell. 1993;4(1):121–133. DOI: 10.1091/mbc.4.1.121 |
| [200] |
Goldman C.K., Kim J., Wong W.L. et al. Epidermal growth factor stimulates vascular endothelial growth factor production by human malignant glioma cells: a model of glioblastoma multiforme pathophysiology // Mol. Biol. Cell. 1993. Vol. 4, No. 1. P. 121–133. DOI: 10.1091/mbc.4.1.121 |
| [201] |
Krishnan S, Szabo E, Burghardt I, et al. Modulation of cerebral endothelial cell function by TGF-β in glioblastoma: VEGF-dependent angiogenesis versus endothelial mesenchymal transition. Oncotarget. 2015. Vol. 6, No. 26. P. 22480–22495. DOI: 10.18632/oncotarget.4310 |
| [202] |
Krishnan S., Szabo E., Burghardt I. et al. Modulation of cerebral endothelial cell function by TGF-β in glioblastoma: VEGF-dependent angiogenesis versus endothelial mesenchymal transition // Oncotarget. 2015. Vol. 6, No. 26. P. 22480–22495. DOI: 10.18632/oncotarget.4310 |
| [203] |
Kessler T, Sahm F, Blaes J, et al. Glioma cell VEGFR-2 confers resistance to chemotherapeutic and antiangiogenic treatments in PTEN-deficient glioblastoma. Oncotarget. 2015;6(31):31050–31068. DOI: 10.18632/oncotarget.2910 |
| [204] |
Kessler T., Sahm F., Blaes J. et al. Glioma cell VEGFR-2 confers resistance to chemotherapeutic and antiangiogenic treatments in PTEN-deficient glioblastoma // Oncotarget. 2015. Vol. 6, No. 31. P. 31050–31068. DOI: 10.18632/oncotarget.2910 |
| [205] |
Serban F, Daianu O, Tataranu LG, et al. Silencing of epidermal growth factor, latrophilin and seven transmembrane domain-containing protein 1 (ELTD1) via siRNA-induced cell death in glioblastoma. J Immunoassay Immunochem. 2017;38(1):21–33. DOI: 10.1080/15321819.2016.1209217 |
| [206] |
Serban F., Daianu O., Tataranu L.G. et al. Silencing of epidermal growth factor, latrophilin and seven transmembrane domain-containing protein 1 (ELTD1) via siRNA-induced cell death in glioblastoma // J. Immunoassay Immunochem. 2017. Vol. 38, No. 1. P. 21–33. DOI: 10.1080/15321819.2016.1209217 |
| [207] |
Yuan G, Yan S, Xue H, et al. JSI-124 suppresses invasion and angiogenesis of glioblastoma cells in vitro. PLoS One. 2015;10(3):e0118894. DOI: 10.1371/journal.pone.0118894 |
| [208] |
Yuan G., Yan S., Xue H. et al. JSI-124 suppresses invasion and angiogenesis of glioblastoma cells in vitro // PLoS One. 2015. Vol. 10, No. 3. P. e0118894. DOI: 10.1371/journal.pone.0118894 |
| [209] |
Chang N, Ahn SH, Kong DS, et al. The role of STAT3 in glioblastoma progression through dual influences on tumor cells and the immune microenvironment. Mol Cell Endocrinol. 2017;451:53–65. DOI: 10.1016/j.mce.2017.01.004 |
| [210] |
Chang N., Ahn S.H., Kong D.S. et al. The role of STAT3 in glioblastoma progression through dual influences on tumor cells and the immune microenvironment // Mol. Cell. Endocrinol. 2017. Vol. 451. P. 53–65. DOI: 10.1016/j.mce.2017.01.004 |
| [211] |
Li JL, Sainson RC, Oon CE, et al. DLL4-Notch signaling mediates tumor resistance to anti-VEGF therapy in vivo. Cancer Res. 2011;71(18):6073–6083. DOI: 10.1158/0008-5472.CAN-11-1704 |
| [212] |
Li J.L., Sainson R.C., Oon C.E. et al. DLL4-Notch signaling mediates tumor resistance to anti-VEGF therapy in vivo // Cancer Res. 2011. Vol. 71, No. 18. P. 6073–6083. DOI: 10.1158/0008-5472.CAN-11-1704 |
| [213] |
Hochart A, Leblond P, Le Bourhis X, et al. MET receptor inhibition: Hope against resistance to targeted therapies? Bull Cancer. 2017;104(2):157–166. (In French). DOI: 10.1016/j.bulcan.2016.10.014 |
| [214] |
Hochart A., Leblond P., Le Bourhis X. et al. MET receptor inhibition: Hope against resistance to targeted therapies? // Bull. Cancer. 2017. Vol. 104, No. 2. P. 157–166. (In French). DOI: 10.1016/j.bulcan.2016.10.014 |
| [215] |
Chen L, Feng P, Li S, et al. Effect of hypoxia-inducible factor-1α silencing on the sensitivity of human brain glioma cells to doxorubicin and etoposide. Neurochem Res. 2009;34(5):984–990. DOI: 10.1007/s11064-008-9864-9 |
| [216] |
Chen L., Feng P., Li S. et al. Effect of hypoxia-inducible factor-1α silencing on the sensitivity of human brain glioma cells to doxorubicin and etoposide // Neurochem. Res. 2009. Vol. 34, No. 5. P. 984–990. DOI: 10.1007/s11064-008-9864-9 |
| [217] |
Muh CR, Joshi S, Singh AR, et al. PTEN status mediates 2ME2 anti-tumor efficacy in preclinical glioblastoma models: role of HIF1α suppression. J Neurooncol. 2014;116(1):89–97. DOI: 10.1007/s11060-013-1283-3 |
| [218] |
Muh C.R., Joshi S., Singh A.R. et al. PTEN status mediates 2ME2 anti-tumor efficacy in preclinical glioblastoma models: role of HIF1α suppression // J. Neurooncol. 2014. Vol. 116, No. 1. P. 89–97. DOI: 10.1007/s11060-013-1283-3 |
| [219] |
Jimenez-Pascual A, Siebzehnrubl FA. Fibroblast growth factor receptor functions in glioblastoma. Cells. 2019;8(7):715. DOI: 10.3390/cells8070715 |
| [220] |
Jimenez-Pascual A., Siebzehnrubl F.A. Fibroblast growth factor receptor functions in glioblastoma // Cells. 2019. Vol. 8, No. 7. P. 715. DOI: 10.3390/cells8070715 |
| [221] |
Hierro C, Rodon J, Tabernero J. Fibroblast growth factor (FGF) receptor/FGF inhibitors: novel targets and strategies for optimization of response of solid tumors. Semin Oncol. 2015;42(6):801–819. DOI: 10.1053/j.seminoncol.2015.09.027 |
| [222] |
Hierro C., Rodon J., Tabernero J. Fibroblast growth factor (FGF) receptor/FGF inhibitors: novel targets and strategies for optimization of response of solid tumors // Semin. Oncol. 2015. Vol. 42, No. 6. P. 801–819. DOI: 10.1053/j.seminoncol.2015.09.027 |
| [223] |
Hsieh A, Ellsworth R, Hsieh D. Hedgehog/GLI1 regulates IGF dependent malignant behaviors in glioma stem cells. J Cell Physiol. 2011;226(4):1118–1127. DOI: 10.1002/jcp.22433 |
| [224] |
Hsieh A., Ellsworth R., Hsieh D. Hedgehog/GLI1 regulates IGF dependent malignant behaviors in glioma stem cells // J. Cell. Physiol. 2011. Vol. 226, No. 4. P. 1118–1127. DOI: 10.1002/jcp.22433 |
| [225] |
Cherepanov SA, Baklaushev VP, Gabashvili AN, et al. Hedgehog signaling in the pathogenesis of neuro-oncology diseases. Biomed. Khim. 2015;61(3):332–342. (In Russ.). DOI: 10.18097/PBMC20156103332 |
| [226] |
Cherepanov S.A., Baklaushev V.P., Gabashvili A.N. et al. Hedgehog signaling in the pathogenesis of neuro-oncology diseases // Biomed. Khim. 2015. Vol. 61, No. 3. P. 332–342. (In Russ.). DOI: 10.18097/PBMC20156103332 |
| [227] |
Tirrò E, Massimino M, Romano C, et al. Prognostic and therapeutic roles of the insulin growth factor system in glioblastoma. Front Oncol. 2021;10:612385. DOI: 10.3389/fonc.2020.612385 |
| [228] |
Tirrò E., Massimino M., Romano C. et al. Prognostic and therapeutic roles of the insulin growth factor system in glioblastoma // Front. Oncol. 2021. Vol. 10. P. 612385. DOI: 10.3389/fonc.2020.612385 |
| [229] |
Martin V, Xu J, Pabbisetty SK, et al. Tie2-mediated multidrug resistance in malignant gliomas is associated with upregulation of ABC transporters. Oncogene. 2009;28(24):2358–2363. DOI: 10.1038/onc.2009.103 |
| [230] |
Martin V., Xu J., Pabbisetty S.K. et al. Tie2-mediated multidrug resistance in malignant gliomas is associated with upregulation of ABC transporters // Oncogene. 2009. Vol. 28, No. 24. P. 2358–2363. DOI: 10.1038/onc.2009.103 |
| [231] |
di Tomaso E, Snuderl M, Kamoun WS, et al. Glioblastoma recurrence after cediranib therapy in patients: lack of “rebound” revascularization as mode of escape. Cancer Res. 2011;71(1):19–28. DOI: 10.1158/0008-5472.CAN-10-2602 |
| [232] |
Di Tomaso E., Snuderl M., Kamoun W.S. et al. Glioblastoma recurrence after cediranib therapy in patients: lack of “rebound” revascularization as mode of escape // Cancer Res. 2011. Vol. 71, No. 1. P. 19–28. DOI: 10.1158/0008-5472.CAN-10-2602 |
| [233] |
Ma Y, Yuan R-Q, Fan S, et al. Identification of genes that modulate sensitivity of U373MG glioblastoma cells to cis-platinum. Anticancer Drugs. 2006;17(7):733–751. DOI: 10.1097/01.cad.0000217429.67455.18 |
| [234] |
Ma Y., Yuan R.-Q., Fan S. et al. Identification of genes that modulate sensitivity of U373MG glioblastoma cells to cis-platinum // Anticancer Drugs. 2006. Vol. 17, No. 7. P. 733–751. DOI: 10.1097/01.cad.0000217429.67455.18 |
| [235] |
Yadav VN, Zamler D, Baker GJ, et al. CXCR4 increases in-vivo glioma perivascular invasion, and reduces radiation induced apoptosis: A genetic knockdown study. Oncotarget. 2016;7:83701–83719. DOI: 10.18632/oncotarget.13295 |
| [236] |
Yadav V.N., Zamler D., Baker G.J. et al. CXCR4 increases in-vivo glioma perivascular invasion, and reduces radiation induced apoptosis: A genetic knockdown study // Oncotarget. 2016. Vol. 7. P. 83701–83719. DOI: 10.18632/oncotarget.13295 |
| [237] |
Gatti M, Pattarozzi A, Bajetto A, et al. Inhibition of CXCL12/CXCR4 autocrine/paracrine loop reduces viability of human glioblastoma stem-like cells affecting self-renewal activity. Toxicology. 2013;314(2-3):209–220. DOI: 10.1016/j.tox.2013.10.003 |
| [238] |
Gatti M., Pattarozzi A., Bajetto A. et al. Inhibition of CXCL12/CXCR4 autocrine/paracrine loop reduces viability of human glioblastoma stem-like cells affecting self-renewal activity // Toxicology. 2013. Vol. 314, No. 2–3. P. 209–220. DOI: 10.1016/j.tox.2013.10.003 |
| [239] |
Yin D, Chen W, O’Kelly J, et al. Connective tissue growth factor associated with oncogenic activities and drug resistance in glioblastoma multiforme. Int J Cancer. 2010;127(10):2257–2267. DOI: 10.1002/ijc.25257 |
| [240] |
Yin D., Chen W., O’Kelly J. et al. Connective tissue growth factor associated with oncogenic activities and drug resistance in glioblastoma multiforme // Int. J. Cancer. 2010. Vol. 127, No. 10. P. 2257–2267. DOI: 10.1002/ijc.25257 |
| [241] |
Dai D, Huang W, Lu Q, et al. miR-24 regulates angiogenesis in gliomas. Mol Med Rep. 2018;18(1):358–368. DOI: 10.3892/mmr.2018.8978 |
| [242] |
Dai D., Huang W., Lu Q. et al. miR-24 regulates angiogenesis in gliomas // Mol. Med. Rep. 2018. Vol. 18, No. 1. P. 358–368. DOI: 10.3892/mmr.2018.8978 |
| [243] |
Smits M, Wurdinger T, van het Hof B, et al. Myc-associated zinc finger protein (MAZ) is regulated by miR-125b and mediates VEGF-induced angiogenesis in glioblastoma. FASEB J. 2012;26(6):2639–2647. DOI: 10.1096/fj.11-202820 |
| [244] |
Smits M., Wurdinger T., van het Hof B. et al. Myc-associated zinc finger protein (MAZ) is regulated by miR-125b and mediates VEGF-induced angiogenesis in glioblastoma // FASEB J. 2012. Vol. 26, No. 6. P. 2639–2647. DOI: 10.1096/fj.11-202820 |
| [245] |
Wang Q, Xu B, Du J, et al. MicroRNA-139-5p/Flt1/Wnt/β-catenin regulatory crosstalk modulates the progression of glioma. Int J Mol Med. 2018;41(4):2139–2149. DOI: 10.3892/ijmm.2018.3439 |
| [246] |
Wang Q., Xu B., Du J. et al. MicroRNA-139-5p/Flt1/Wnt/β-catenin regulatory crosstalk modulates the progression of glioma // Int. J. Mol. Med. 2018. Vol. 41, No. 4. P. 2139–2149. DOI: 10.3892/ijmm.2018.3439 |
| [247] |
Duncan CG, Killela PJ, Payne CA, et al. Integrated genomic analyses identify ERRFI1 and TACC3 as glioblastoma-targeted genes. Oncotarget. 2010;1(4):265–277. DOI: 10.18632/oncotarget.137 |
| [248] |
Duncan C.G., Killela P.J., Payne C.A. et al. Integrated genomic analyses identify ERRFI1 and TACC3 as glioblastoma-targeted genes // Oncotarget. 2010. Vol. 1, No. 4. P. 265–277. DOI: 10.18632/oncotarget.137 |
| [249] |
Wang L, Shi Z-M, Jiang C-F, et al. MiR-143 acts as a tumor suppressor by targeting N-RAS and enhances temozolomide-induced apoptosis in glioma. Oncotarget. 2014;5:5416. DOI: 10.18632/oncotarget.2116 |
| [250] |
Wang L., Shi Z.-M., Jiang C.-F. et al. MiR-143 acts as a tumor suppressor by targeting N-RAS and enhances temozolomide-induced apoptosis in glioma // Oncotarget. 2014. Vol. 5. P. 5416. DOI: 10.18632/oncotarget.2116 |
| [251] |
Chen K-C, Chen P-H, Ho K-H, et al. IGF-1-enhanced miR-513a-5p signaling desensitizes glioma cells to temozolomide by targeting the NEDD4L-inhibited Wnt/β-catenin pathway. PLoS One. 2019;14(12):e0225913. DOI: 10.1371/journal.pone.0225913 |
| [252] |
Chen K.-C., Chen P.-H., Ho K.-H. et al. IGF-1-enhanced miR-513a-5p signaling desensitizes glioma cells to temozolomide by targeting the NEDD4L-inhibited Wnt/β-catenin pathway // PLoS One. 2019. Vol. 14, No. 12. P. e0225913. DOI: 10.1371/journal.pone.0225913 |
| [253] |
Zeng A, Yin J, Li Y, et al. miR-129-5p targets Wnt5a to block PKC/ERK/NF-κB and JNK pathways in glioblastoma. Cell Death Dis. 2018;9(3):394. DOI: 10.1038/s41419-018-0343-1 |
| [254] |
Zeng A., Yin J., Li Y. et al. miR-129-5p targets Wnt5a to block PKC/ERK/NF-κB and JNK pathways in glioblastoma // Cell Death Dis. 2018. Vol. 9, No. 3. P. 394. DOI: 10.1038/s41419-018-0343-1 |
| [255] |
Balandeh E, Mohammadshafie K, Mahmoudi Y, et al. Roles of non-coding RNAs and angiogenesis in glioblastoma. Front Cell Dev Biol. 2021;9:716462. DOI: 10.3389/fcell.2021.716462 |
| [256] |
Balandeh E., Mohammadshafie K., Mahmoudi Y. et al. Roles of non-coding RNAs and angiogenesis in glioblastoma // Front. Cell Dev. Biol. 2021. Vol. 9. P. 716462. DOI: 10.3389/fcell.2021.716462 |
| [257] |
Mathew LK, Huangyang P, Mucaj V, et al. Feedback circuitry between miR-218 repression and RTK activation in glioblastoma. Sci Signal. 2015;8(375):ra42. DOI: 10.1126/scisignal.2005978 |
| [258] |
Mathew L.K., Huangyang P., Mucaj V. et al. Feedback circuitry between miR-218 repression and RTK activation in glioblastoma // Sci. Signal. 2015. Vol. 8, No. 375. P. ra42. DOI: 10.1126/scisignal.2005978 |
| [259] |
Smits M, Nilsson J, Mir SE, et al. miR-101 is down-regulated in glioblastoma resulting in EZH2-induced proliferation, migration, and angiogenesis. Oncotarget. 2010;1(8):710–720. DOI: 10.18632/oncotarget.205 |
| [260] |
Smits M., Nilsson J., Mir S.E. et al. miR-101 is down-regulated in glioblastoma resulting in EZH2-induced proliferation, migration, and angiogenesis // Oncotarget. 2010. Vol. 1, No. 8. P. 710–720. DOI: 10.18632/oncotarget.205 |
| [261] |
Sun J, Zheng G, Gu Z, Guo Z. MiR-137 inhibits proliferation and angiogenesis of human glioblastoma cells by targeting EZH2. J Neurooncol. 2015;122:481–489. DOI: 10.1007/s11060-015-1753-x |
| [262] |
Sun J., Zheng G., Gu Z., Guo Z. MiR-137 inhibits proliferation and angiogenesis of human glioblastoma cells by targeting EZH2 // J. Neurooncol. 2015. Vol. 122. P. 481–489. DOI: 10.1007/s11060-015-1753-x |
| [263] |
Zhang J, Chen L, Han L, et al. EZH2 is a negative prognostic factor and exhibits pro-oncogenic activity in glioblastoma. Cancer Lett. 2015;356(2PtB):929–936. DOI: 10.1016/j.canlet.2014.11.003 |
| [264] |
Zhang J., Chen L., Han L. et al. EZH2 is a negative prognostic factor and exhibits pro-oncogenic activity in glioblastoma // Cancer Lett. 2015. Vol. 356, No. 2PtB. P. 929–936. DOI: 10.1016/j.canlet.2014.11.003 |
| [265] |
Tian J-H, Mu L-J, Wang M-Y, et al. FOXM1-dependent transcriptional regulation of EZH2 induces proliferation and progression in prostate cancer. Anticancer Agents Med Chem. 2021;21(14):1835–1841. DOI: 10.2174/1871520620666200731161810 |
| [266] |
Tian J.-H., Mu L.-J., Wang M.-Y. et al. FOXM1-dependent transcriptional regulation of EZH2 induces proliferation and progression in prostate cancer // Anticancer Agents Med. Chem. 2021. Vol. 21, No. 14. P. 1835–1841. DOI: 10.2174/1871520620666200731161810 |
| [267] |
Gouazé-Andersson V, Ghérardi M-J, Lemarié A, et al. FGFR1/FOXM1 pathway: a key regulator of glioblastoma stem cells radioresistance and a prognosis biomarker. Oncotarget. 2018;9:31637–31649. DOI: 10.18632/oncotarget.25827 |
| [268] |
Gouazé-Andersson V., Ghérardi M.-J., Lemarié A. et al. FGFR1/FOXM1 pathway: a key regulator of glioblastoma stem cells radioresistance and a prognosis biomarker // Oncotarget. 2018. Vol. 9. P. 31637–31649. DOI: 10.18632/oncotarget.25827 |
| [269] |
Zaman N, Dass SS, Parcq P, et al. The KDR (VEGFR-2) genetic polymorphism Q472H and c-KIT polymorphism M541L are associated with more aggressive behaviour in astrocytic gliomas. Cancer Genomics Proteomics. 2020;17(6):715–727. DOI: 10.21873/cgp.20226 |
| [270] |
Zaman N., Dass S.S., Parcq P. et al. The KDR (VEGFR-2) genetic polymorphism Q472H and c-KIT polymorphism M541L are associated with more aggressive behaviour in astrocytic gliomas // Cancer Genomics Proteomics. 2020. Vol. 17, No. 6. P. 715–727. DOI: 10.21873/cgp.20226 |
| [271] |
Yu X, Sun NR, Jang HT, et al. Associations between EGFR gene polymorphisms and susceptibility to glioma: a systematic review and meta-analysis from GWAS and case-control studies. Oncotarget. 2017;8(49):86877–86885. DOI: 10.18632/oncotarget.21011 |
| [272] |
Yu X., Sun N.R., Jang H.T. et al. Associations between EGFR gene polymorphisms and susceptibility to glioma: a systematic review and meta-analysis from GWAS and case-control studies // Oncotarget. 2017. Vol. 8, No. 49. P. 86877–86885. DOI: 10.18632/oncotarget.21011 |
| [273] |
Zhao Y, Wang H, He C. Drug resistance of targeted therapy for advanced non-small cell lung cancer harbored EGFR mutation. From mechanism analysis to clinical strategy. J Cancer Res Clin Oncol. 2021;147(12):3653–3664. DOI: 10.1007/s00432-021-03828-8 |
| [274] |
Zhao Y., Wang H., He C. Drug resistance of targeted therapy for advanced non-small cell lung cancer harbored EGFR mutation. From mechanism analysis to clinical strategy // J. Cancer Res. Clin. Oncol. 2021. Vol. 147, No. 12. P. 3653–3664. DOI: 10.1007/s00432-021-03828-8 |
| [275] |
Saleem H, Kulsoom Abdul U, Küçükosmanoglu A, et al. The TICking clock of EGFR therapy resistance in glioblastoma: target independence or target compensation. Drug Resist Updat. 2019;43:29–37. DOI: 10.1016/j.drup.2019.04.002 |
| [276] |
Saleem H., Kulsoom Abdul U., Küçükosmanoglu A. et al. The TICking clock of EGFR therapy resistance in glioblastoma: target independence or target compensation // Drug Resist. Updat. 2019. Vol. 43. P. 29–37. DOI: 10.1016/j.drup.2019.04.002 |
| [277] |
Ma Y, Tang N, Thompson RC. InsR/IGF1R pathway mediates resistance to EGFR inhibitors in glioblastoma. Clin Cancer Res. 2016;22:1767–1776. DOI: 10.1158/1078-0432.CCR-15-1677 |
| [278] |
Ma Y., Tang N., Thompson R.C. InsR/IGF1R pathway mediates resistance to EGFR inhibitors in glioblastoma // Clin. Cancer Res. 2016. Vol. 22. P. 1767–1776. DOI: 10.1158/1078-0432.CCR-15-1677 |
| [279] |
Akhavan D, Pourzia AL, Nourian AA, et al. De-repression of PDGFRβ transcription promotes acquired resistance to EGFR tyrosine kinase inhibitors in glioblastoma patients. Cancer Discov. 2013;3(5):534–547. DOI: 10.1158/2159-8290.CD-12-0502 |
| [280] |
Akhavan D., Pourzia A.L., Nourian A.A. et al. De-repression of PDGFRβ transcription promotes acquired resistance to EGFR tyrosine kinase inhibitors in glioblastoma patients // Cancer Discov. 2013. Vol. 3, No. 5. P. 534–547. DOI: 10.1158/2159-8290.CD-12-0502 |
| [281] |
Song K, Yuan Y, Lin Y, et al. ERBB3, IGF1R, and TGFBR2 expression correlate with PDGFR expression in glioblastoma and participate in PDGFR inhibitor resistance of glioblastoma cells. Am J Cancer Res. 2018;8(5):792–809. |
| [282] |
Song K., Yuan Y., Lin Y. et al. ERBB3, IGF1R, and TGFBR2 expression correlate with PDGFR expression in glioblastoma and participate in PDGFR inhibitor resistance of glioblastoma cells // Am. J. Cancer Res. 2018. Vol. 8, No. 5. P. 792–809. |
| [283] |
Almiron Bonnin DA, Ran C, Havrda MC. Insulin-mediated signaling facilitates resistance to PDGFR inhibition in proneural hPDGFB-driven gliomas. Mol Cancer Ther. 2017;16:705–716. DOI: 10.1158/1535-7163.MCT-16-0616 |
| [284] |
Almiron Bonnin D.A., Ran C., Havrda M.C. Insulin-mediated signaling facilitates resistance to PDGFR inhibition in proneural hPDGFB-driven gliomas // Mol. Cancer Ther. 2017. Vol. 16. P. 705–716. DOI: 10.1158/1535-7163.MCT-16-0616 |
| [285] |
Pullen NA, Pickford AR, Perry MM, et al. Current insights into matrix metalloproteinases and glioma progression: transcending the degradation boundary. Metalloproteinases In Medicine. 2018;2018(5):13–30. DOI: 10.2147/MNM.S105123 |
| [286] |
Pullen N.A., Pickford A.R., Perry M.M. et al. Current insights into matrix metalloproteinases and glioma progression: transcending the degradation boundary // Metalloproteinases in Medicine. 2018. Vol. 2018, No. 5. P. 13–30. DOI: 10.2147/MNM.S105123 |
| [287] |
Xu S, Xu H, Wang W, et al. The role of collagen in cancer: from bench to bedside. J Transl Med. 2019;17:309. DOI: 10.1186/s12967-019-2058-1 |
| [288] |
Xu S., Xu H., Wang W. et al. The role of collagen in cancer: from bench to bedside // J. Transl. Med. 2019. Vol. 17. P. 309. DOI: 10.1186/s12967-019-2058-1 |
| [289] |
Mooney KL, Choy W, Sidhu S, et al. The role of CD44 in glioblastoma multiforme. J Clin Neurosci. 2016;34:1–5. DOI: 10.1016/j.jocn.2016.05.012 |
| [290] |
Mooney K.L., Choy W., Sidhu S. et al. The role of CD44 in glioblastoma multiforme // J. Clin. Neurosci. 2016. Vol. 34. P. 1–5. DOI: 10.1016/j.jocn.2016.05.012 |
| [291] |
Urbantat RM, Blank A, Kremenetskaia I. The CXCL2/IL8/CXCR2 pathway is relevant for brain tumor malignancy and endothelial cell function. Int J Mol Sci. 2021;22(5):2634. DOI: 10.3390/ijms22052634 |
| [292] |
Urbantat R.M., Blank A., Kremenetskaia I. The CXCL2/IL8/CXCR2 pathway is relevant for brain tumor malignancy and endothelial cell function // Int. J. Mol. Sci. 2021. Vol. 22, No. 5. P. 2634. DOI: 10.3390/ijms22052634 |
| [293] |
Bordji K, Grandval A, Cuhna-Alves L, et al. Hypoxia-inducible factor-2α (HIF-2α), but not HIF-1α, is essential for hypoxic induction of class III β-tubulin expression in human glioblastoma cells. FEBS J. 2014;281(23):5220–5236. DOI: 10.1111/febs.13062 |
| [294] |
Bordji K., Grandval A., Cuhna-Alves L. et al. Hypoxia-inducible factor-2α (HIF-2α), but not HIF-1α, is essential for hypoxic induction of class III β-tubulin expression in human glioblastoma cells // FEBS J. 2014. Vol. 281, No. 23. P. 5220–5236. DOI: 10.1111/febs.13062 |
| [295] |
Chou CW, Wang CC, Wu CP, et al. Tumor cycling hypoxia induces chemoresistance in glioblastoma multiforme by upregulating the expression and function of ABCB1. Neurooncol. 2012;14(10):1227–1238. DOI: 10.1093/neuonc/nos195 |
| [296] |
Chou C.W., Wang C.C., Wu C.P. et al. Tumor cycling hypoxia induces chemoresistance in glioblastoma multiforme by upregulating the expression and function of ABCB1 // Neurooncol. 2012. Vol. 14, No. 10. P. 1227–1238. DOI: 10.1093/neuonc/nos195 |
| [297] |
Zhang L, Yang H, Zhang W, et al. Clk1 -regulated aerobic glycolysis is involved in gliomas chemoresistance. J Neurochem. 2017;142(4):574–588. DOI: 10.1111/jnc.14096 |
| [298] |
Zhang L., Yang H., Zhang W. et al. Clk1 -regulated aerobic glycolysis is involved in gliomas chemoresistance // J. Neurochem. 2017. Vol. 142, No. 4. P. 574–588. DOI: 10.1111/jnc.14096 |
| [299] |
Kang W, Kim SH, Cho HJ, et al. Talin1 targeting potentiates anti-angiogenic therapy by attenuating invasion and stem-like features of glioblastoma multiforme. Oncotarget. 2015;6(29):27239–27251. DOI: 10.18632/oncotarget.4835 |
| [300] |
Kang W., Kim S.H., Cho H.J. et al. Talin1 targeting potentiates anti-angiogenic therapy by attenuating invasion and stem-like features of glioblastoma multiforme // Oncotarget. 2015. Vol. 6, No. 29. P. 27239–27251. DOI: 10.18632/oncotarget.4835 |
| [301] |
Matini AH, Naeini MM, Kashani HH, et al. Evaluation of Nestin and EGFR in patients with glioblastoma multiforme in a public hospital in Iran. Asian Pac J Cancer Prev. 2020;21(10):2889–2894. DOI: 10.31557/APJCP.2020.21.10.2889 |
| [302] |
Matini A.H., Naeini M.M., Kashani H.H. et al. Evaluation of Nestin and EGFR in patients with glioblastoma multiforme in a public hospital in Iran // Asian Pac. J. Cancer Prev. 2020. Vol. 21, No. 10. P. 2889–2894. DOI: 10.31557/APJCP.2020.21.10.2889 |
| [303] |
Ahmed EM, Bandopadhyay G, Coyle B, Grabowska A. A HIF-independent, CD133-mediated mechanism of cisplatin resistance in glioblastoma cells. Cell Oncol (Dordr). 2018;41(3):319–328. DOI: 10.1007/s13402-018-0374-8 |
| [304] |
Ahmed E.M., Bandopadhyay G., Coyle B., Grabowska A. A HIF-independent, CD133-mediated mechanism of cisplatin resistance in glioblastoma cells // Cell Oncol. (Dordr). 2018. Vol. 41, No. 3. P. 319–328. DOI: 10.1007/s13402-018-0374-8 |
| [305] |
Suvasini R, Shruti B, Thota B, et al. Insulin growth factor-2 binding protein 3 (IGF2BP3) is a glioblastoma-specific marker that activates phosphatidylinositol 3-kinase/mitogen-activated protein kinase (PI3K/MAPK) pathways by modulating IGF-2. J Biol Chem. 2011;286(29):25882–25890. DOI: 10.1074/jbc.M110.178012 |
| [306] |
Suvasini R., Shruti B., Thota B. et al. Insulin growth factor-2 binding protein 3 (IGF2BP3) is a glioblastoma-specific marker that activates phosphatidylinositol 3-kinase/mitogen-activated protein kinase (PI3K/MAPK) pathways by modulating IGF-2 // J. Biol. Chem. 2011. Vol. 286, No. 29. P. 25882–25890. DOI: 10.1074/jbc.M110.178012 |
| [307] |
Womeldorff M, Gillespie D, Jensen RL. Hypoxia-inducible factor-1 and associated upstream and downstream proteins in the pathophysiology and management of glioblastoma. Neurosurg Focus. 2014;37(6):E8. DOI: 10.3171/2014.9.focus14496 |
| [308] |
Womeldorff M., Gillespie D., Jensen R.L. Hypoxia-inducible factor-1 and associated upstream and downstream proteins in the pathophysiology and management of glioblastoma // Neurosurg. Focus. 2014. Vol. 37, No. 6. P. E8. DOI: 10.3171/2014.9.focus14496 |
| [309] |
Chen X-C, Wei X-T, Guan J-H, et al. EGF stimulates glioblastoma metastasis by induction of matrix metalloproteinase-9 in an EGFR-dependent mechanism. Oncotarget. 2017;8(39):65969–65982. DOI: 10.18632/oncotarget.19622 |
| [310] |
Chen X.-C., Wei X.-T., Guan J.-H. et al. EGF stimulates glioblastoma metastasis by induction of matrix metalloproteinase-9 in an EGFR-dependent mechanism // Oncotarget. 2017. Vol. 8, No. 39. P. 65969–65982. DOI: 10.18632/oncotarget.19622 |
| [311] |
Rogers AE, Le JP, Sather S, et al. Mer receptor tyrosine kinase inhibition impedes glioblastoma multiforme migration and alters cellular morphology. Oncogene. 2012;31(38):4171–4181. DOI: 10.1038/onc.2011.588 |
| [312] |
Rogers A.E., Le J.P., Sather S. et al. Mer receptor tyrosine kinase inhibition impedes glioblastoma multiforme migration and alters cellular morphology // Oncogene. 2012. Vol. 31, No. 38. P. 4171–4181. DOI: 10.1038/onc.2011.588 |
| [313] |
Wang Y, Moncayo G, Morin P, et al. Mer receptor tyrosine kinase promotes invasion and survival in glioblastoma multiforme. Oncogene. 2013;32:872–882. DOI: 10.1038/onc.2012.104 |
| [314] |
Wang Y., Moncayo G., Morin P. et al. Mer receptor tyrosine kinase promotes invasion and survival in glioblastoma multiforme // Oncogene. 2013. Vol. 32. P. 872–882. DOI: 10.1038/onc.2012.104 |
| [315] |
Wislet S, Vandervelden G, Rogister B. From neural crest development to cancer and vice versa: How p75 NTR and (Pro)neurotrophins could act on cell migration and invasion? Front Mol Neurosci. 2018;11:244. DOI: 10.3389/fnmol.2018.00244 |
| [316] |
Wislet S., Vandervelden G., Rogister B. From neural crest development to cancer and vice versa: How p75 NTR and (Pro)neurotrophins could act on cell migration and invasion? // Front. Mol. Neurosci. 2018. Vol. 11. P. 244. DOI: 10.3389/fnmol.2018.00244 |
| [317] |
Yang W, Wu PF, Ma JX, et al. Sortilin promotes glioblastoma invasion and mesenchymal transition through GSK-3β/β-catenin/twist pathway. Cell Death Dis. 2019;10:208. DOI: 10.1038/s41419-019-1449-9 |
| [318] |
Yang W., Wu P.F., Ma J.X. et al. Sortilin promotes glioblastoma invasion and mesenchymal transition through GSK-3β/β-catenin/twist pathway // Cell Death Dis. 2019. Vol. 10. P. 208. DOI: 10.1038/s41419-019-1449-9 |
| [319] |
Brown MC, Staniszewska I, Lazarovici P, et al. Regulatory effect of nerve growth factor in α9β1 integrin–dependent progression of glioblastoma. Neuro Oncol. 2008;10(6):968–980. DOI: 10.1215/15228517-2008-047 |
| [320] |
Brown M.C., Staniszewska I., Lazarovici P. et al. Regulatory effect of nerve growth factor in α9β1 integrin–dependent progression of glioblastoma // Neuro. Oncol. 2008. Vol. 10, No. 6. P. 968–980. DOI: 10.1215/15228517-2008-047 |
| [321] |
Qi Q, He K, Liu X, et al. Disrupting the PIKE-A/Akt interaction inhibits glioblastoma cell survival, migration, invasion and colony formation. Oncogene. 2013;32(8):1030–1040. DOI: 10.1038/onc.2012.109 |
| [322] |
Qi Q., He K., Liu X. et al. Disrupting the PIKE-A/Akt interaction inhibits glioblastoma cell survival, migration, invasion and colony formation // Oncogene. 2013. Vol. 32, No. 8. P. 1030–1040. DOI: 10.1038/onc.2012.109 |
| [323] |
So J-S, Kim H, Han K-S. Mechanisms of invasion in glioblastoma: extracellular matrix, Ca2+ signaling, and glutamate. Front Cell Neurosci. 2021;15:663092. DOI: 10.3389/fncel.2021.663092 |
| [324] |
So J.-S., Kim H., Han K.-S. Mechanisms of invasion in glioblastoma: extracellular matrix, Ca2+ signaling, and glutamate // Front. Cell Neurosci. 2021. Vol. 15. P. 663092. DOI: 10.3389/fncel.2021.663092 |
| [325] |
Raychaudhuri B, Han Y, Lu T, et al. Aberrant constitutive activation of nuclear factor κB in glioblastoma multiforme drives invasive phenotype. J Neurooncol. 2007;85(1):39–47. DOI: 10.1007/s11060-007-9390-7 |
| [326] |
Raychaudhuri B., Han Y., Lu T. et al. Aberrant constitutive activation of nuclear factor κB in glioblastoma multiforme drives invasive phenotype // J. Neurooncol. 2007. Vol. 85, No. 1. P. 39–47. DOI: 10.1007/s11060-007-9390-7 |
| [327] |
Shan Q, Li S, Cao Q, et al. Inhibition of chromosomal region maintenance 1 suppresses the migration and invasion of glioma cells via inactivation of the STAT3/MMP2 signaling pathway. Korean J Physiol Pharmacol. 2020;24(3):193–201. DOI: 10.4196/kjpp.2020.24.3.193 |
| [328] |
Shan Q., Li S., Cao Q. et al. Inhibition of chromosomal region maintenance 1 suppresses the migration and invasion of glioma cells via inactivation of the STAT3/MMP2 signaling pathway // Korean J. Physiol. Pharmacol. 2020. Vol. 24, No. 3. P. 193–201. DOI: 10.4196/kjpp.2020.24.3.193 |
| [329] |
Brantley EC, Benveniste EN. Signal transducer and activator of transcription-3: a molecular hub for signaling pathways in gliomas. Mol Cancer Res. 2008;6(5):675–684. DOI: 10.1158/1541-7786.MCR-07-2180 |
| [330] |
Brantley E.C., Benveniste E.N. Signal transducer and activator of transcription-3: a molecular hub for signaling pathways in gliomas // Mol. Cancer Res. 2008. Vol. 6, No. 5. P. 675–684. DOI: 10.1158/1541-7786.MCR-07-2180 |
| [331] |
Cheng M, Zeng Y, Zhang T, et al. Transcription factor ELF1 activates MEIS1 transcription and then regulates the GFI1/FBW7 axis to promote the development of glioma. Mol Ther Nucleic Acids. 2020;23:418–430. DOI: 10.1016/j.omtn.2020.10.015 |
| [332] |
Cheng M., Zeng Y., Zhang T. et al. Transcription factor ELF1 activates MEIS1 transcription and then regulates the GFI1/FBW7 axis to promote the development of glioma // Mol. Ther. Nucleic. Acids. 2020. Vol. 23. P. 418–430. DOI: 10.1016/j.omtn.2020.10.015 |
| [333] |
Ma J, Wang P, Liu Y, et al. Krüppel-like factor 4 regulates blood-tumor barrier permeability via ZO-1, occludin and claudin-5. J Cell Physiol. 2014;229(7):916–926. DOI: 10.1002/jcp.24523 |
| [334] |
Ma J., Wang P., Liu Y. et al. Krüppel-like factor 4 regulates blood-tumor barrier permeability via ZO-1, occludin and claudin-5 // J. Cell. Physiol. 2014;229(7):916–926. DOI: 10.1002/jcp.24523 |
| [335] |
Chen H, Lu Q, Fei X, et al. miR-22 inhibits the proliferation, motility, and invasion of human glioblastoma cells by directly targeting SIRT1. Tumour Biol. 2016;37(5):6761–6768. DOI: 10.1007/s13277-015-4575-8 |
| [336] |
Chen H., Lu Q., Fei X. et al. miR-22 inhibits the proliferation, motility, and invasion of human glioblastoma cells by directly targeting SIRT1 // Tumour Biol. 2016. Vol. 37, No. 5. P. 6761–6768. DOI: 10.1007/s13277-015-4575-8 |
| [337] |
Chakrabarti M, Ray SK. Direct transfection of miR-137 mimics is more effective than DNA demethylation of miR-137 promoter to augment anti-tumor mechanisms of delphinidin in human glioblastoma U87MG and LN18 cells. Gene. 2015;573(1):141–152. DOI: 10.1016/j.gene.2015.07.034 |
| [338] |
Chakrabarti M., Ray S.K. Direct transfection of miR-137 mimics is more effective than DNA demethylation of miR-137 promoter to augment anti-tumor mechanisms of delphinidin in human glioblastoma U87MG and LN18 cells // Gene. 2015. Vol. 573, No. 1. P. 141–152. DOI: 10.1016/j.gene.2015.07.034 |
| [339] |
Lv S, Sun B, Dai C, et al. The downregulation of MicroRNA-146a modulates TGF-beta signaling pathways activity in glioblastoma. Mol Neurobiol. 2015;52(3):1257–1262. DOI: 10.1007/s12035-014-8938-8 |
| [340] |
Lv S., Sun B., Dai C. et al. The downregulation of MicroRNA-146a modulates TGF-beta signaling pathways activity in glioblastoma // Mol. Neurobiol. 2015. Vol. 52, No. 3. P. 1257–1262. DOI: 10.1007/s12035-014-8938-8 |
| [341] |
Katakowski M, Zheng X, Jiang F, et al. MiR-146b-5p suppresses EGFR expression and reduces in vitro migration and invasion of glioma. Cancer Invest. 2010;28(10):1024–1030. DOI: 10.3109/07357907.2010.512596 |
| [342] |
Katakowski M., Zheng X., Jiang F. et al. MiR-146b-5p suppresses EGFR expression and reduces in vitro migration and invasion of glioma // Cancer Invest. 2010. Vol. 28, No. 10. P. 1024–1030. DOI: 10.3109/07357907.2010.512596 |
| [343] |
Rao SA, Arimappamagan A, Pandey P, et al. miR-219-5p inhibits receptor tyrosine kinase pathway by targeting EGFR in glioblastoma. PLoS One. 2013;8(5):e63164. DOI: 10.1371/journal.pone.0063164 |
| [344] |
Rao S.A., Arimappamagan A., Pandey P. et al. miR-219-5p inhibits receptor tyrosine kinase pathway by targeting EGFR in glioblastoma // PLoS One. 2013. Vol. 8, No. 5. P. e63164. DOI: 10.1371/journal.pone.0063164 |
| [345] |
Gao Y, Yu H, Liu Y, et al. Long non-coding RNA HOXA-AS2 regulates malignant glioma behaviors and vasculogenic mimicry formation via the MiR-373/EGFR Axis. Cell Physiol Biochem. 2018;45(1):131–147. DOI: 10.1159/000486253 |
| [346] |
Gao Y., Yu H., Liu Y. et al. Long non-coding RNA HOXA-AS2 regulates malignant glioma behaviors and vasculogenic mimicry formation via the MiR-373/EGFR Axis. Cell. Physiol. Biochem. 2018;45(1):131–147. DOI: 10.1159/000486253 |
| [347] |
Zhou XY, Liu H, Ding ZB, et al. lncRNA SNHG16 promotes glioma tumorigenicity through miR-373/EGFR axis by activating PI3K/AKT pathway. Genomics. 2020;112(1):1021–1029. DOI: 10.1016/j.ygeno.2019.06.017 |
| [348] |
Zhou X.Y., Liu H., Ding Z.B. et al. lncRNA SNHG16 promotes glioma tumorigenicity through miR-373/EGFR axis by activating PI3K/AKT pathway // Genomics. 2020. Vol. 112, No. 1. P. 1021–1029. DOI: 10.1016/j.ygeno.2019.06.017 |
| [349] |
Pan DS, Cao P, Li JJ, et al. MicroRNA-374b inhibits migration and invasion of glioma cells by targeting EGFR. Eur Rev Med Pharmacol Sci. 2019;23(10):4254–4263. DOI: 10.26355/eurrev_201905_17930 |
| [350] |
Pan D.S., Cao P., Li J.J. et al. MicroRNA-374b inhibits migration and invasion of glioma cells by targeting EGFR // Eur. Rev. Med. Pharmacol. Sci. 2019. Vol. 23, No. 10. P. 4254–4263. DOI: 10.26355/eurrev_201905_17930 |
| [351] |
Li X, Liu Y, Granberg KJ, et al. Two mature products of MIR-491 coordinate to suppress key cancer hallmarks in glioblastoma. Oncogene. 2015;34(13):1619–1628. DOI: 10.1038/onc.2014.98 |
| [352] |
Li X., Liu Y., Granberg K.J. et al. Two mature products of MIR-491 coordinate to suppress key cancer hallmarks in glioblastoma // Oncogene. 2015. Vol. 34, No. 13. P. 1619–1628. DOI: 10.1038/onc.2014.98 |
| [353] |
Jiang C, Shen F, Du J, et al. MicroRNA-564 is downregulated in glioblastoma and inhibited proliferation and invasion of glioblastoma cells by targeting TGF-beta1. Oncotarget. 2016;7(35):56200–56208. DOI: 10.18632/oncotarget.8987 |
| [354] |
Jiang C., Shen F., Du J. et al. MicroRNA-564 is downregulated in glioblastoma and inhibited proliferation and invasion of glioblastoma cells by targeting TGF-beta1 // Oncotarget. 2016. Vol. 7, No. 35. P. 56200–56208. DOI: 10.18632/oncotarget.8987 |
| [355] |
Ji Y, Sun Q, Zhang J, Hu H. MiR-615 inhibits cell proliferation, migration and invasion by targeting EGFR in human glioblastoma. Biochem Biophys Res Commun. 2018;499(3):719–726. DOI: 10.1016/j.bbrc.2018.03.217 |
| [356] |
Ji Y., Sun Q., Zhang J., Hu H. MiR-615 inhibits cell proliferation, migration and invasion by targeting EGFR in human glioblastoma // Biochem. Biophys. Res. Commun. 2018. Vol. 499, No. 3. P. 719–726. DOI: 10.1016/j.bbrc.2018.03.217 |
| [357] |
Wang F, Xiao W, Sun J, et al. MiRNA-181c inhibits EGFR-signaling-dependent MMP9 activation via suppressing Akt phosphorylation in glioblastoma. Tumour Biol. 2014;35(9):8653–8658. DOI: 10.1007/s13277-014-2131-6 |
| [358] |
Wang F., Xiao W., Sun J. et al. MiRNA-181c inhibits EGFR-signaling-dependent MMP9 activation via suppressing Akt phosphorylation in glioblastoma // Tumour Biol. 2014. Vol. 35, No. 9. P. 8653–8658. DOI: 10.1007/s13277-014-2131-6 |
| [359] |
Lu Y, Chopp M, Zheng X, et al. Overexpression of miR145 in U87 cells reduces glioma cell malignant phenotype and promotes survival after in vivo implantation. Int J Oncol. 2015;46(3):1031–1038. DOI: 10.3892/ijo.2014.2807 |
| [360] |
Lu Y., Chopp M., Zheng X. et al. Overexpression of miR145 in U87 cells reduces glioma cell malignant phenotype and promotes survival after in vivo implantation // Int. J. Oncol. 2015. Vol. 46, No. 3. P. 1031–1038. DOI: 10.3892/ijo.2014.2807 |
| [361] |
Lu Y, Chopp M, Zheng X, et al. MiR-145 reduces ADAM17 expression and inhibits in vitro migration and invasion of glioma cells. Oncol Rep. 2013;29(1):67–72. DOI: 10.3892/or.2012.2084 |
| [362] |
Lu Y., Chopp M., Zheng X. et al. MiR-145 reduces ADAM17 expression and inhibits in vitro migration and invasion of glioma cells // Oncol. Rep. 2013. Vol. 29, No. 1. P. 67–72. DOI: 10.3892/or.2012.2084 |
| [363] |
Zhang KL, Zhou X, Han L, et al. MicroRNA-566 activates EGFR signaling and its inhibition sensitizes glioblastoma cells to nimotuzumab. Mol Cancer. 2014;13:63. DOI: 10.1186/1476-4598-13-63 |
| [364] |
Zhang K.L., Zhou X., Han L. et al. MicroRNA-566 activates EGFR signaling and its inhibition sensitizes glioblastoma cells to nimotuzumab // Mol. Cancer. 2014. Vol. 13. P. 63. DOI: 10.1186/1476-4598-13-63 |
| [365] |
Zhao K, Wang Q, Wang Y, et al. EGFR/c-myc axis regulates TGFbeta/Hippo/Notch pathway via epigenetic silencing miR-524 in gliomas. Cancer Lett. 2017;406:12–21. DOI: 10.1016/j.canlet.2017.07.022 |
| [366] |
Zhao K., Wang Q., Wang Y. et al. EGFR/c-myc axis regulates TGFbeta/Hippo/Notch pathway via epigenetic silencing miR-524 in gliomas // Cancer Lett. 2017. Vol. 406. P. 12–21. DOI: 10.1016/j.canlet.2017.07.022 |
| [367] |
Yin D, Ogawa S, Kawamata N, et al. miR-34a functions as a tumor suppressor modulating EGFR in glioblastoma multiforme. Oncogene. 2013;32(9):1155–1163. DOI: 10.1038/onc.2012.132 |
| [368] |
Yin D., Ogawa S., Kawamata N. et al. miR-34a functions as a tumor suppressor modulating EGFR in glioblastoma multiforme // Oncogene. 2013. Vol. 32, No. 9. P. 1155–1163. DOI: 10.1038/onc.2012.132 |
| [369] |
Kim J, Zhang Y, Skalski M, et al. microRNA-148a is a prognostic oncomiR that targets MIG6 and BIM to regulate EGFR and apoptosis in glioblastoma. Cancer Res. 2014;74(5):1541–1553. DOI: 10.1158/0008-5472.CAN-13-1449 |
| [370] |
Kim J., Zhang Y., Skalski M. et al. microRNA-148a is a prognostic oncomiR that targets MIG6 and BIM to regulate EGFR and apoptosis in glioblastoma // Cancer Res. 2014. Vol. 74. No. 5. P. 1541–1553. DOI: 10.1158/0008-5472.CAN-13-1449 |
| [371] |
Chai C, Song LJ, Han SY, et al. MicroRNA-21 promotes glioma cell proliferation and inhibits senescence and apoptosis by targeting SPRY1 via the PTEN/PI3K/AKT signaling pathway. CNS Neurosci Ther. 2018;24(5):369–380. DOI: 10.1111/cns.12785 |
| [372] |
Chai C., Song L.J., Han S.Y. et al. MicroRNA-21 promotes glioma cell proliferation and inhibits senescence and apoptosis by targeting SPRY1 via the PTEN/PI3K/AKT signaling pathway // CNS Neurosci. Ther. 2018. Vol. 24, No. 5. P. 369–380. DOI: 10.1111/cns.12785 |
| [373] |
Kwak SY, Kim BY, Ahn HJ, et al. Ionizing radiation-inducible miR-30e promotes glioma cell invasion through EGFR stabilization by directly targeting CBL-B. FEBS J. 2015;282(8):1512–1525. DOI: 10.1016/j.gene.2015.07.034 |
| [374] |
Kwak S.Y., Kim B.Y., Ahn H.J. et al. Ionizing radiation-inducible miR-30e promotes glioma cell invasion through EGFR stabilization by directly targeting CBL-B // FEBS J. 2015. Vol. 282, No. 8. P. 1512–1525. DOI: 10.1016/j.gene.2015.07.034 |
| [375] |
Kwak SY, Yang JS, Kim BY, et al. Ionizing radiation-inducible miR-494 promotes glioma cell invasion through EGFR stabilization by targeting p190B rhoGAP. Biochim Biophys Acta. 2014;1843(3):508–516. DOI: 10.1016/j.bbamcr.2013.11.021 |
| [376] |
Kwak S.Y., Yang J.S., Kim B.Y. et al. Ionizing radiation-inducible miR-494 promotes glioma cell invasion through EGFR stabilization by targeting p190B rhoGAP // Biochim. Biophys. Acta. 2014. Vol. 1843, No. 3. P. 508–516. DOI: 10.1016/j.bbamcr.2013.11.021 |
| [377] |
Munoz JL, Rodriguez-Cruz V, Greco SJ, et al. Temozolomide resistance in glioblastoma cells occurs partly through epidermal growth factor receptor mediated induction of connexin 43. Cell Death Dis. 2014;5(3):e1145. DOI: 10.1038/cddis.2014.111 |
| [378] |
Munoz J.L., Rodriguez-Cruz V., Greco S.J. et al. Temozolomide resistance in glioblastoma cells occurs partly through epidermal growth factor receptor mediated induction of connexin 43 // Cell Death Dis. 2014. Vol. 5, No. 3. P. e1145. DOI: 10.1038/cddis.2014.111 |
| [379] |
Wang H, Wang Y, Jiang C. Stromal protein periostin identified as a progression associated and prognostic biomarker in glioma via inducing an invasive and proliferative phenotype. Int J Oncol. 2013;42(5):1716–1724. DOI: 10.3892/ijo.2013.1847 |
| [380] |
Wang H., Wang Y., Jiang C. Stromal protein periostin identified as a progression associated and prognostic biomarker in glioma via inducing an invasive and proliferative phenotype // Int. J. Oncol. 2013. Vol. 42, No. 5. P. 1716–1724. DOI: 10.3892/ijo.2013.1847 |
| [381] |
Ketchen SE, Gamboa-Esteves FO, Lawler SE, et al. Drug resistance in glioma cells induced by a mesenchymal-amoeboid migratory switch. Biomedicines. 2021;10(1):9. DOI: 10.3390/biomedicines10010009 |
| [382] |
Ketchen S.E., Gamboa-Esteves F.O., Lawler S.E. et al. Drug resistance in glioma cells induced by a mesenchymal-amoeboid migratory switch // Biomedicines. 2021. Vol. 10, No. 1. P. 9. DOI: 10.3390/biomedicines10010009 |
| [383] |
Zeng L, Kang C, Di C, et al. The adherens junction-associated protein 1 is a negative transcriptional regulator of MAGEA2, which potentiates temozolomide-induced apoptosis in GBM. Int J Oncol. 2014;44(4):1243–1251. DOI: 10.3892/ijo.2014.2277 |
| [384] |
Zeng L., Kang C., Di C. et al. The adherens junction-associated protein 1 is a negative transcriptional regulator of MAGEA2, which potentiates temozolomide-induced apoptosis in GBM // Int. J. Oncol. 2014. Vol. 44, No. 4. P. 1243–1251. DOI: 10.3892/ijo.2014.2277 |
| [385] |
George J, Gondi CS, Dinh DH, et al. Restoration of tissue factor pathway inhibitor-2 in a human glioblastoma cell line triggers caspase-mediated pathway and apoptosis. Clin Cancer Res. 2007;13(12):3507–3517. DOI: 10.1158/1078-0432.CCR-06-3023 |
| [386] |
George J., Gondi C.S., Dinh D.H. et al. Restoration of tissue factor pathway inhibitor-2 in a human glioblastoma cell line triggers caspase-mediated pathway and apoptosis // Clin. Cancer Res. 2007. Vol. 13, No. 12. P. 3507–3517. DOI: 10.1158/1078-0432.CCR-06-3023 |
| [387] |
El-Khayat SM, Arafat WO. Therapeutic strategies of recurrent glioblastoma and its molecular pathways ‘Lock up the beast’. Ecancermedicalscience. 2021;15:1176. DOI: 10.3332/ecancer.2021.1176 |
| [388] |
El-Khayat S.M., Arafat W.O. Therapeutic strategies of recurrent glioblastoma and its molecular pathways ‘Lock up the beast’ // Ecancermedicalscience. 2021. Vol. 15. P. 1176. DOI: 10.3332/ecancer.2021.1176 |
| [389] |
Zheng Q, Han L, Dong Y, et al. JAK2/STAT3 targeted therapy suppresses tumor invasion via disruption of the EGFRvIII/JAK2/STAT3 axis and associated focal adhesion in EGFRvIII-expressing glioblastoma. Neuro Oncol. 2014;16(9):1229–1243. DOI: 10.1093/neuonc/nou046 |
| [390] |
Zheng Q., Han L., Dong Y. et al. JAK2/STAT3 targeted therapy suppresses tumor invasion via disruption of the EGFRvIII/JAK2/STAT3 axis and associated focal adhesion in EGFRvIII-expressing glioblastoma // Neuro. Oncol. 2014. Vol. 16, No. 9. P. 1229–1243. DOI: 10.1093/neuonc/nou046 |
| [391] |
Tini P, Nardone V, Pastina P, et al. epidermal growth factor receptor expression predicts time and patterns of recurrence in patients with glioblastoma after radiotherapy and temozolomide. World Neurosurg. 2018;109:e662–e668. DOI: 10.1016/j.wneu.2017.10.052 |
| [392] |
Tini P., Nardone V., Pastina P. et al. epidermal growth factor receptor expression predicts time and patterns of recurrence in patients with glioblastoma after radiotherapy and temozolomide // World Neurosurg. 2018. Vol. 109. P. e662–e668. DOI: 10.1016/j.wneu.2017.10.052 |
| [393] |
Hau P, Jachimczak P, Schlaier J, et al. TGF-β2 signaling in high-grade gliomas. Curr Pharm Biotechnol. 2011;12(12):2150–2157. DOI: 10.2174/138920111798808347 |
| [394] |
Hau P., Jachimczak P., Schlaier J. et al. TGF-β2 signaling in high-grade gliomas // Curr. Pharm. Biotechnol. 2011. Vol. 12, No. 12. P. 2150–2157. DOI: 10.2174/138920111798808347 |
| [395] |
Gaetani P, Hulleman E, Levi D, et al. Expression of the transcription factor HEY1 in glioblastoma: a preliminary clinical study. Tumori. 2010;96(1):97–102. |
| [396] |
Gaetani P., Hulleman E., Levi D. et al. Expression of the transcription factor HEY1 in glioblastoma: a preliminary clinical study // Tumori. 2010. Vol. 96, No. 1. P. 97–102. |
| [397] |
Shahi MH, Farheen S, Mariyath MPM, et al. Potential role of Shh-Gli1-BMI1 signaling pathway nexus in glioma chemoresistance. Tumour Biol. 2016;37(11):15107–15114. DOI: 10.1007/s13277-016-5365-7 |
| [398] |
Shahi M.H., Farheen S., Mariyath M.P.M. et al. Potential role of Shh-Gli1-BMI1 signaling pathway nexus in glioma chemoresistance // Tumour Biol. 2016. Vol. 37, No. 11. P. 15107–15114. DOI: 10.1007/s13277-016-5365-7 |
| [399] |
Quail DF, Bowman RL, Akkari L, et al. The tumor microenvironment underlies acquired resistance to CSF1R inhibition in gliomas. Science. 2016;352(6288):aad3018. DOI: 10.1126/science.aad3018 |
| [400] |
Quail D.F., Bowman R.L., Akkari L. et al. The tumor microenvironment underlies acquired resistance to CSF1R inhibition in gliomas // Science. 2016. Vol. 352, No. 6288. P. aad3018. DOI: 10.1126/science.aad3018 |
| [401] |
Koo C-Y, Muir KW, Lam E-F. FOXM1: from cancer initiation to progression and treatment. Biochim Biophys Acta. 2012;1819(1):28–37. DOI: 10.1016/j.bbagrm.2011.09.004 |
| [402] |
Koo C.-Y., Muir K.W., Lam E.W.F. FOXM1: from cancer initiation to progression and treatment // Biochim. Biophys. Acta. 2012. Vol. 1819, No. 1. P. 28–37. DOI: 10.1016/j.bbagrm.2011.09.004 |
| [403] |
Wang Y, Wang X, Zhang J, et al. MicroRNAs involved in the EGFR/PTEN/AKT pathway in gliomas. J Neurooncol. 2012;106(2):217–224. DOI: 10.1007/s11060-011-0679-1 |
| [404] |
Wang Y., Wang X., Zhang J. et al. MicroRNAs involved in the EGFR/PTEN/AKT pathway in gliomas // J. Neurooncol. 2012. Vol. 106, No. 2. P. 217–224. DOI: 10.1007/s11060-011-0679-1 |
| [405] |
Tian T, Mingyi M, Qiu X, Qiu Y. MicroRNA-101 reverses temozolomide resistance by inhibition of GSK3β in glioblastoma. Oncotarget. 2016;7(48):79584–79595. DOI: 10.18632/oncotarget.12861 |
| [406] |
Tian T., Mingyi M., Qiu X., Qiu Y. MicroRNA-101 reverses temozolomide resistance by inhibition of GSK3β in glioblastoma // Oncotarget. 2016. Vol. 7, No. 48. P. 79584–79595. DOI: 10.18632/oncotarget.12861 |
| [407] |
Yue X, Lan F, Hu M, et al. Downregulation of serum microRNA-205 as a potential diagnostic and prognostic biomarker for human glioma. J Neurosurg. 2016;124(1):122–128. DOI: 10.3171/2015.1.JNS141577 |
| [408] |
Yue X., Lan F., Hu M. et al. Downregulation of serum microRNA-205 as a potential diagnostic and prognostic biomarker for human glioma // J. Neurosurg. 2016. Vol. 124, No. 1. P. 122–128. DOI: 10.3171/2015.1.JNS141577 |
| [409] |
Huang H, Xiang Y, Su B, et al. Potential roles for Gfi1 in the pathogenesis and proliferation of glioma. Med Hypotheses. 2013;80(5):629–632. DOI: 10.1016/j.mehy.2013.02.007 |
| [410] |
Huang H., Xiang Y., Su B. et al. Potential roles for Gfi1 in the pathogenesis and proliferation of glioma // Med. Hypotheses. 2013. Vol. 80, No. 5. P. 629–632. DOI: 10.1016/j.mehy.2013.02.007 |
| [411] |
Yao CJ, Han TY, Shih PH, et al. Elimination of cancer stem-like side population in human glioblastoma cells accompanied with stemness gene suppression by Korean herbal recipe MSC500. Integr Cancer Ther. 2014;13(6):541–554. DOI: 10.1177/1534735414549623 |
| [412] |
Yao C.J., Han T.Y., Shih P.H. et al. Elimination of cancer stem-like side population in human glioblastoma cells accompanied with stemness gene suppression by Korean herbal recipe MSC500 // Integr. Cancer Ther. 2014. Vol. 13, No. 6. P. 541–554. DOI: 10.1177/1534735414549623 |
Chernov A.N., Galimova E.S., Shamova O.V.
/
| 〈 |
|
〉 |