Molecular mechanisms of drug resistance of glioblastoma part 1: ABC family proteins and inhibitors

Alexander N. Chernov , Olga V. Shamova

Medical academic journal ›› 2021, Vol. 21 ›› Issue (4) : 85 -106.

PDF (478KB)
Medical academic journal ›› 2021, Vol. 21 ›› Issue (4) : 85 -106. DOI: 10.17816/MAJ83049
Analytical reviews
review-article

Molecular mechanisms of drug resistance of glioblastoma part 1: ABC family proteins and inhibitors

Author information +
History +
PDF (478KB)

Abstract

The most common high-grade brain tumor in the adult population is glioblastoma. The life expectancy of patients with this tumor does not exceed 12-15 months, while relapses are observed in 100% of cases. One of the main reasons for the low efficiency of glioblastoma therapy is its multidrug resistance. In the development of the latter, transporter proteins of the ABC family play a key role. In this part, the emphasis is on the search for new molecular targets among growth factors, their receptors, signal transduction kinases, microRNAs, transcription factors, protooncogenes, and tumor suppressor genes involved in the regulation of proteins and genes of the ABC family and associated with the development of multidrug resistance in glioblastoma cells. The review also discusses the mechanisms of the cytotoxic action of inhibitors: ABC family proteins, tyrosine kinase receptors, non-receptor tyrosine kinases, vascular endothelial growth factor, kinases of signaling cascades, transcription factors, histone deacetylases, methyltransferases, replication and synthesis of DNA, microtubules and proteasome used in glioblastoma therapy or undergoing clinical trials.

Keywords

glioblastoma / multidrug resistance / chemotherapy drugs / inhibitors / ABC-family transporter proteins / growth factors and receptors / signal transduction kinases / microRNA / transcription factors

Cite this article

Download citation ▾
Alexander N. Chernov, Olga V. Shamova. Molecular mechanisms of drug resistance of glioblastoma part 1: ABC family proteins and inhibitors. Medical academic journal, 2021, 21(4): 85-106 DOI:10.17816/MAJ83049

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hanif F, Muzaffar K, Perveen K, et al. Glioblastoma multiforme: A review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac J Cancer Prev. 2017;18(1):3–9. DOI: 10.22034/APJCP.2017.18.1.3

[2]

Hanif F., Muzaffar K., Perveen K. et al. Glioblastoma multiforme: A review of its epidemiology and pathogenesis through clinical presentation and treatment // Asian Pac. J. Cancer Prev. 2017. Vol. 18, No. 1. P. 3–9. DOI: 10.22034/APJCP.2017.18.1.3

[3]

Merabishvili VM. Oncological statistics (traditional methods, new information technologies): Guidelines for physicians. Part I. Saint Petersburg: Costa; 2015. (In Russ.)

[4]

Мерабишвили В.М. Онкологическая статистика (традиционные методы, новые информационные технологии). Руководство для врачей. Часть I. Санкт-Петербург: Коста, 2015.

[5]

Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96. DOI: 10.1056/NEJMoa043330

[6]

Stupp R., Mason W.P., van den Bent M.J. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma // N. Engl. J. Med. 2005. Vol. 352, No. 10. P. 987–96. DOI: 10.1056/NEJMoa043330

[7]

Johnson DR, O’Neill BP. Glioblastoma survival in the United States before and during the temozolomide era. J Neurooncol. 2012;107(2):359–364. DOI: 10.1007/s11060-011-0749-4

[8]

Johnson D.R., O’Neill B.P. Glioblastoma survival in the United States before and during the temozolomide era // J. Neurooncol. 2012. Vol. 107, No. 2. P. 359–364. DOI: 10.1007/s11060-011-0749-4

[9]

Dréan A, Rosenberg S, Lejeune FX, et al. ATP binding cassette (ABC) transporters: expression and clinical value in glioblastoma. J Neurooncol. 2018;138(3):479–486. DOI: 10.1007/s11060-018-2819-3

[10]

Dréan A., Rosenberg S., Lejeune F.X. et al. ATP binding cassette (ABC) transporters: expression and clinical value in glioblastoma // J. Neurooncol. 2018. Vol. 138, No. 3. P. 479–486. DOI: 10.1007/s11060-018-2819-3

[11]

Demina EP, Miroshnikova VV, Schwarzman AL. Role of the ABC transporters A1 and G1, key reverse cholesterol transport proteins, in atherosclerosis. Mol Biol (Mosk). 2016;50(2):223–230. DOI: 10.7868/S002689841602004X

[12]

Демина Е.П., Мирошникова В.В., Шварцман А.Л. Роль АВС-транспортеров А1 и G1 – ключевых белков обратного транспорта холестерина – в развитии атеросклероза // Молекулярная биология. 2016. Т. 50, № 2. С. 223–230. DOI: 10.7868/S002689841602004X

[13]

Zolnerciks JK, Andress EJ, Nicolaou M, Linton KJ. Structure of ABC transporters. Essays Biochem. 2011;50(1):43–61. DOI: 10.1042/bse0500043

[14]

Zolnerciks J.K., Andress E.J., Nicolaou M., Linton K.J. Structure of ABC transporters // Essays Biochem. 2011. Vol. 50, No. 1. P. 43–61. DOI: 10.1042/bse0500043

[15]

Gomez-Zepeda D, Taghi M, Scherrmann JM. ABC transporters at the blood-brain interfaces, their study models, and drug delivery implications in gliomas. Pharmaceutics. 2019;12(1):20. DOI: 10.3390/pharmaceutics12010020

[16]

Gomez-Zepeda D., Taghi M., Scherrmann J.M. ABC transporters at the blood-brain interfaces, their study models, and drug delivery implications in gliomas // Pharmaceutics. 2019. Vol. 12, No. 1. P. 20. DOI:10.3390/pharmaceutics12010020

[17]

Liu X. ABC Family Transporters. Adv Exp Med Biol. 2019;1141:13–100. DOI: 10.1007/978-981-13-7647-4_2

[18]

Liu X. ABC family transporters // Adv. Exp. Med. Biol. 2019. Vol. 1141. P. 13–100. DOI: 10.1007/978-981-13-7647-4_2

[19]

Cascorbi I, Haenisch S. Pharmacogenetics of ATP-binding cassette transporters and clinical implications. Methods Mol Biol. 2010;596:95–121. DOI: 10.1007/978-1-60761-416-6_6

[20]

Cascorbi I., Haenisch S. Pharmacogenetics of ATP-binding cassette transporters and clinical implications // Methods Mol Biol. 2010;596:95-121. DOI: 10.1007/978-1-60761-416-6_6

[21]

Bhatia P, Bernier M, Sanghvi M, et al. Breast cancer resistance protein (BCRP/ABCG2) localises to the nucleus in glioblastoma multiforme cells. Xenobiotica. 2012;42(8):748–755. DOI: 10.3109/00498254.2012.662726

[22]

Bhatia P., Bernier M., Sanghvi M. et al. Breast cancer resistance protein (BCRP/ABCG2) localises to the nucleus in glioblastoma multiforme cells main reasons for the low efficiency of glioblastoma therapy is its multidrug resistance. In the // Xenobiotica. 2012. Vol. 42, No. 8. P. 748–755. DOI: 10.3109/00498254.2012.662726

[23]

Dean M, Rzhetsky A, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res. 2001;11(7):1156–1166. DOI: 10.1101/gr.184901

[24]

Dean M., Rzhetsky A., Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily // Genome Res. 2001. Vol. 11, No. 7. P. 1156–1166. DOI: 10.1101/gr.184901

[25]

Hientz K, Mohr A, Bhakta-Guha D, Efferth T. The role of p53 in cancer drug resistance and targeted chemotherapy. Oncotarget. 2017;8(5):8921–8946. DOI: 10.18632/oncotarget.13475

[26]

Hientz K., Mohr A., Bhakta-Guha D., Efferth T. The role of p53 in cancer drug resistance and targeted chemotherapy // Oncotarget. 2017. Vol. 8, No. 5. P. 8921–8946. DOI: 10.18632/oncotarget.13475

[27]

Zhang P, de Gooijer MC, Buil LCM, et al. ABCB1 and ABCG2 restrict the brain penetration of a panel of novel EZH2-Inhibitors. Int J Cancer. 2015;137(8):2007–2018. DOI: 10.1002/ijc.29566

[28]

Zhang P., de Gooijer M.C., Buil L.C.M. et al. ABCB1 and ABCG2 restrict the brain penetration of a panel of novel EZH2-Inhibitors // Int. J. Cancer. 2015. Vol. 137, No. 8. P. 2007–2018. DOI: 10.1002/ijc.29566

[29]

Colardo M, Segatto M, Di Bartolomeo S. Targeting RTK-PI3K-mTOR axis in gliomas: an update. Int J Mol Sci. 2021;22(9):4899. DOI: 10.3390/ijms22094899

[30]

Colardo M., Segatto M., Di Bartolomeo S. Targeting RTK-PI3K-mTOR axis in gliomas: an update // Int. J. Mol. Sci. 2021. Vol. 22, No. 9. P. 4899. DOI: 10.3390/ijms22094899

[31]

Latour M, Her N-G, Kesari S, Nurmemmedov E. WNT Signaling as a therapeutic target for glioblastoma. Int J Mol Sci. 2021;22(16):8428. DOI: 10.3390/ijms22168428

[32]

Latour M., Her N.-G., Kesari S., Nurmemmedov E. WNT Signaling as a therapeutic target for glioblastoma // Int. J. Mol. Sci. 2021. Vol. 22, No. 16. P. 8428. DOI: 10.3390/ijms22168428

[33]

Healy FM, Prior IA, MacEwan DJ. The importance of Ras in drug resistance in cancer. Br J Pharmacol. 2021. DOI: 10.1111/bph.15420

[34]

Healy F.M., Prior I.A., MacEwan D.J. The importance of Ras in drug resistance in cancer // Br. J. Pharmacol. 2021. DOI: 10.1111/bph.15420

[35]

Avci NG, Ebrahimzadeh-Pustchi S, Akay YM, et al. NF-κB inhibitor with temozolomide results in significant apoptosis in glioblastoma via the NF-κB(p65) and actin cytoskeleton regulatory pathways. Sci Rep. 2020;10(1):13352. DOI: 10.1038/s41598-020-70392-5

[36]

Avci N.G., Ebrahimzadeh-Pustchi S., Akay Y.M. et al. NF-κB inhibitor with Temozolomide results in significant apoptosis in glioblastoma via the NF-κB(p65) and actin cytoskeleton regulatory pathways // Sci. Rep. 2020. Vol. 10, No. 1. P. 13352. DOI: 10.1038/s41598-020-70392-5

[37]

Xu P, Zhang G, Hou S, Sha LG. MAPK8 mediates resistance to temozolomide and apoptosis of glioblastoma cells through MAPK signaling pathway. Biomed Pharmacother. 2018;106:1419–1427. DOI: 10.1016/j.biopha.2018.06.084

[38]

Xu P., Zhang G., Hou S., Sha L.G. MAPK8 mediates resistance to temozolomide and apoptosis of glioblastoma cells through MAPK signaling pathway // Biomed. Pharmacother. 2018. Vol. 106. P. 1419–1427. DOI: 10.1016/j.biopha.2018.06.084

[39]

Chen X, Hao A, Li X, et al. Activation of JNK and p38 MAPK mediated by ZDHHC17 drives glioblastoma multiforme development and malignant progression. Theranostics. 2020;10(3):998–1015. DOI: 10.7150/thno.40076

[40]

Chen X., Hao A., Li X. et al. Activation of JNK and p38 MAPK mediated by ZDHHC17 drives glioblastoma multiforme development and malignant progression // Theranostics. 2020. Vol. 10, No. 3. P. 998–1015. DOI: 10.7150/thno.40076

[41]

Lin SP, Lee YT, Wang JY, et al. Survival of cancer stem cells under hypoxia and serum depletion via decrease in PP2A activity and activation of p38-MAPKAPK2-Hsp27. PLoS One. 2012;7(11):e49605. DOI: 10.1371/journal.pone.0049605

[42]

Lin S.P., Lee Y.T., Wang J.Y. et al. Survival of cancer stem cells under hypoxia and serum depletion via decrease in PP2A activity and activation of p38-MAPKAPK2-Hsp27 // PLoS One. 2012. Vol. 7, No. 11. P. e49605. DOI: 10.1371/journal.pone.0049605

[43]

Ouédraogo ZG, Biau J, Kemeny J-L, et al. Role of STAT3 in genesis and progression of human malignant gliomas. Mol Neurobiol. 2017;54(8):5780–5797. DOI: 10.1007/s12035-016-0103-0

[44]

Ouédraogo Z.G., Biau J., Kemeny J.-L. et al. Role of STAT3 in genesis and progression of human malignant gliomas // Mol. Neurobiol. 2017. Vol. 54, No. 8. P. 5780–5797. DOI: 10.1007/s12035-016-0103-0

[45]

Aroui S, Dardevet L, Najlaoui F, et al. PTEN-regulated AKT/FoxO3a/Bim signaling contributes to human cell glioblastoma apoptosis by platinum-maurocalcin conjugate. Int J Biochem Cell Biol. 2016;77(Pt A):15–22. DOI: 10.1016/j.biocel.2016.05.013

[46]

Aroui S., Dardevet L., Najlaoui F. et al. PTEN-regulated AKT/FoxO3a/Bim signaling contributes to Human cell glioblastoma apoptosis by platinum-maurocalcin conjugate // Int. J. Biochem. Cell. Biol. 2016. Vol. 77, No. Pt A. P. 15–22. DOI: 10.1016/j.biocel.2016.05.013

[47]

Medarova Z, Pantazopoulos P, Yoo B. Screening of potential miRNA therapeutics for the prevention of multi-drug resistance in cancer cells. Sci Rep. 2020;10(1):1970. DOI: 10.1038/s41598-020-58919-2

[48]

Medarova Z., Pantazopoulos P., Yoo B. Screening of potential miRNA therapeutics for the prevention of multi-drug resistance in cancer cells// Sci. Rep. 2020. Vol. 10, No. 1. P. 1970. DOI: 10.1038/s41598-020-58919-2

[49]

Zhang HD, Jiang LH, Sun DW, et al. The role of miR-130a in cancer. Breast Cancer. 2017;24(4):521–527. DOI: 10.1007/s12282-017-0776-x

[50]

Zhang H.D., Jiang L.H., Sun D.W. et al. The role of miR-130a in cancer // Breast Cancer. 2017. Vol. 24, No. 4. P. 521–527. DOI: 10.1007/s12282-017-0776-x

[51]

Sui H, Cai GX, Pan SF, et al. miR200c attenuates P-gp-mediated MDR and metastasis by targeting JNK2/c-Jun signaling pathway in colorectal cancer. Mol Cancer Ther. 2014;13(12):3137–3151. DOI: 10.1158/1535-7163.MCT-14-0167

[52]

Sui H., Cai G.X., Pan S.F. et al. miR200c attenuates P-gp-mediated MDR and metastasis by targeting JNK2/c-Jun signaling pathway in colorectal cancer // Mol Cancer Ther. 2014. Vol. 13, No. 12. P. 3137–3151. DOI: 10.1158/1535-7163.MCT-14-0167

[53]

Li Z, Zhang J, Zheng H, et al. Modulating lncRNA SNHG15/CDK6/miR-627 circuit by palbociclib, overcomes temozolomide resistance and reduces M2-polarization of glioma associated microglia in glioblastoma multiforme. J Exp Clin Cancer Res. 2019;38(1):380. DOI: 10.1186/s13046-019-1371-0

[54]

Li Z., Zhang J., Zheng H. et al. Modulating lncRNA SNHG15/CDK6/miR-627 circuit by palbociclib, overcomes temozolomide resistance and reduces M2-polarization of glioma associated microglia in glioblastoma multiforme // J. Exp. Clin. Cancer Res. 2019. Vol. 38, No. 1. P. 380. DOI: 10.1186/s13046-019-1371-0

[55]

Tursynbay Y, Zhang J, Li Z, et al. Pim-1 kinase as cancer drug target: An update. Biomed Rep. 2016;4(2):140–146. DOI: 10.3892/br.2015.561

[56]

Tursynbay Y., Zhang J., Li Z. et al. Pim-1 kinase as cancer drug target: An update // Biomed. Rep. 2016. Vol. 4, No. 2. P. 140–146. DOI: 10.3892/br.2015.561

[57]

Katayama K, Noguchi K, Sugimoto Y. Regulations of P-Glycoprotein/ABCB1/MDR1 in human cancer cells. N J Sci. 2014(2):1–10. DOI: 10.1155/2014/476974

[58]

Katayama K., Noguchi K., Sugimoto Y. Regulations of P-Glycoprotein/ABCB1/MDR1 in human cancer cells // N. J. Sci. 2014. No. 2. P. 1–10. DOI: 10.1155/2014/476974

[59]

Oberstadt MC, Bien-Möller S, Weitmann K, et al. Epigenetic modulation of the drug resistance genes MGMT, ABCB1 and ABCG2 in glioblastoma multiforme. BMC Cancer. 2013;13:617. DOI: 10.1186/1471-2407-13-617

[60]

Oberstadt M.C., Bien-Möller S., Weitmann K. et al. Epigenetic modulation of the drug resistance genes MGMT, ABCB1 and ABCG2 in glioblastoma multiforme // BMC Cancer. 2013. Vol. 13. P. 617. DOI: 10.1186/1471-2407-13-617

[61]

Liu B, Guo Z, Dong H, et al. LRIG1, human EGFR inhibitor, reverses multidrug resistance through modulation of ABCB1 and ABCG2. Brain Res. 2015;1611:93–100. DOI: 10.1016/j.brainres.2015.03.023

[62]

Liu B., Guo Z., Dong H. et al. LRIG1, human EGFR inhibitor, reverses multidrug resistance through modulation of ABCB1 and ABCG2 // Brain Res. 2015. Vol. 1611. P. 93–100. DOI: 10.1016/j.brainres.2015.03.023

[63]

Xi G, Best B, Mania-Farnell B, et al. therapeutic potential for bone morphogenetic protein 4 in human malignant glioma. Neoplasia. 2017;19(4):261–270. DOI: 10.1016/j.neo.2017.01.006

[64]

Xi G., Best B., Mania-Farnell B. et al. therapeutic potential for bone morphogenetic protein 4 in human malignant glioma. Neoplasia. 2017. Vol. 19, No. 4. P. 261–270. DOI: 10.1016/j.neo.2017.01.006

[65]

Zhang X, Ding K, Wang J, et al. Chemoresistance caused by the microenvironment of glioblastoma and the corresponding solutions. Biomed Pharmacother. 2019;109:39–46. DOI: 10.1016/j.biopha.2018.10.063

[66]

Zhang X., Ding K., Wang J. et al. Chemoresistance caused by the microenvironment of glioblastoma and the corresponding solutions // Biomed. Pharmacother. 2019. Vol. 109. P. 39–46. DOI: 10.1016/j.biopha.2018.10.063

[67]

Said HM, Hagemann C, Carta F, et al. Hypoxia induced CA9 inhibitory targeting by two different sulfonamide derivatives including acetazolamide in human glioblastoma. Bioorg Med Chem. 2013;21(13):3949–3957. DOI: 10.1016/j.bmc.2013.03.068

[68]

Said H.M., Hagemann C., Carta F. et al. Hypoxia induced CA9 inhibitory targeting by two different sulfonamide derivatives including acetazolamide in human glioblastoma // Bioorg. Med. Chem. 2013. Vol. 21, No. 13. P. 3949–3957. DOI: 10.1016/j.bmc.2013.03.068

[69]

Pölönen P, Jawahar Deen A, Leinonen HM, et al. Nrf2 and SQSTM1/p62 jointly contribute to mesenchymal transition and invasion in glioblastoma. Oncogene. 2019;38(50):7473–7490. DOI: 10.1038/s41388-019-0956-6

[70]

Pölönen P., Jawahar Deen A., Leinonen H.M. et al. Nrf2 and SQSTM1/p62 jointly contribute to mesenchymal transition and invasion in glioblastoma // Oncogene. 2019. Vol. 38, No. 50. P. 7473–7490. DOI: 10.1038/s41388-019-0956-6

[71]

Zhang L, Yang H, Zhang W, et al. Clk1-regulated aerobic glycolysis is involved in gliomas chemoresistance. J Neurochem. 2017;142(4):574–588. DOI: 10.1111/jnc.14096

[72]

Zhang L., Yang H., Zhang W. et al. Clk1-regulated aerobic glycolysis is involved in gliomas chemoresistance // J. Neurochem. 2017;142(4):574-588. DOI:10.1111/jnc.14096

[73]

Tivnan A, Zakaria Z, O’Leary C, et al. Inhibition of multidrug resistance protein 1 (MRP1) improves chemotherapy drug response in primary and recurrent glioblastoma multiforme. Front Neurosci. 2015;9:218. DOI: 10.3389/fnins.2015.00218

[74]

Tivnan A., Zakaria Z., O’Leary C. et al. Inhibition of multidrug resistance protein 1 (MRP1) improves chemotherapy drug response in primary and recurrent glioblastoma multiforme // Front. Neurosci. 2015. Vol. 9. P. 218. DOI: 10.3389/fnins.2015.00218

[75]

Begicevic R-R, Falasca M. ABC transporters in cancer stem cells: beyond chemoresistance. Int J Mol Sci. 2017;18(11):2362. DOI: 10.3390/ijms18112362

[76]

Begicevic R.-R., Falasca M. ABC transporters in cancer stem cells: beyond chemoresistance // Int. J. Mol. Sci. 2017. Vol. 18, No. 11. P. 2362. DOI: 10.3390/ijms18112362

[77]

Johnson ZL, Chen J. Structural basis of substrate recognition by the multidrug resistance protein MRP1. Cell. 2017;168(6):1075–1085.e9. DOI: 10.1016/j.cell.2017.01.041

[78]

Johnson Z.L., Chen J. Structural basis of substrate recognition by the multidrug resistance protein MRP1 // Cell. 2017. Vol. 168, No. 6. P. 1075–1085.e9. DOI: 10.1016/j.cell.2017.01.041

[79]

Zhang YK, Wang YJ, Gupta P, Chen ZS. Multidrug resistance proteins (MRPs) and cancer therapy. AAPS J. 2015;17(4):802–812. DOI: 10.1208/s12248-015-9757-1

[80]

Zhang Y.K., Wang Y.J., Gupta P., Chen Z.S. Multidrug resistance proteins (MRPs) and cancer therapy // AAPS J. 2015. Vol. 17, No. 4. P. 802–812. DOI: 10.1208/s12248-015-9757-1

[81]

Pattabiraman PP, Pecen PE, Rao PV. MRP4-mediated regulation of intracellular cAMP and cGMP levels in trabecular meshwork cells and homeostasis of intraocular pressure. Invest Ophthalmol Vis Sci. 2013;54(3):1636–1649. DOI: 10.1167/iovs.12-11107

[82]

Pattabiraman P.P., Pecen P.E., Rao P.V. MRP4-mediated regulation of intracellular cAMP and cGMP levels in trabecular meshwork cells and homeostasis of intraocular pressure // Invest. Ophthalmol. Vis. Sci. 2013. Vol. 54, No. 3. P. 1636–1649. DOI: 10.1167/iovs.12-11107

[83]

Mao X, He Z, Zhou F, et al. Prognostic significance and molecular mechanisms of adenosine triphosphate-binding cassette subfamily C members in gastric cancer. Medicine (Baltimore). 2019;98(50):e18347. DOI: 10.1097/MD.0000000000018347

[84]

Mao X., He Z, Zhou F.et al. Prognostic significance and molecular mechanisms of adenosine triphosphate-binding cassette subfamily C members in gastric cancer // Medicine (Baltimore). 2019. Vol. 98, No. 50. P. e18347. DOI: 10.1097/MD.0000000000018347

[85]

Bhuvanalakshmi G, Arfuso F, Millward M, et al. Secreted frizzled-related protein 4 inhibits glioma stem-like cells by reversing epithelial to mesenchymal transition, inducing apoptosis and decreasing cancer stem cell properties. PLoS One. 2015;10(6):e0127517. DOI: 10.1371/journal.pone.0127517

[86]

Bhuvanalakshmi G., Arfuso F., Millward M. et al. Secreted frizzled-related protein 4 inhibits glioma stem-like cells by reversing epithelial to mesenchymal transition, inducing apoptosis and decreasing cancer stem cell properties // PLoS One. 2015. Vol. 10, No. 6. P. e0127517. DOI: 10.1371/journal.pone.0127517

[87]

Kosalai ST, Abdelrazak Morsy MH, Papakonstantinou N, et al. EZH2 upregulates the PI3K/AKT pathway through IGF1R and MYC in clinically aggressive chronic lymphocytic leukaemia. Epigenetics. 2019;14(11):1125–1140. DOI: 10.1080/15592294.2019.1633867

[88]

Kosalai S.T., Abdelrazak Morsy M.H., Papakonstantinou N. et al. EZH2 upregulates the PI3K/AKT pathway through IGF1R and MYC in clinically aggressive chronic lymphocytic leukaemia // Epigenetics. 2019. Vol. 14, No. 11. P. 1125–1140. DOI: 10.1080/15592294.2019.1633867

[89]

Navarro L, Gil-Benso R, Megías J, et al. Alteration of major vault protein in human glioblastoma and its relation with EGFR and PTEN status. Neuroscience. 2015;297:243–251. DOI: 10.1016/j.neuroscience.2015.04.005

[90]

Navarro L., Gil-Benso R., Megías J. et al. Alteration of major vault protein in human glioblastoma and its relation with EGFR and PTEN status // Neuroscience. 2015. Vol. 297. P. 243–251. DOI: 10.1016/j.neuroscience.2015.04.005

[91]

Guo G, Narayan RN, Horton L, et al. The Role of EGFR-Met interactions in the pathogenesis of glioblastoma and resistance to treatment. Curr Cancer Drug Targets. 2017;17(3):297–302. DOI: 10.2174/1568009616666161215162515

[92]

Guo G., Narayan R.N., Horton L. et al. The Role of EGFR-Met interactions in the pathogenesis of glioblastoma and resistance to treatment // Curr. Cancer Drug. Targets. 2017. Vol. 17, No. 3. P. 297–302. DOI: 10.2174/1568009616666161215162515

[93]

Kudinov AE, Karanicolas J, Golemis EA, Boumber Y. Musashi RNA-Binding proteins as cancer drivers and novel therapeutic targets. Clin Cancer Res. 2017;23(9):2143–2153. DOI: 10.1158/1078-0432.CCR-16-2728

[94]

Kudinov A.E., Karanicolas J., Golemis E.A., Boumber Y. Musashi RNA-binding proteins as cancer drivers and novel therapeutic targets. Clin. Cancer Res. 2017. Vol. 23, No. 9. P. 2143–2153. DOI: 10.1158/1078-0432.CCR-16-2728

[95]

Shahi MH, Farheen S, Mariyath MP, Castresana JS. Potential role of Shh-Gli1-BMI1 signaling pathway nexus in glioma chemoresistance. Tumour Biol. 2016;37(11):15107–15114. DOI: 10.1007/s13277-016-5365-7

[96]

Shahi M.H., Farheen S., Mariyath M.P., Castresana J.S. Potential role of Shh-Gli1-BMI1 signaling pathway nexus in glioma chemoresistance // Tumour. Biol. 2016. Vol. 37, No. 11. P. 15107–15114. DOI: 10.1007/s13277-016-5365-7

[97]

Rama AR, Alvarez PJ, Madeddu R, Aranega A. ABC transporters as differentiation markers in glioblastoma cells. Mol Biol Rep. 2014;41(8):4847–4851. DOI: 10.1007/s11033-014-3423-z

[98]

Rama A.R., Alvarez P.J., Madeddu R., Aranega A. ABC transporters as differentiation markers in glioblastoma cells // Mol. Biol. Rep. 2014. Vol. 41, No. 8. P. 4847–4851. DOI: 10.1007/s11033-014-3423-z

[99]

Uribe D, Torres Á, Rocha JD, et al. Multidrug resistance in glioblastoma stem-like cells: Role of the hypoxic microenvironment and adenosine signaling. Mol Aspects Med. 2017;55:140–151. DOI: 10.1016/j.mam.2017.01.009

[100]

Uribe D., Torres Á., Rocha J.D. et al. Multidrug resistance in glioblastoma stem-like cells: Role of the hypoxic microenvironment and adenosine signaling // Mol. Aspects Med. 2017. Vol. 55. P. 140–151. DOI: 10.1016/j.mam.2017.01.009

[101]

Navarro-Quiles C, Mateo-Bonmatí E, Micol JL. ABCE proteins: from molecules to development. Front Plant Sci. 2018;9:1125. DOI: 10.3389/fpls.2018.01125

[102]

Navarro-Quiles C., Mateo-Bonmatí E., Micol J.L. ABCE proteins: from molecules to development // Front. Plant. Sci. 2018. Vol. 9. P. 1125. DOI: 10.3389/fpls.2018.01125

[103]

Chen L, Shi L, Wang W, Zhou Y. ABCG2 downregulation in glioma stem cells enhances the therapeutic efficacy of demethoxycurcumin. Oncotarget. 2017;8(26):43237–43247. DOI: 10.18632/oncotarget.18018

[104]

Chen L., Shi L., Wang W., Zhou Y. ABCG2 downregulation in glioma stem cells enhances the therapeutic efficacy of demethoxycurcumin // Oncotarget. 2017. Vol. 8, No. 26. P. 43237–43247. DOI: 10.18632/oncotarget.18018

[105]

Nakanishi T, Ross D. Breast cancer resistance protein (BCRP/ABCG2): its role in multidrug resistance and regulation of its gene expression. Chin J Cancer. 2012;31(2):73–99. DOI: 10.5732/cjc.011.10320

[106]

Nakanishi T., Ross D. Breast cancer resistance protein (BCRP/ABCG2): its role in multidrug resistance and regulation of its gene expression // Chin. J. Cancer. 2012. Vol. 31, No. 2. P. 73–99. DOI: 10.5732/cjc.011.10320

[107]

Goncalves J, Bicker J, Alves G, et al. Relevance of breast cancer resistance protein to brain distribution and central acting drugs: A pharmacokinetic perspective. Curr Drug Metab. 2018;19(12):1021–1041. DOI: 10.2174/1389200219666180629121033

[108]

Goncalves J., Bicker J., Alves G. et al. Relevance of breast cancer resistance protein to brain distribution and central acting drugs: A pharmacokinetic perspective // Curr. Drug. Metab. 2018. Vol. 19, No. 12. P. 1021–1041. DOI: 10.2174/1389200219666180629121033

[109]

Shi L, Wang Z, Sun G, et al. miR-145 inhibits migration and invasion of glioma stem cells by targeting ABCG2. Neuromolecular Med. 2014;16(2):517–528. DOI: 10.1007/s12017-014-8305-y

[110]

Shi L., Wang Z., Sun G. et al. miR-145 inhibits migration and invasion of glioma stem cells by targeting ABCG2 // Neuromolecular. Med. 2014. Vol. 16, No. 2. P. 517–528. DOI: 10.1007/s12017-014-8305-y

[111]

Tian S, Yong M, Zhu J, et al. Enhancement of the effect of Methyl Pyropheophorbide-a-Mediated photodynamic therapy was achieved by increasing ROS through inhibition of Nrf2-HO-1 or Nrf2-ABCG2 signaling. Anticancer Agents Med Chem. 2017;17(13):1824–1836. DOI: 10.2174/1871520617666170327145857

[112]

Tian S., Yong M., Zhu J. et al. Enhancement of the effect of Methyl Pyropheophorbide-a-Mediated photodynamic therapy was achieved by increasing ROS through Inhibition of Nrf2-HO-1 or Nrf2-ABCG2 signaling // Anticancer Agents Med. Chem. 2017. Vol. 17, No. 13. P. 1824–1836. DOI: 10.2174/1871520617666170327145857

[113]

Agarwal S, Hartz AMS, Elmquist WF, Bauer B. Breast cancer resistance protein and P-glycoprotein in brain cancer: Two gatekeepers team up. Curr Pharm Des. 2011;17(26):2793–2802. DOI: 10.2174/138161211797440186

[114]

Agarwal S., Hartz A.M.S., Elmquist W.F., Bauer B. Breast cancer resistance protein and P-glycoprotein in brain cancer: Two gatekeepers team up // Curr. Pharm. Des. 2011. Vol. 17, No. 26. P. 2793–2802. DOI: 10.2174/138161211797440186

[115]

Martin V, Xu J, Pabbisetty SK, et al. Tie2-mediated multidrug resistance in malignant gliomas is associated with upregulation of ABC transporters. Oncogene. 2009;28(24):2358–2363. DOI: 10.1038/onc.2009.103

[116]

Martin V., Xu J., Pabbisetty S.K. et al. Tie2-mediated multidrug resistance in malignant gliomas is associated with upregulation of ABC transporters // Oncogene. 2009. Vol. 28, No. 24. P. 2358–2363. DOI: 10.1038/onc.2009.103

[117]

Jin Y, Bin ZQ, Qiang H, et al. ABCG2 is related with the grade of glioma and resistance to mitoxantone, a chemotherapeutic drug for glioma. J Cancer Res Clin Oncol. 2009;135(10):1369–1376. DOI: 10.1007/s00432-009-0578-4

[118]

Jin Y., Bin Z.Q., Qiang H. et al. ABCG2 is related with the grade of glioma and resistance to mitoxantone, a chemotherapeutic drug for glioma // J. Cancer Res. Clin. Oncol. 2009; Vol. 135. No. 10. P. 1369–1376. DOI: 10.1007/s00432-009-0578-4

[119]

Wijaya J, Fukuda Y, Schuetz JD. Obstacles to brain tumor therapy: Key ABC transporters. Int J Mol Sci. 2017;18(12):2544. DOI: 10.3390/ijms18122544

[120]

Wijaya J., Fukuda Y., Schuetz J.D. Obstacles to brain tumor therapy: Key ABC transporters // Int. J. Mol. Sci. 2017. Vol. 18, No. 12. P. 2544. DOI: 10.3390/ijms18122544

[121]

Reardon DA, Conrad CA, Cloughesy T, et al. Phase I study of AEE788, a novel multitarget inhibitor of ErbB- and VEGF-receptor-family tyrosine kinases, in recurrent glioblastoma patients. Cancer Chemother Pharmacol. 2012;69(6):1507–1518. DOI: 10.1007/s00280-012-1854-6

[122]

Reardon D.A., Conrad C.A., Cloughesy T. et al. Phase I study of AEE788, a novel multitarget inhibitor of ErbB- and VEGF-receptor-family tyrosine kinases, in recurrent glioblastoma patients. Cancer Chemother. Pharmacol. 2012. Vol. 69, No. 6. P. 1507–1518. DOI: 10.1007/s00280-012-1854-6

[123]

Nayak L, de Groot J, Wefel JS, et al. Phase I trial of aflibercept (VEGF trap) with radiation therapy and concomitant and adjuvant temozolomide in patients with high-grade gliomas. J Neurooncol. 2017;132(1):181–188. DOI: 10.1007/s11060-016-2357-9

[124]

Nayak L., de Groot J., Wefel J.S. et al. Phase I trial of aflibercept (VEGF trap) with radiation therapy and concomitant and adjuvant temozolomide in patients with high-grade gliomas // J. Neurooncol. 2017. Vol. 132, No. 1. P. 181–188. DOI: 10.1007/s11060-016-2357-9

[125]

Herrlinger U, Schäfer N, Steinbach JP, et al. bevacizumab plus irinotecan versus temozolomide in newly diagnosed O6-Methylguanine-DNA methyltransferase nonmethylated glioblastoma: The Randomized GLARIUS Trial. J Clin Oncol. 2016;34(14):1611–1619. DOI: 10.1200/JCO.2015.63.4691

[126]

Herrlinger U., Schäfer N., Steinbach J.P. et al. bevacizumab plus irinotecan versus temozolomide in newly diagnosed O6-Methylguanine-DNA methyltransferase nonmethylated glioblastoma: The Randomized GLARIUS Trial // J. Clin. Oncol. 2016. Vol. 34, No. 14. P. 1611–1619. DOI: 10.1200/JCO.2015.63.4691

[127]

Lu-Emerson C, Duda DG, Emblem KE, et al. Lessons from anti-vascular endothelial growth factor and anti-vascular endothelial growth factor receptor trials in patients with glioblastoma. J Clin Oncol. 2015;33(10):1197–1213. DOI: 10.1200/JCO.2014.55.9575

[128]

Lu-Emerson C., Duda D.G., Emblem K.E. et al. Lessons from anti-vascular endothelial growth factor and anti-vascular endothelial growth factor receptor trials in patients with glioblastoma // J. Clin. Oncol. 2015. Vol. 33, No. 10. P. 1197–1213. DOI: 10.1200/JCO.2014.55.9575

[129]

Chheda MG, Wen PY, Hochberg FH, et al. Vandetanib plus sirolimus in adults with recurrent glioblastoma: results of a phase I and dose expansion cohort study. J Neurooncol. 2015;121(3):627–634. DOI: 10.1007/s11060-014-1680-2

[130]

Chheda M.G., Wen P.Y., Hochberg F.H. et al. Vandetanib plus sirolimus in adults with recurrent glioblastoma: results of a phase I and dose expansion cohort study // J. Neurooncol. 2015. Vol. 121, No. 3. P. 627–634. DOI: 10.1007/s11060-014-1680-2

[131]

Pearson J, Regad T. Targeting cellular pathways in glioblastoma multiforme. Sig Transduct Target Ther. 2017;2:17040. DOI: 10.1038/sigtrans.2017.40

[132]

Pearson J., Regad T. Targeting cellular pathways in glioblastoma multiforme // Sig. Transduct. Target Ther. 2017. Vol. 2. P. 17040. DOI: 10.1038/sigtrans.2017.40

[133]

Arif SH, Pandith AA, Tabasum R, et al. Significant effect of anti-tyrosine kinase inhibitor (gefitinib) on overall survival of the glioblastoma multiforme patients in the backdrop of mutational status of epidermal growth factor receptor and PTEN genes. Asian J Neurosurg. 2018;13(1):46–52. DOI: 10.4103/ajns.AJNS_95_17

[134]

Arif S.H., Pandith A.A., Tabasum R. et al. Significant effect of anti-tyrosine kinase inhibitor (gefitinib) on overall survival of the glioblastoma multiforme patients in the backdrop of mutational status of epidermal growth factor receptor and PTEN genes // Asian J. Neurosurg. 2018. Vol. 13, No. 1. P. 46–52. DOI: 10.4103/ajns.AJNS_95_17

[135]

Molife LR, Dean EJ, Blanco-Codesido M, et al. A phase I, dose-escalation study of the multitargeted receptor tyrosine kinase inhibitor, golvatinib, in patients with advanced solid tumors. Clin Cancer Res. 2014;20(24):6284–6294. DOI: 10.1158/1078-0432.CCR-14-0409

[136]

Molife L.R., Dean E.J., Blanco-Codesido M. et al. A phase I, dose-escalation study of the multitargeted receptor tyrosine kinase inhibitor, golvatinib, in patients with advanced solid tumors // Clin. Cancer Res. 2014. Vol. 20, No. 24. P. 6284–6294. DOI: 10.1158/1078-0432.CCR-14-0409

[137]

Padovan M, Eoli M, Pellerino A, et al. Depatuxizumab mafodotin (Depatux-M) plus temozolomide in recurrent glioblastoma patients: Real-world experience from a multicenter study of Italian Association of Neuro-Oncology (AINO). Cancers (Basel). 2021;13(11):2773. DOI: 10.3390/cancers13112773

[138]

Padovan M., Eoli M., Pellerino A. et al. Depatuxizumab mafodotin (Depatux-M) plus temozolomide in recurrent glioblastoma patients: Real-World experience from a multicenter study of Italian Association of Neuro-Oncology (AINO) // Cancers (Basel). 2021. Vol. 13, No. 11. P. 2773. DOI: 10.3390/cancers13112773

[139]

Wen PY, Drappatz J, de Groot J, et al. Phase II study of cabozantinib in patients with progressive glioblastoma: subset analysis of patients naive to antiangiogenic therapy. Neuro Oncol. 2018;20(2):249–258. DOI: 10.1093/neuonc/nox154

[140]

Wen P.Y., Drappatz J., de Groot J. et al. Phase II study of cabozantinib in patients with progressive glioblastoma: subset analysis of patients naive to antiangiogenic therapy // Neuro. Oncol. 2018. Vol. 20, No. 2. P. 249–258. DOI: 10.1093/neuonc/nox154

[141]

Yu A, Faiq N, Green S, et al. Report of safety of pulse dosing of lapatinib with temozolomide and radiation therapy for newly-diagnosed glioblastoma in a pilot phase II study. J Neurooncol. 2017;134(2):357–362. DOI: 10.1007/s11060-017-2533-6

[142]

Yu A., Faiq N., Green S. et al. Report of safety of pulse dosing of lapatinib with temozolomide and radiation therapy for newly-diagnosed glioblastoma in a pilot phase II study // J. Neurooncol. 2017. Vol. 134, No. 2. P. 357–362. DOI: 10.1007/s11060-017-2533-6

[143]

Li J, Zou C-L, Zhang Z-M, et al. A multi-targeted tyrosine kinase inhibitor lenvatinib for the treatment of mice with advanced glioblastoma. Mol Med Rep. 2017;16(5):7105–7111. DOI: 10.3892/mmr.2017.7456

[144]

Li J., Zou C.-L., Zhang Z.-M. et al. A multi-targeted tyrosine kinase inhibitor lenvatinib for the treatment of mice with advanced glioblastoma // Mol. Med. Rep. 2017. Vol. 16, No. 5. P. 7105–7111. DOI: 10.3892/mmr.2017.7456

[145]

Westphal M, Heese O, Steinbach JP, et al. A randomised, open label phase III trial with nimotuzumab, an anti-epidermal growth factor receptor monoclonal antibody in the treatment of newly diagnosed adult glioblastoma. Eur J Cancer. 2015;51(4):522–532. DOI: 10.1016/j.ejca.2014.12.019

[146]

Westphal M., Heese O., Steinbach J.P. et al. A randomised, open label phase III trial with nimotuzumab, an anti-epidermal growth factor receptor monoclonal antibody in the treatment of newly diagnosed adult glioblastoma // Eur. J. Cancer. 2015. Vol. 51, No. 4. P. 522–532. DOI: 10.1016/j.ejca.2014.12.019

[147]

Olaratumab Completed Phase 2 Trials for Glioblastoma Multiforme, Adult Treatment. NCT00895180. https://go.drugbank.com/drugs/DB06043/clinical_trials?conditions=DBCOND0088047&phase=2&purpose=treatment&status=completed&__cf_chl_jschl_tk__=pmd_cEbWshGFMGoqes6n_B7D0tXCsfTuqIh_en6wF52PFuw-1629969594-0-gqNtZGzNApCjcnBszQiR

[148]

Morley R, Cardenas A, Hawkins P, et al. Safety of onartuzumab in patients with solid tumors: Experience to date from the Onartuzumab Clinical Trial Program. PLoS One. 2015;10(10):e0139679. DOI: 10.1371/journal.pone.0139679

[149]

Morley R., Cardenas A., Hawkins P. et al. Safety of onartuzumab in patients with solid tumors: Experience to date from the Onartuzumab Clinical Trial Program // PLoS One. 2015. Vol. 10, No. 10. P. e0139679. DOI: 10.1371/journal.pone.0139679

[150]

Cloughesy T, Finocchiaro G, Belda-Iniesta C, et al. Randomized, double-blind, placebo-controlled, multicenter phase II study of onartuzumab plus bevacizumab versus placebo plus bevacizumab in patients with recurrent glioblastoma: efficacy, safety, and hepatocyte growth factor and O6-Methylguanine-DNA methyltransferase biomarker analyses. J Clin Oncol. 2017;35(3):343–351. DOI: 10.1200/JCO.2015.64.7685

[151]

Cloughesy T., Finocchiaro G., Belda-Iniesta C. et al. Randomized, double-blind, placebo-controlled, multicenter phase II study of onartuzumab plus bevacizumab versus placebo plus bevacizumab in patients with recurrent glioblastoma: efficacy, safety, and hepatocyte growth factor and O6-Methylguanine-DNA methyltransferase biomarker analyses // J. Clin. Oncol. 2017. Vol. 35, No. 3. P. 343–351. DOI: 10.1200/JCO.2015.64.7685

[152]

Pazopanib Completed Phase 2 Trials for Glioblastoma Multiforme (GBM) / Central Nervous System Neoplasms / Neoplasms, Brain / Gliosarcoma Treatment. NCT01931098 [Internet]. Available from: https://go.drugbank.com/drugs/DB06589/clinical_trials?conditions=DBCOND0032525%2CDBCOND0046976%2CDBCOND0002894%2CDBCOND0054211&phase=2&purpose=treatment&status=completed. Accessed: Dec 18, 2021.

[153]

Pazopanib Completed Phase 2 Trials for Glioblastoma Multiforme (GBM) / Central Nervous System Neoplasms / Neoplasms, Brain / Gliosarcoma Treatment. NCT01931098 [Электронный ресурс]. https://go.drugbank.com/drugs/DB06589/clinical_trials?conditions=DBCOND0032525%2CDBCOND0046976%2CDBCOND0002894%2CDBCOND0054211&phase=2&purpose=treatment&status=completed. Дата обращения: 18.12.2021.

[154]

Panitumumab and Irinotecan for Malignant Gliomas [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT01017653. Accessed: Dec 18, 2021.

[155]

Panitumumab and Irinotecan for Malignant Gliomas [Электронный ресурс]. Режим доступа: https://clinicaltrials.gov/ct2/show/NCT01017653. Дата обращения: 18.12.2021.

[156]

Dean L, Kane M, Pratt VM, et al. Pertuzumab Therapy and ERBB2 Genotype. In: Medical Genetics Summaries [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2012–2015.

[157]

Dean L., Kane M., Pratt V.M. et al. Pertuzumab Therapy and ERBB2 Genotype // Medical Genetics Summaries [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2012–2015.

[158]

Adult Glioblastoma Multiforme Completed Phase 2 Trials for Ramucirumab (DB05578). NCT00895180 [Internet]. Available from: https://go.drugbank.com/indications/DBCOND0088047/clinical_trials/DB05578?phase=2&status=completed. Accessed: Dec 18, 2021.

[159]

Adult Glioblastoma Multiforme Completed Phase 2 Trials for Ramucirumab (DB05578). NCT00895180 [Электронный ресурс]. Режим доступа: https://go.drugbank.com/indications/DBCOND0088047/clinical_trials/DB05578?phase=2&status=completed. Дата обращения: 18.12.2021.

[160]

Affronti ML, Jackman JG, McSherry F, et al. Phase II study to evaluate the efficacy and safety of rilotumumab and bevacizumab in subjects with recurrent malignant glioma. Oncologist. 2018;23(8):889–e98. DOI: 10.1634/theoncologist.2018-0149

[161]

Affronti M.L., Jackman J.G., McSherry F. et al. Phase II study to evaluate the efficacy and safety of rilotumumab and bevacizumab in subjects with recurrent malignant glioma // Oncologist. 2018. Vol. 23, No. 8. P. 889–e98. DOI: 10.1634/theoncologist.2018-0149

[162]

Weller M, Butowski N, Tran DD, et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017;18(10):1373–1385. DOI: 10.1016/S1470-2045(17)30517-X

[163]

Weller M., Butowski N., Tran D.D. et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial // Lancet Oncol. 2017. Vol. 18, No. 10. P. 1373–1385. DOI: 10.1016/S1470-2045(17)30517-X

[164]

Nghiemphu PL, Ebiana VA, Wen P, et al. Phase I study of sorafenib and tipifarnib for recurrent glioblastoma: NABTC 05-02. J Neurooncol. 2018;136(1):79–86. DOI: 10.1007/s11060-017-2624-4

[165]

Nghiemphu P.L., Ebiana V.A., Wen P. et al. Phase I study of sorafenib and tipifarnib for recurrent glioblastoma: NABTC 05-02 // J. Neurooncol. 2018. Vol. 136, No. 1. P. 79–86. DOI: 10.1007/s11060-017-2624-4

[166]

Grisanti S, Ferrari VD, Buglione M, et al. Second line treatment of recurrent glioblastoma with sunitinib: results of a phase II study and systematic review of literature. J Neurosurg Sci. 2019;63(4):458–467. DOI: 10.23736/S0390-5616.16.03874-1

[167]

Grisanti S., Ferrari V.D., Buglione M. et al. Second line treatment of recurrent glioblastoma with sunitinib: results of a phase II study and systematic review of literature // J. Neurosurg. Sci. 2019. Vol. 63, No. 4. P. 458–467. DOI: 10.23736/S0390-5616.16.03874-1

[168]

Torres Á, Arriagada V, Erices JI, et al. FK506 Attenuates the MRP1-mediated chemoresistant phenotype in glioblastoma stem-like cells. Int J Mol Sci. 2018;19(9):2697. DOI: 10.3390/ijms19092697

[169]

Torres Á, Arriagada V, Erices J I. et al. FK506 Attenuates the MRP1-Mediated chemoresistant phenotype in glioblastoma stem-like cells // Int. J. Mol. Sci. 2018. Vol. 19, No. 9. P. 2697. DOI: 10.3390/ijms19092697

[170]

Schiff D, Jaeckle KA, Anderson SK, et al. Phase I/II trial of temsirolimus and sorafenib in treatment of patients with recurrent glioblastoma: North Central Cancer Treatment Group Study/Alliance N0572. Cancer. 2018;124(7):1455–1463. DOI: 10.1002/cncr.31219

[171]

Schiff D., Jaeckle K.A., Anderson S.K. et al. Phase I/II trial of temsirolimus and sorafenib in treatment of patients with recurrent glioblastoma: North Central Cancer Treatment Group Study/Alliance N0572 // Cancer. 2018. Vol. 124, No. 7. P. 1455–1463. DOI: 10.1002/cncr.31219

[172]

Wu Y, Li Z, Zhang L, Liu G. Tivantinib hampers the proliferation of glioblastoma cells via PI3K/Akt/Mammalian target of rapamycin (mTOR) signaling. Med Sci Monit. 2019;25:7383–7390. DOI: 10.12659/MSM.919319

[173]

Wu Y., Li Z., Zhang L., Liu G. Tivantinib hampers the proliferation of glioblastoma cells via PI3K/Akt/Mammalian target of rapamycin (mTOR) signaling // Med. Sci. Monit. 2019. Vol. 25. P. 7383–7390. DOI: 10.12659/MSM.919319

[174]

Kalpathy-Cramer J, Chandra V, Da X, et al. Phase II study of tivozanib, an oral VEGFR inhibitor, in patients with recurrent glioblastoma. J Neurooncol. 2017;131(3):603–610. DOI: 10.1007/s11060-016-2332-5

[175]

Kalpathy-Cramer J., Chandra V., Da X. et al. Phase II study of tivozanib, an oral VEGFR inhibitor, in patients with recurrent glioblastoma // J. Neurooncol. 2017. Vol. 131, No. 3. P. 603–610. DOI: 10.1007/s11060-016-2332-5

[176]

Askoxylakis V, Ferraro GB, Kodack DP, et al. Preclinical efficacy of Ado-trastuzumab Emtansine in the brain microenvironment. J Natl Cancer Inst. 2015;108(2):djv313. DOI: 10.1093/jnci/djv313

[177]

Askoxylakis V., Ferraro G.B., Kodack D.P. et al. Preclinical efficacy of Ado-trastuzumab emtansine in the brain microenvironment // J. Natl. Cancer Inst. 2015. Vol. 108, No. 2. P. djv313. DOI: 10.1093/jnci/djv313

[178]

Bauman JE, Ohr J, Gooding WE, et al. Phase I study of ficlatuzumab and cetuximab in cetuximab-resistant, recurrent/metastatic head and neck cancer. Cancers (Basel). 2020;12(6):1537. DOI: 10.3390/cancers12061537

[179]

Bauman J. E., Ohr J., Gooding W.E. et al. Phase I study of ficlatuzumab and cetuximab in cetuximab-resistant, recurrent/metastatic head and neck cancer // Cancers (Basel). 2020. Vol. 12, No. 6. P. 1537. DOI: 10.3390/cancers12061537

[180]

Brown N, McBain C, Nash S, et al. Multi-center randomized phase II study comparing cediranib plus gefitinib with cediranib plus placebo in subjects with recurrent/progressive glioblastoma. PLoS One. 2016;11(5):e0156369. DOI: 10.1371/journal.pone.0156369

[181]

Brown N., McBain C., Nash S. et al. Multi-center randomized phase II study comparing cediranib plus gefitinib with cediranib plus placebo in subjects with recurrent/progressive glioblastoma // PLoS One. 2016. Vol. 11, No. 5. P. e0156369. DOI: 10.1371/journal.pone.0156369

[182]

Super-Selective Intraarterial Cerebral Infusion of Cetuximab (Erbitux) for Treatment of Relapsed/Refractory GBM and AA. NCT01238237 [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT01238237. Accessed: Dec 18, 2021.

[183]

Super-Selective Intraarterial Cerebral Infusion of Cetuximab (Erbitux) for Treatment of Relapsed/Refractory GBM and AA. NCT01238237 [Электронный ресурс]. Режим доступа: https://clinicaltrials.gov/ct2/show/NCT01238237. Дата обращения: 18.12.2021.

[184]

Stupp R, Hegi ME, Gorlia T, et al. Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2014;15(10):1100–1108. DOI: 10.1016/S1470-2045(14)70379-1

[185]

Stupp R., Hegi M.E., Gorlia T. et al. Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 STUDY): a multicentre, randomised, open-label, phase 3 trial // Lancet Oncol. 2014. Vol. 15, No. 10. P. 1100–1108. DOI: 10.1016/S1470-2045(14)70379-1

[186]

Miklja Z, Yadav VN, Cartaxo RT, et al. Everolimus improves the efficacy of dasatinib in PDGFRα-driven glioma. J Clin Invest. 2020;130(10):5313–5325. DOI: 10.1172/JCI133310

[187]

Miklja Z., Yadav V.N., Cartaxo R.T. et al. Everolimus improves the efficacy of dasatinib in PDGFRα-driven glioma // J. Clin. Invest. 2020. Vol. 130, No. 10. P. 5313–5325. DOI: 10.1172/JCI133310

[188]

Chinnaiyan P, Won M, Wen PY, et al. A randomized phase II study of everolimus in combination with chemoradiation in newly diagnosed glioblastoma: results of NRG Oncology RTOG 0913. Neuro Oncol. 2018;20(5):666–673. DOI: 10.1093/neuonc/nox209

[189]

Chinnaiyan P., Won M., Wen P.Y. et al. A randomized phase II study of everolimus in combination with chemoradiation in newly diagnosed glioblastoma: results of NRG Oncology RTOG 0913 // Neuro. Oncol. 2018. Vol. 20, No. 5. P. 666–673. DOI: 10.1093/neuonc/nox209

[190]

Tucker N. Enzastaurin Dosed in first phase 3 Study of newly diagnosed glioblastoma multiforme [Internet]. Available from: https://www.targetedonc.com/view/enzastaurin-dosed-in-first-phase-3-study-of-newly-diagnosed-glioblastoma-multiforme. Accessed: Dec 18, 2021.

[191]

Tucker N. Enzastaurin dosed in first phase 3 study of newly diagnosed glioblastoma multiforme [Электронный ресурс]. Режим доступа: https://www.targetedonc.com/view/enzastaurin-dosed-in-first-phase-3-study-of-newly-diagnosed-glioblastoma-multiforme. Дата обращения: 18.12.2021.

[192]

Erlotinib in treating patients with recurrent or progressive glioblastoma multiforme. NCT00054496 [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT00054496. Accessed: Dec 18, 2021.

[193]

Erlotinib in treating patients with recurrent or progressive glioblastoma multiforme. NCT00054496 [Электронный ресурс]. Режим доступа: https://clinicaltrials.gov/ct2/show/NCT00054496. Дата обращения: 18.12.2021.

[194]

Brown CE, Badie B, Barish ME, et al. Bioactivity and safety of IL13Rα2-Redirected Chimeric Antigen Receptor CD8+ T Cells in patients with recurrent glioblastoma. Clin Cancer Res. 2015;21(18):4062–4072. DOI: 10.1158/1078-0432.CCR-15-0428

[195]

Brown C.E., Badie B., Barish M.E. et al. Bioactivity and safety of IL13Rα2-Redirected Chimeric Antigen Receptor CD8+ T Cells in patients with recurrent glioblastoma // Clin. Cancer Res. 2015. Vol. 21, No. 18. P. 4062–4072. DOI: 10.1158/1078-0432.CCR-15-0428

[196]

Li L, Quang TS, Gracely EJ, et al. A Phase II study of anti-epidermal growth factor receptor radioimmunotherapy in the treatment of glioblastoma multiforme. J Neurosurg. 2010;113(2):192–198. DOI: 10.3171/2010.2.JNS091211

[197]

Li L., Quang T.S., Gracely E.J. et al. A phase II study of anti-epidermal growth factor receptor radioimmunotherapy in the treatment of glioblastoma multiforme // J. Neurosurg. 2010. Vol. 113, No. 2. P. 192–198. DOI: 10.3171/2010.2.JNS091211

[198]

Van den Bent M, Azaro A, De Vos F, et al. A Phase Ib/II, open-label, multicenter study of INC280 (capmatinib) alone and in combination with buparlisib (BKM120) in adult patients with recurrent glioblastoma. J Neurooncol. 2020;146(1):79–89. DOI: 10.1007/s11060-019-03337-2

[199]

Van den Bent M., Azaro A., De Vos F. et al. A phase Ib/II, open-label, multicenter study of INC280 (capmatinib) alone and in combination with buparlisib (BKM120) in adult patients with recurrent glioblastoma // J. Neurooncol. 2020. Vol. 146, No. 1. P. 79–89. DOI: 10.1007/s11060-019-03337-2

[200]

Cleary JM, Reardon DA, Azad N, et al. A phase 1 study of ABT-806 in subjects with advanced solid tumors. Invest New Drugs. 2015;33(3):671–678. DOI: 10.1007/s10637-015-0234-6

[201]

Cleary J.M., Reardon D.A., Azad N. et al. A phase 1 study of ABT-806 in subjects with advanced solid tumors // Invest. New Drugs. 2015. Vol. 33, No. 3. P. 671–678. DOI: 10.1007/s10637-015-0234-6

[202]

Hoffman LM, Fouladi M, Olson J, et al. Phase I trial of weekly MK-0752 in children with refractory central nervous system malignancies: A Pediatric Brain Tumor Consortium Study. Childs Nerv Syst. 2015;31(8):1283–1289. DOI: 10.1007/s00381-015-2725-3

[203]

Hoffman L.M., Fouladi M., Olson J. et al. Phase I trial of weekly MK-0752 in children with refractory central nervous system malignancies: A Pediatric Brain Tumor Consortium Study // Childs Nerv. Syst. 2015. Vol. 31, No. 8. P. 1283–1289. DOI: 10.1007/s00381-015-2725-3

[204]

Lassen U, Chinot OL, McBain C, et al. Phase 1 dose-escalation study of the antiplacental growth factor monoclonal antibody RO5323441 combined with bevacizumab in patients with recurrent glioblastoma. Neuro Oncol. 2015;17(7):1007–1015. DOI: 10.1093/neuonc/nov019

[205]

Lassen U., Chinot O.L., McBain C. et al. Phase 1 dose-escalation study of the antiplacental growth factor monoclonal antibody RO5323441 combined with bevacizumab in patients with recurrent glioblastoma // Neuro. Oncol. 2015. Vol. 17, No. 7. P. 1007–1015. DOI: 10.1093/neuonc/nov019

[206]

Tortorella S, Karagiannis TC. Transferrin receptor-mediated endocytosis: a useful target for cancer therapy. J Membr Biol. 2014;247(4):291–307. DOI: 10.1007/s00232-014-9637-0

[207]

Tortorella S., Karagiannis T.C. Transferrin receptor-mediated endocytosis: a useful target for cancer therapy // J. Membr. Biol. 2014. Vol. 247, No. 4. P. 291–307. DOI: 10.1007/s00232-014-9637-0

[208]

Yaylim I, Azam S, Farooqi AA, et al. Critical molecular and genetic markers in primary brain tumors with their clinical importance. In: Neurooncology – Newer Developments. Chapter 6. IntechOpen; 2016. DOI: 10.5772/63550

[209]

Yaylim I., Azam S., Farooqi A.A. et al. Critical molecular and genetic markers in primary brain tumors with their clinical importance // Neurooncology – Newer Developments. Chapter 6. IntechOpen, 2016. DOI: 10.5772/63550

[210]

Zhao H, Chen G, Liang H, Dual PI3K/mTOR Inhibitor, XL765, suppresses glioblastoma growth by inducing ER stress-dependent apoptosis. Onco Targets Ther. 2019;12:5415–5424. DOI: 10.2147/OTT.S210128

[211]

Zhao H., Chen G., Liang H. Dual PI3K/mTOR Inhibitor, XL765, suppresses glioblastoma growth by inducing ER stress-dependent apoptosis // Onco. Targets Ther. 2019. Vol. 12. P. 5415–5424. DOI: 10.2147/OTT.S210128

[212]

Shukla S, Robey RW, Bates SE, Ambudkar SV. Sunitinib (Sutent, SU11248), a small-molecule receptor tyrosine kinase inhibitor, blocks function of the ATP-binding cassette (ABC) transporters P-glycoprotein (ABCB1) and ABCG2. Drug Metab Dispos. 2009;37(2):359–365. DOI: 10.1124/dmd.108.024612

[213]

Shukla S., Robey R.W., Bates S.E., Ambudkar S.V. Sunitinib (Sutent, SU11248), a small-molecule receptor tyrosine kinase inhibitor, blocks function of the ATP-binding cassette (ABC) transporters P-glycoprotein (ABCB1) and ABCG2 // Drug. Metab. Dispos. 2009. Vol. 37, No. 2. P. 359–365. DOI: 10.1124/dmd.108.024612

[214]

Englund G, Lundquist P, Skogastierna C, et al. Cytochrome p450 inhibitory properties of common efflux transporter inhibitors. Drug Metab Dispos. 2014;42(3):441–447. DOI: 10.1124/dmd.113.054932

[215]

Englund G., Lundquist P., Skogastierna C. et al. Cytochrome p450 inhibitory properties of common efflux transporter inhibitors // Drug. Metab. Dispos. 2014. Vol. 42, No. 3. P. 441–447. DOI: 10.1124/dmd.113.054932

[216]

Declèves X, Bihorel S, Debray M, et al. ABC transporters and the accumulation of imatinib and its active metabolite CGP74588 in rat C6 glioma cells. Pharmacol Res. 2008;57(3):214–222. DOI: 10.1016/j.phrs.2008.01.006

[217]

Declèves X., Bihorel S., Debray M. et al. ABC transporters and the accumulation of imatinib and its active metabolite CGP74588 in rat C6 glioma cells // Pharmacol. Res. 2008. Vol. 57, No. 3. P. 214–222. DOI: 10.1016/j.phrs.2008.01.006

[218]

Eadie LN, Hughes TP, White DL. Interaction of the efflux transporters ABCB1 and ABCG2 with imatinib, nilotinib, and dasatinib. Clin Pharmacol Ther. 2014;95(3):294–306. DOI: 10.1038/clpt.2013.208

[219]

Eadie L.N., Hughes T.P., White D.L. Interaction of the efflux transporters ABCB1 and ABCG2 with imatinib, nilotinib, and dasatinib // Clin. Pharmacol. Ther. 2014. Vol. 95, No. 3. P. 294–306. DOI: 10.1038/clpt.2013.208

[220]

Pun NT, Jeong C-H. Statin as a potential chemotherapeutic agent: current updates as a monotherapy, combination therapy, and treatment for anti-cancer drug resistance. Pharmaceuticals (Basel). 2021;14(5):470. DOI: 10.3390/ph14050470

[221]

Pun N.T., Jeong C.-H. Statin as a potential chemotherapeutic agent: current updates as a monotherapy, combination therapy, and treatment for anti-cancer drug resistance // Pharmaceuticals (Basel). 2021. Vol. 14, No. 5. P. 470. DOI: 10.3390/ph14050470

[222]

Nguyen TT, Duong VA, Maeng HJ. Pharmaceutical formulations with P-Glycoprotein inhibitory effect as promising approaches for enhancing oral drug absorption and bioavailability. Pharmaceutics. 2021;13(7):1103. DOI: 10.3390/pharmaceutics13071103

[223]

Nguyen T.T., Duong V.A., Maeng H.J. Pharmaceutical formulations with P-Glycoprotein inhibitory effect as promising approaches for enhancing oral drug absorption and bioavailability // Pharmaceutics. 2021. Vol. 13, No. 7. P. 1103. DOI: 10.3390/pharmaceutics13071103

[224]

Toyoda Y, Takada T, Suzuki H. Inhibitors of human ABCG2: from technical background to recent updates with clinical implications. Front Pharmacol. 2019;10:208. DOI: 10.3389/fphar.2019.00208

[225]

Toyoda Y., Takada T., Suzuki H. Inhibitors of human ABCG2: from technical background to recent updates with clinical implications // Front. Pharmacol. 2019. Vol. 10. P. 208. DOI: 10.3389/fphar.2019.00208

[226]

Martín V, Sanchez-Sanchez AM, Herrera F, et al. Melatonin-induced methylation of the ABCG2/BCRP promoter as a novel mechanism to overcome multidrug resistance in brain tumour stem cells. Br J Cancer. 2013;108(10):2005–2012. DOI: 10.1038/bjc.2013.188

[227]

Martín V., Sanchez-Sanchez A.M., Herrera F. et al. Melatonin-induced methylation of the ABCG2/BCRP promoter as a novel mechanism to overcome multidrug resistance in brain tumour stem cells // Br. J. Cancer. 2013. Vol. 108, No. 10. P. 2005–2012. DOI: 10.1038/bjc.2013.188

[228]

You D, Richardson JR, Aleksunes LM. Epigenetic regulation of multidrug resistance protein 1 and breast cancer resistance protein transporters by histone deacetylase inhibition. Drug Metab Dispos. 2020;48(6):459–480. DOI: 10.1124/dmd.119.089953

[229]

You D., Richardson J.R., Aleksunes L.M. Epigenetic regulation of multidrug resistance protein 1 and breast cancer resistance protein transporters by histone deacetylase inhibition // Drug. Metab. Dispos. 2020. Vol. 48, No. 6. P. 459–480. DOI: 10.1124/dmd.119.089953

[230]

Lv S, Teugels E, Sadones J, et al. Correlation of EGFR, IDH1 and PTEN status with the outcome of patients with recurrent glioblastoma treated in a phase II clinical trial with the EGFR-blocking monoclonal antibody cetuximab. Int J Oncol. 2012;41(3):1029–1035. DOI: 10.3892/ijo.2012.1539

[231]

Lv S., Teugels E., Sadones J. et al. Correlation of EGFR, IDH1 and PTEN status with the outcome of patients with recurrent glioblastoma treated in a phase II clinical trial with the EGFR-blocking monoclonal antibody cetuximab // Int. J. Oncol. 2012. Vol. 41, No. 3. P. 1029–1035. DOI: 10.3892/ijo.2012.1539

[232]

Lamballe F, Toscano S, Conti F, et al. Coordination of signalling networks and tumorigenic properties by ABL in glioblastoma cells. Oncotarget. 2016;7(46):74747–74767. DOI: 10.18632/oncotarget.12546

[233]

Lamballe F., Toscano S., Conti F. et al. Coordination of signalling networks and tumorigenic properties by ABL in glioblastoma cells // Oncotarget. 2016. Vol. 7, No. 46. P. 74747–74767. DOI: 10.18632/oncotarget.12546

[234]

Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med. 2014;370(8):699–708. DOI: 10.1056/NEJMoa1308573

[235]

Gilbert M.R., Dignam J.J., Armstrong T.S. et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma // N. Engl. J. Med. 2014. Vol. 370, No. 8. P. 699–708. DOI: 10.1056/NEJMoa1308573

[236]

Radoul M, Chaumeil MM, Eriksson P, et al. MR studies of glioblastoma models treated with dual PI3K/mTOR inhibitor and temozolomide: metabolic changes are associated with enhanced survival. Mol Cancer Ther. 2016;15(5):1113–1122. DOI: 10.1158/1535-7163.MCT-15-0769

[237]

Radoul M., Chaumeil M.M., Eriksson P. et al. MR studies of glioblastoma models treated with dual PI3K/mTOR inhibitor and temozolomide: metabolic changes are associated with enhanced survival // Mol. Cancer Ther. 2016. Vol. 15, No. 5. P. 1113–1122. DOI: 10.1158/1535-7163.MCT-15-0769

[238]

Garrido W, Muñoz M, San Martín R, Quezada C. FK506 confers chemosensitivity to anticancer drugs in glioblastoma multiforme cells by decreasing the expression of the multiple resistance-associated protein-1. Biochem Biophys Res Commun. 2011;411(1):62–68. DOI: 10.1016/j.bbrc.2011.06.087

[239]

Garrido W., Muñoz M., San Martín R., Quezada C. FK506 confers chemosensitivity to anticancer drugs in glioblastoma multiforme cells by decreasing the expression of the multiple resistance-associated protein-1 // Biochem. Biophys. Res. Commun. 2011. Vol. 411, No. 1. P. 62-68. DOI: 10.1016/j.bbrc.2011.06.087

[240]

Lo H-W, Cao X, Zhu H, Ali-Osman F. Constitutively activated STAT3 frequently coexpresses with epidermal growth factor receptor in high-grade gliomas and targeting STAT3 sensitizes them to iressa and alkylators. Clin Cancer Res. 2008;14(19):6042–6054. DOI: 10.1158/1078-0432.CCR-07-4923

[241]

Lo H.-W., Cao X., Zhu H., Ali-Osman F. Constitutively activated STAT3 frequently coexpresses with epidermal growth factor receptor in high-grade gliomas and targeting STAT3 sensitizes them to iressa and alkylators // Clin. Cancer Res. 2008. Vol. 14, No. 19. P. 6042–6054. DOI: 10.1158/1078-0432.CCR-07-4923

[242]

Miyata H, Ashizawa T, Iizuka A, et al. Combination of a STAT3 inhibitor and an mTOR inhibitor against a temozolomide-resistant glioblastoma cell line. Cancer Genomics Proteomics. 2017;14(1):83–91. DOI: 10.21873/cgp.20021

[243]

Miyata H., Ashizawa T., Iizuka A. et al. Combination of a STAT3 inhibitor and an mTOR inhibitor against a temozolomide-resistant glioblastoma cell line // Cancer Genomics Proteomics. 2017. Vol. 14, No. 1. P. 83–91. DOI: 10.21873/cgp.20021

[244]

Zanotto-Filho A, Braganhol E, Schröder R, et al. NF-κB inhibitors induce cell death in glioblastomas. Biochem Pharmacol. 2011;81(3):412–424. DOI: 10.1016/j.bcp.2010.10.014

[245]

Zanotto-Filho A., Braganhol E., Schröder R. et al. NF-κB inhibitors induce cell death in glioblastomas // Biochem. Pharmacol. 2011. Vol. 81, No. 3. P. 412–424. DOI: 10.1016/j.bcp.2010.10.014

[246]

Castro-Gamero AM, Borges KS, Moreno DA, et al. Tetra-O-methyl nordihydroguaiaretic acid, an inhibitor of Sp1-mediated survivin transcription, induces apoptosis and acts synergistically with chemo-radiotherapy in glioblastoma cells. Invest New Drugs. 2013;31(4):858–870. DOI: 10.1007/s10637-012-9917-4

[247]

Castro-Gamero A.M., Borges K.S., Moreno D.A. et al. Tetra-O-methyl nordihydroguaiaretic acid, an inhibitor of Sp1-mediated survivin transcription, induces apoptosis and acts synergistically with chemo-radiotherapy in glioblastoma cells // Invest. New Drugs. 2013. Vol. 31, No. 4. P. 858–870. DOI: 10.1007/s10637-012-9917-4

[248]

Chen R, Zhang M, Zhou Y, et al. The application of histone deacetylases inhibitors in glioblastoma. J Exp Clin Cancer Res. 2020;39(1):138. DOI: 10.1186/s13046-020-01643-6

[249]

Chen R., Zhang M., Zhou Y. et al. The application of histone deacetylases inhibitors in glioblastoma // J. Exp. Clin. Cancer Res. 2020. Vol. 39, No. 1. P. 138. DOI: 10.1186/s13046-020-01643-6

[250]

Ko CY, Lin CH, Chuang JY, et al. MDM2 degrades deacetylated nucleolin through ubiquitination to promote glioma stem-like cell enrichment for chemotherapeutic resistance. Mol Neurobiol. 2018;55(4):3211–3223. DOI: 10.1007/s12035-017-0569-4

[251]

Ko C.Y., Lin C.H., Chuang J.Y. et al. MDM2 degrades deacetylated nucleolin through ubiquitination to promote glioma stem-like cell enrichment for chemotherapeutic resistance // Mol. Neurobiol. 2018. Vol. 55, No. 4. P. 3211–3223. DOI: 10.1007/s12035-017-0569-4

[252]

Hsu CC, Chang WC, Hsu TI, et al. Suberoylanilide hydroxamic acid represses glioma stem-like cells. J Biomed Sci. 2016;23(1):81. DOI: 10.1186/s12929-016-0296-6

[253]

Hsu C.C., Chang W.C., Hsu T.I. et al. Suberoylanilide hydroxamic acid represses glioma stem-like cells // J. Biomed. Sci. 2016. Vol. 23, No. 1. P. 81. DOI: 10.1186/s12929-016-0296-6

[254]

Wu Y, Dong L, Bao S, et al. FK228 augmented temozolomide sensitivity in human glioma cells by blocking PI3K/AKT/mTOR signal pathways. Biomed Pharmacother. 2016;84:462–469. DOI: 10.1016/j.biopha.2016.09.051

[255]

Wu Y., Dong L., Bao S. et al. FK228 augmented temozolomide sensitivity in human glioma cells by blocking PI3K/AKT/mTOR signal pathways // Biomed. Pharmacother. 2016. Vol. 84. P. 462–469. DOI: 10.1016/j.biopha.2016.09.051

[256]

Li ZY, Li QZ, Chen L, et al. Histone deacetylase inhibitor RGFP109 overcomes temozolomide resistance by blocking NF-κB-dependent transcription in glioblastoma cell lines. Neurochem Res. 2016;41(12):3192–3205. DOI: 10.1007/s11064-016-2043-5

[257]

Li Z.Y., Li Q.Z., Chen L. et al. Histone deacetylase inhibitor RGFP109 overcomes temozolomide resistance by blocking NF-κB-dependent transcription in glioblastoma cell lines // Neurochem. Res. 2016. Vol. 41, No. 12. P. 3192–3205. DOI: 10.1007/s11064-016-2043-5

[258]

Banelli B, Daga A, Forlani A, et al. Small molecules targeting histone demethylase genes (KDMs) inhibit growth of temozolomide-resistant glioblastoma cells. Oncotarget. 2017;8(21):34896–34910. DOI: 10.18632/oncotarget.16820

[259]

Banelli B., Daga A., Forlani A. et al. Small molecules targeting histone demethylase genes (KDMs) inhibit growth of temozolomide-resistant glioblastoma cells // Oncotarget. 2017. Vol. 8, No. 21. P. 34896–34910. DOI: 10.18632/oncotarget.16820

[260]

Romani M, Daga A, Forlani A, et al. Targeting of histone demethylases KDM5A and KDM6B inhibits the proliferation of temozolomide-resistant glioblastoma cells. Cancers (basel). 2019;11(6):878. DOI: 10.3390/cancers11060878

[261]

Romani M., Daga A., Forlani A. et al. Targeting of histone demethylases KDM5A and KDM6B inhibits the proliferation of temozolomide-resistant glioblastoma cells // Cancers (Basel). 2019. Vol. 11, No. 6. P. 878. DOI: 10.3390/cancers11060878

[262]

Nie E, Jin X, Wu W, et al. MiR-198 enhances temozolomide sensitivity in glioblastoma by targeting MGMT. J Neurooncol. 2017;133(1):59–68. DOI: 10.1007/s11060-017-2425-9

[263]

Nie E., Jin X., Wu W. et al. MiR-198 enhances temozolomide sensitivity in glioblastoma by targeting MGMT // J. Neurooncol. 2017. Vol. 133, No. 1. P. 59–68. DOI: 10.1007/s11060-017-2425-9

[264]

Riganti C, Salaroglio IC, Pinzòn-Daza ML, et al. Temozolomide down-regulates P-glycoprotein in human blood-brain barrier cells by disrupting Wnt3 signaling. Cell Mol Life Sci. 2014;71(3):499–516. DOI: 10.1007/s00018-013-1397-y

[265]

Riganti C., Salaroglio I.C., Pinzòn-Daza M.L. et al. Temozolomide down-regulates P-glycoprotein in human blood-brain barrier cells by disrupting Wnt3 signaling // Cell. Mol. Life Sci. 2014. Vol. 71, No. 3. P. 499–516. DOI: 10.1007/s00018-013-1397-y

[266]

Jakubowicz-Gil J, Bądziul D, Langner E, et al. Temozolomide and sorafenib as programmed cell death inducers of human glioma cells. Pharmacol Rep. 2017;69(4):779–787. DOI: 10.1016/j.pharep.2017.03.008

[267]

Jakubowicz-Gil J., Bądziul D., Langner E. et al. Temozolomide and sorafenib as programmed cell death inducers of human glioma cells // Pharmacol. Rep. 2017. Vol. 69, No. 4. P. 779–787. DOI: 10.1016/j.pharep.2017.03.008

[268]

Stavrovskaya AA, Shushanov SS, Rybalkina EY. Problems of glioblastoma multiforme drug resistance. Biochemistry (Mosc). 2016;81(2):91–100. DOI: 10.1134/S0006297916020036

[269]

Stavrovskaya A.A., Shushanov S.S., Rybalkina E.Y. Problems of glioblastoma multiforme drug resistance // Biochemistry (Mosc). 2016. Vol. 81, No. 2. P. 91–100. DOI: 10.1134/S0006297916020036

[270]

Yu F, Li G, Gao J, et al. SPOCK1 is upregulated in recurrent glioblastoma and contributes to metastasis and temozolomide resistance. Cell Prolif. 2016;49(2):195–206. DOI: 10.1111/cpr.12241

[271]

Yu F., Li G., Gao J. et al. SPOCK1 is upregulated in recurrent glioblastoma and contributes to metastasis and temozolomide resistance // Cell. Prolif. 2016. Vol. 49, No. 2. P. 195–206. DOI: 10.1111/cpr.12241

[272]

Garros-Regulez L, Aldaz P, Arrizabalaga O, et al. mTOR inhibition decreases SOX2-SOX9 mediated glioma stem cell activity and temozolomide resistance. Expert Opin Ther Targets. 2016;20(4):393–405. DOI: 10.1517/14728222.2016.1151002

[273]

Garros-Regulez L., Aldaz P., Arrizabalaga O. et al. mTOR inhibition decreases SOX2-SOX9 mediated glioma stem cell activity and temozolomide resistance // Expert Opin. Ther. Targets. 2016. Vol. 20, No. 4. P. 393–405. DOI: 10.1517/14728222.2016.1151002

[274]

Siebzehnrubl FA, Silver DJ, Tugertimur B, et al. The ZEB1 pathway links glioblastoma initiation, invasion and chemoresistance. EMBO Mol Med. 2013;5(8):1196–1212. DOI: 10.1002/emmm.201302827

[275]

Siebzehnrubl F.A., Silver D.J., Tugertimur B. et al. The ZEB1 pathway links glioblastoma initiation, invasion and chemoresistance // EMBO Mol. Med. 2013. Vol. 5, No. 8. P. 1196–1212. DOI: 10.1002/emmm.201302827

[276]

Ciechomska IA, Przanowski P, Jackl J, et al. BIX01294, an inhibitor of histone methyltransferase, induces autophagy-dependent differentiation of glioma stem-like cells. Sci Rep. 2016;6:38723. DOI: 10.1038/srep38723

[277]

Ciechomska I.A., Przanowski P., Jackl J. et al. BIX01294, an inhibitor of histone methyltransferase, induces autophagy-dependent differentiation of glioma stem-like cells // Sci. Rep. 2016. Vol. 6. P. 38723. DOI: 10.1038/srep38723

[278]

Jin F, Zhao L, Guo Y-J, et al. Influence of Etoposide on anti-apoptotic and multidrug resistance-associated protein genes in CD133 positive U251 glioblastoma stem-like cells. Brain Res. 2010;1336:103–111. DOI: 10.1016/j.brainres.2010.04.005

[279]

Jin F., Zhao L., Guo Y.-J. et al. Influence of Etoposide on anti-apoptotic and multidrug resistance-associated protein genes in CD133 positive U251 glioblastoma stem-like cells // Brain Res. 2010. Vol. 1336. P. 103–111. DOI: 10.1016/j.brainres.2010.04.005

[280]

Bieler A, Mantwill K, Dravits T, et al. Novel three-pronged strategy to enhance cancer cell killing in glioblastoma cell lines: histone deacetylase inhibitor, chemotherapy, and oncolytic adenovirus dl520. Hum Gene Ther. 2006;17(1):55–70. DOI: 10.1089/hum.2006.17.55

[281]

Bieler A., Mantwill K., Dravits T. et al. Novel three-pronged strategy to enhance cancer cell killing in glioblastoma cell lines: histone deacetylase inhibitor, chemotherapy, and oncolytic adenovirus dl520 // Hum. Gene Ther. 2006. Vol. 17, No. 1. P. 55–70. DOI: 10.1089/hum.2006.17.55

[282]

Liu G, Akasaki Y, Khong HT, et al. Cytotoxic T cell targeting of TRP-2 sensitizes human malignant glioma to chemotherapy. Oncogene. 2005;24(33):5226–5234. DOI: 10.1038/sj.onc.1208519

[283]

Liu G., Akasaki Y., Khong H.T. et al. Cytotoxic T cell targeting of TRP-2 sensitizes human malignant glioma to chemotherapy // Oncogene. 2005. Vol. 24, No. 33. P. 5226–5234. DOI: 10.1038/sj.onc.1208519

[284]

Zheng LT, Lee S, Yin GN, et al. Down-regulation of lipocalin 2 contributes to chemoresistance in glioblastoma cells. J Neurochem. 2009;111(5):1238–1251. DOI: 10.1111/j.1471-4159.2009.06410.x

[285]

Zheng L.T., Lee S., Yin G.N. et al. Down-regulation of lipocalin 2 contributes to chemoresistance in glioblastoma cells // J. Neurochem. 2009. Vol. 111, No. 5. P. 1238–1251. DOI: 10.1111/j.1471-4159.2009.06410.x

[286]

Kim BS, Kang KS, Choi JI, et al. Knockdown of the potential cancer stem-like cell marker Rex-1 improves chemotherapeutic effects in gliomas. Hum Gene Ther. 2011;22(12):1551–1562. DOI: 10.1089/hum.2011.096

[287]

Kim B.S., Kang K.S., Choi J.I. et al. Knockdown of the potential cancer stem-like cell marker Rex-1 improves chemotherapeutic effects in gliomas // Hum. Gene Ther. 2011. Vol. 22, No. 12. P. 1551–1562. DOI: 10.1089/hum.2011.096

[288]

Chou CW, Wang CC, Wu CP, et al. Tumor cycling hypoxia induces chemoresistance in glioblastoma multiforme by upregulating the expression and function of ABCB1. Neuro Oncol. 2012;14(10):1227–1238. DOI: 10.1093/neuonc/nos195

[289]

Chou C.W., Wang C.C., Wu C.P. et al. Tumor cycling hypoxia induces chemoresistance in glioblastoma multiforme by upregulating the expression and function of ABCB1 // Neuro. Oncol. 2012. Vol. 14, No. 10. P. 1227–1238. DOI: 10.1093/neuonc/nos195

[290]

Pinzón-Daza M, Garzón R, Couraud P, et al. The association of statins plus LDL receptor-targeted liposome-encapsulated doxorubicin increases in vitro drug delivery across blood-brain barrier cells. Br J Pharmacol. 2012;167(7):1431–1447. DOI: 10.1111/j.1476-5381.2012.02103.x

[291]

Pinzón-Daza M., Garzón R., Couraud P. et al. The association of statins plus LDL receptor-targeted liposome-encapsulated doxorubicin increases in vitro drug delivery across blood-brain barrier cells // Br. J. Pharmacol. 2012. Vol. 167, No. 7. P. 1431–1447. DOI: 10.1111/j.1476-5381.2012.02103.x

[292]

Valera ET, de Freitas Cortez MA, de Paula Queiroz RG, et al. Pediatric glioblastoma cell line shows different patterns of expression of transmembrane ABC transporters after in vitro exposure to vinblastine. Childs Nerv Syst. 2009;25(1):39–45. DOI: 10.1007/s00381-008-0740-3

[293]

Valera E.T., de Freitas Cortez M.A., de Paula Queiroz R.G. et al. Pediatric glioblastoma cell line shows different patterns of expression of transmembrane ABC transporters after in vitro exposure to vinblastine // Childs Nerv. Syst. 2009. Vol. 25, No. 1. P. 39–45. DOI: 10.1007/s00381-008-0740-3

[294]

Lun X, Wells JC, Grinshtein N, et al. Disulfiram when combined with copper enhances the therapeutic effects of temozolomide for the treatment of glioblastoma. Clin Cancer Res. 2016;22(15):3860–3875. DOI: 10.1158/1078-0432.CCR-15-1798

[295]

Lun X., Wells J.C., Grinshtein N. et al. Disulfiram when combined with copper enhances the therapeutic effects of temozolomide for the treatment of glioblastoma // Clin. Cancer Res. 2016. Vol. 22, No. 15. P. 3860–3875. DOI: 10.1158/1078-0432.CCR-15-1798

RIGHTS & PERMISSIONS

Chernov A.N., Shamova O.V.

AI Summary AI Mindmap
PDF (478KB)

62

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/