Multiple functions of tumor supressor p53
Alexandra Ya. Gudkova , Olga I. Antimonova , Mikhail M. Shavlovsky
Medical academic journal ›› 2022, Vol. 22 ›› Issue (1) : 73 -88.
Multiple functions of tumor supressor p53
One of the most investigated and inscrutable eukaryotic proteins is a factor positioned as tumor suppressor which structural changes are observed in 50% of malignant cells. In the literature this protein is referred to as p53. The generalized function of p53 resolves to maintaining of cell genetic stability and preventing cell automatization. Therefore, p53 was called the “keeper”, or “guardian”, of the genome. Suppressive activity of p53 in regard to appearance of malignant cells seems to be side function of this protein. The present review prоvides data on the role of p53 in various vital processes in eukaryotic cells. p53 is a complex protein in its domain structure, and the semi-autonomous role of individual domains is clearly discernible. Normally, p53 is not a crucial factor in ontogenesis. At the same time p53 modulates the activity of about 500 different genes and also maintains homeostasis in cells and organism directly via protein-protein interactions. In response to exogenous and endogenous impacts p53 provides a balance of cellular metabolism and either promotes elimination of abnormalities, or triggers an apoptotic cascade. The review summarizes current considerations of p53 multiple functions as well as discusses already established and not yet disclosed mechanisms concerning involvement of said factor in cellular metabolism.
tumor suppressor / p53 / the TP53 gene / cell metabolism / apoptosis / genetic polymorphism / mutations
| [1] |
Chang C, Simmons DT, Martin MA, Mora PT. Identification and partial characterization of new antigens from simian virus 40-transformed mouse cells. J Virol. 1979;31(2):463–471. DOI: 10.1128/jvi.31.2.463-471.1979 |
| [2] |
Chang C., Simmons D.T., Martin M.A., Mora P.T. Identification and partial characterization of new antigens from simian virus 40-transformed mouse cells // J. Virol. 1979. Vol. 31, No. 2. P. 463–471. DOI: 10.1128/jvi.31.2.463-471.1979 |
| [3] |
Kress M, May E, Cassingena R, May P. Simian virus 40-transformed cell express new species of proteins precipitable by anti-simian virus 40 tumor serum. J Virol. 1979;31(2):472–483. DOI: 10.1128/ jvi.31.2.472-483.1979 |
| [4] |
Kress M., May E., Cassingena R., May P. Simian virus 40-transformed cell express new species of proteins precipitable by anti-simian virus 40 tumor serum // J. Virol. 1979. Vol. 31, No. 2. P. 472–483. DOI: 10.1128/ jvi.31.2.472-483.1979 |
| [5] |
DeLeo AB, Jay G, Appella E, et al. Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci USA. 1979;76(5):2420–2424. DOI: 10.1073/pnas.76.5.2420 |
| [6] |
DeLeo A.B., Jay G., Appella E. et al. Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse // Proc. Natl. Acad. Sci. USA. 1979. Vol. 76, No. 5. P. 2420–2424. DOI: 10.1073/pnas.76.5.2420 |
| [7] |
Harris CC. Structure and function of the p53 tumor suppressor gene: clues for rational cancer therapeutic strategies. J Natl Cancer Inst. 1996;88(20):1442–1455. DOI: 10.1093/jnci/88.20.1442 |
| [8] |
Harris C.C. Structure and function of the p53 tumor suppressor gene: clues for rational cancer therapeutic strategies // J. Natl. Cancer Inst. 1996. Vol. 88, No. 20. P. 1442–1455. DOI: 10.1093/jnci/88.20.1442 |
| [9] |
Oren M, Levine AJ. Molecular cloning of a cDNA specific for the murine p53 cellular tumor antigen. Proc Natl Acad Sci USA. 1983;80(1):56–59. DOI: 10.1073/pnas.80.1.56 |
| [10] |
Oren M., Levine A.J. Molecular cloning of a cDNA specific for the murine p53 cellular tumor antigen // Proc. Natl. Acad. Sci. USA. 1983. Vol. 80, No. 1. P. 56–59. DOI: 10.1073/pnas.80.1.56 |
| [11] |
Finlay CA, Hinds PW, Levine AJ. The p53 proto-oncogene can act as a suppressor of transformation. Cell. 1989;57(7):1083–1093. DOI: 10.1016/0092-8674(89)90045-7 |
| [12] |
Finlay C.A., Hinds P.W., Levine A.J. The p53 proto-oncogene can act as a suppressor of transformation // Cell. 1989. Vol. 57, No. 7. P. 1083–1093. DOI: 10.1016/0092-8674(89)90045-7 |
| [13] |
Barboza JA, Liu G, Ju Z, et al. p21 delays tumor onset by preservation of chromosomal stability. Proc Natl Acad Sci USA. 2006;103(52):19842–19847. DOI: 10.1073/pnas.0606343104 |
| [14] |
Barboza J.A., Liu G., Ju Z. et al. p21 delays tumor onset by preservation of chromosomal stability // Proc. Natl. Acad. Sci. USA. 2006. Vol. 103, No. 52. P. 19842–19847. DOI: 10.1073/pnas.0606343104 |
| [15] |
Liu G, Parant JM, Lang G, et al. Chromosome stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice. Nat Genet. 2004;36(1):63–68. DOI: 10.1038/ng1282 |
| [16] |
Liu G., Parant J.M., Lang G. et al. Chromosome stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice // Nat. Genet. 2004. Vol. 36, No. 1. P. 63–68. DOI: 10.1038/ng1282 |
| [17] |
Lane DP, Benchimol S. p53: oncogene or anti-oncogene? Genes Dev. 1990;4(1):1–8. DOI: 10.1101/gad.4.1.1 |
| [18] |
Lane D.P., Benchimol S. p53: oncogene or anti-oncogene? // Genes Dev. 1990. Vol. 4, No. 1. P. 1–8. DOI: 10.1101/gad.4.1.1 |
| [19] |
Aubrey BJ, Kelly GL, Janic A, et al. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ. 2018;25(1):104–113. DOI: 10.1038/cdd.2017.169 |
| [20] |
Aubrey B.J., Kelly G.L., Janic A. et al. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? // Cell Death Differ. 2018. Vol. 25, No. 1. P. 104–113. DOI: 10.1038/cdd.2017.169 |
| [21] |
Lane DP. Cancer. p53, guardian of the genome. Nature. 1992;358(6381):15–16. DOI: 10.1038/358015a0 |
| [22] |
Lane D.P. Cancer. p53, guardian of the genome // Nature. 1992. Vol. 358, No. 6381. P. 15–16. DOI: 10.1038/358015a0 |
| [23] |
Brooks CL, Gu W. p53 ubiquitination: Mdm2 and beyond. Mol Cell. 2006;21(3):307–315. DOI: 10.1016/j.molcel.2006.01.020 |
| [24] |
Brooks C.L., Gu W. p53 ubiquitination: Mdm2 and beyond // Mol. Cell. 2006. Vol. 21, No. 3. P. 307–315. DOI: 10.1016/j.molcel.2006.01.020 |
| [25] |
Sullivan KD, Galbraith MD, Andrysik Z, Espinosa JM. Mechanisms of transcriptional regulation by p53. Cell Death Differ. 2018;25(1):133–143. DOI: 10.1038/cdd.2017.174 |
| [26] |
Sullivan K.D., Galbraith M.D., Andrysik Z., Espinosa J.M. Mechanisms of transcriptional regulation by p53 // Cell Death Differ. 2018. Vol. 25, No. 1. P. 133–143. DOI: 10.1038/cdd.2017.174 |
| [27] |
Vousden KH, Lane DP. p53 in health and disease. Nat Rev Mol Cell Biol. 2007;8(4):275–283. DOI: 10.1038/nrm2147 |
| [28] |
Vousden K.H., Lane D.P. p53 in health and disease // Nat. Rev. Mol. Cell Biol. 2007. Vol. 8, No. 4. P. 275–283. DOI: 10.1038/nrm2147 |
| [29] |
Chumakov PM. Belok p53 i ego universal’nye funktsii v mnogokletochnom organizme. Uspekhi biologicheskoy khimii. 2007;47:3–52. (In Russ.) |
| [30] |
Чумаков П.М. Белок p53 и его универсальные функции в многоклеточном организме // Успехи биологической химии. 2007. Т. 47. С. 3–52. |
| [31] |
Zheltukhin AO, Chumakov PM. Povsednevnye i indutsiruemye funktsii gena p53. Uspekhi biologicheskoy khimii. 2010;50:447–516. (In Russ.) |
| [32] |
Желтухин А.О., Чумаков П.М. Повседневные и индуцируемые функции гена p53 // Успехи биологической химии. 2010. Т. 50. С. 447–516. |
| [33] |
Michael D, Oren M. The p53 and Mdm2 families in cancer. Curr Opin Genet Dev. 2002;12(1):53–59. DOI: 10.1016/s0959-437x(01)00264-7 |
| [34] |
Michael D., Oren M. The p53 and Mdm2 families in cancer // Curr. Opin. Genet. Dev. 2002. Vol. 12, No. 1. P. 53–59. DOI: 10.1016/s0959-437x(01)00264-7 |
| [35] |
Montes de Oca Luna R, Wagner DS, Lozano G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature. 1995;378(6553):203–206. DOI: 10.1038/378203a0 |
| [36] |
Montes de Oca Luna R., Wagner D.S., Lozano G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53 // Nature. 1995. Vol. 378, No. 6553. P. 203–206. DOI: 10.1038/378203a0 |
| [37] |
Ranjan A, Iwakuma T. Non-canonical cell death induced by p53. Int J Mol Sci. 2016;17(12):2068. DOI: 10.3390/ijms17122068 |
| [38] |
Ranjan A., Iwakuma T. Non-canonical cell death induced by p53 // Int. J. Mol. Sci. 2016. Vol. 17, No. 12. P. 2068. DOI: 10.3390/ijms17122068 |
| [39] |
Cordani M, Butera G, Pacchiana R, Donadelli M. Molecular interplay between mutant p53 proteins and autophagy in cancer cells. Biochim Biophys Acta Rev Cancer. 2017;1867(1):19–28. DOI: 10.1016/j.bbcan.2016.11.003 |
| [40] |
Cordani M., Butera G., Pacchiana R., Donadelli M. Molecular interplay between mutant p53 proteins and autophagy in cancer cells // Biochim. Biophys. Acta Rev. Cancer. 2017. Vol. 1867, No. 1. P. 19–28. DOI: 10.1016/j.bbcan.2016.11.003 |
| [41] |
Weizer-Stern O, Adamsky K, Margalit O, et al. Hepcidin, a key regulator of iron metabolism, is transcriptionally activated by p53. Br J Haematol. 2007;138(2):253–262. DOI: 10.1111/j.1365-2141.2007.06638.x |
| [42] |
Weizer-Stern O., Adamsky K., Margalit O. et al. Hepcidin, a key regulator of iron metabolism, is transcriptionally activated by p53 // Br. J. Haematol. 2007. Vol. 138, No. 2. P. 253–262. DOI: 10.1111/j.1365-2141.2007.06638.x |
| [43] |
Gnanapradeepan K, Basu S, Barnoud T, et al. The p53 tumor suppressor in the control of metabolism and ferroptosis. Front Endocrinol (Lausanne). 2018;9:124. DOI: 10.3389/fendo.2018.00124 |
| [44] |
Gnanapradeepan K., Basu S., Barnoud T. et al. The p53 tumor suppressor in the control of metabolism and ferroptosis // Front. Endocrinol. (Lausanne). 2018. Vol. 9. P. 124. DOI: 10.3389/fendo.2018.00124 |
| [45] |
Zhang L, Vijg J. Somatic mutagenesis in mammals and its implications for human disease and aging. Annu Rev Genet. 2018;52:397–419. DOI: 10.1146/annurev-genet-120417-031501 |
| [46] |
Zhang L., Vijg J. Somatic mutagenesis in mammals and its implications for human disease and aging // Annu. Rev. Genet. 2018. Vol. 52. P. 397–419. DOI: 10.1146/annurev-genet-120417-031501 |
| [47] |
Chen J. The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harb Perspect Med. 2016;6(3):a026104. DOI: 10.1101/cshperspect.a026104 |
| [48] |
Chen J. The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression // Cold Spring Harb. Perspect. Med. 2016. Vol. 6, No. 3. P. a026104. DOI: 10.1101/cshperspect.a026104 |
| [49] |
Muller PAJ, Vousden KH, Norman JC. p53 and its mutants in tumor cell migration and invasion. J Cell Biol. 2011;192(2):209–218. DOI: 10.1083/jcb.201009059 |
| [50] |
Muller P.A.J., Vousden K.H., Norman J.C. p53 and its mutants in tumor cell migration and invasion // J. Cell Biol. 2011. Vol. 192, No. 2. P. 209–218. DOI: 10.1083/jcb.201009059 |
| [51] |
Woodstock DL, Sammons MA, Fischer M. p63 and p53: collaborative partners or dueling rivals? Front Cell Dev Biol. 2021;9:701986. DOI: 10.3389/fcell.2021.701986 |
| [52] |
Woodstock D.L., Sammons M.A., Fischer M. p63 and p53: collaborative partners or dueling rivals? // Front. Cell Dev. Biol. 2021. Vol. 9. P. 701986. DOI: 10.3389/fcell.2021.701986 |
| [53] |
Wang Y, Blandino G, Oren M, Givol D. Induced p53 expression in lung cancer cell line promotes cell senescence and differentially modifies the cytotoxicity of anti-cancer drugs. Oncogene. 1998;17(15):1923–1930. DOI: 10.1038/sj.onc.1202113 |
| [54] |
Wang Y., Blandino G., Oren M., Givol D. Induced p53 expression in lung cancer cell line promotes cell senescence and differentially modifies the cytotoxicity of anti-cancer drugs // Oncogene. 1998. Vol. 17, No. 15. P. 1923–1930. DOI: 10.1038/sj.onc.1202113 |
| [55] |
Mijit M, Caracciolo V, Melillo A, et al. Role of p53 in the regulation of cellular senescence. Biomolecules. 2020;10(3):420. DOI: 10.3390/biom10030420 |
| [56] |
Mijit M., Caracciolo V., Melillo A. et al. Role of p53 in the regulation of cellular senescence // Biomolecules. 2020. Vol. 10, No. 3. P. 420. DOI: 10.3390/biom10030420 |
| [57] |
Bojesen SE, Nordestgaard BG. The common germline Arg72Pro polymorphism of p53 and increased longevity in humans. Cell Cycle. 2008;7(2):158–163. DOI: 10.4161/cc.7.2.5249 |
| [58] |
Bojesen S.E., Nordestgaard B.G. The common germline Arg72Pro polymorphism of p53 and increased longevity in humans // Cell Cycle. 2008. Vol. 7, No. 2. P. 158–163. DOI: 10.4161/cc.7.2.5249 |
| [59] |
Levine AJ, Puzio-Kuter AM, Chan CS, Hainaut P. The role of the p53 protein in stem-cell biology and epigenetic regulation. Cold Spring Harb Perspect Med. 2016;6(9):a026153. DOI: 10.1101/cshperspect.a026153 |
| [60] |
Levine A.J., Puzio-Kuter A.M., Chan C.S., Hainaut P. The role of the p53 protein in stem-cell biology and epigenetic regulation // Cold Spring Harb. Perspect. Med. 2016. Vol. 6, No. 9. P. a026153. DOI: 10.1101/cshperspect.a026153 |
| [61] |
Pfaff MJ, Mukhopadhyay S, Hoofnagle M, et al. Tumor suppressor protein p53 negatively regulates ischemia-induced angiogenesis and arteriogenesis. J Vasc Surg. 2018;68(6S):222S–233S.e1. DOI: 10.1016/j.jvs.2018.02.055 |
| [62] |
Pfaff M.J., Mukhopadhyay S., Hoofnagle M. et al. Tumor suppressor protein p53 negatively regulates ischemia-induced angiogenesis and arteriogenesis // J. Vasc. Surg. 2018. Vol. 68, No. 6S. P. 222S–233S.e1. DOI: 10.1016/j.jvs.2018.02.055 |
| [63] |
Regulski MJ. Cellular senescence: what, why, and how. Wounds. 2017;29(6):168–174. |
| [64] |
Regulski M.J. Cellular senescence: what, why, and how // Wounds. 2017. Vol. 29, No. 6. P. 168–174. |
| [65] |
Nomura S, Satoh M, Fujita T, et al. Cardiomyocyte gene programs encoding morphological and functional signatures in cardiac hypertrophy and failure. Nat Commun. 2018;9(1):4435–4452. DOI: 10.1038/s41467-018-06639-7 |
| [66] |
Nomura S., Satoh M., Fujita T. et al. Cardiomyocyte gene programs encoding morphological and functional signatures in cardiac hypertrophy and failure // Nat. Commun. 2018. Vol. 9, No. 1. P. 4435–4452. DOI: 10.1038/s41467-018-06639-7 |
| [67] |
Krstic J, Reinisch I, Schupp M, et al. p53 functions in adipose tissue metabolism and homeostasis. Int J Mol Sci. 2018;19(9):2622. DOI: 10.3390/ijms19092622 |
| [68] |
Krstic J., Reinisch I., Schupp M. et al. p53 functions in adipose tissue metabolism and homeostasis // Int. J. Mol. Sci. 2018. Vol. 19, No. 9. P. 2622. DOI: 10.3390/ijms19092622 |
| [69] |
Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E. The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res. 2004;64(7):2627–2633. DOI: 10.1158/0008-5472.CAN-03-0846 |
| [70] |
Schwartzenberg-Bar-Yoseph F., Armoni M., Karnieli E. The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression // Cancer Res. 2004. Vol. 64, No. 7. P. 2627–2633. DOI: 10.1158/0008-5472.CAN-03-0846 |
| [71] |
Lacroix M, Riscal R, Arena G, et al. Metabolic function of the tumor suppressor p53: Implications in normal physiology, metabolic disordes, and cancer. Mol Metab. 2020;33:2–22. DOI: 10.1016/j.molmet.2019.10.002 |
| [72] |
Lacroix M., Riscal R., Arena G. et al. Metabolic function of the tumor suppressor p53: Implications in normal physiology, metabolic disordes, and cancer // Mol. Metab. 2020. Vol. 33. P. 2–22. DOI: 10.1016/j.molmet.2019.10.002 |
| [73] |
Schmidt V, Nagar R, Martinez LA. Control of nucleotide metabolism enables mutant p53’s oncogenic gain-of-function activity. Int J Mol Sci. 2017;18(12):2759. DOI: 10.3390/ijms18122759 |
| [74] |
Schmidt V., Nagar R., Martinez L.A. Control of nucleotide metabolism enables mutant p53’s oncogenic gain-of-function activity // Int. J. Mol. Sci. 2017. Vol. 18, No. 12. P. 2759. DOI: 10.3390/ijms18122759 |
| [75] |
Kim H-R, Roe J-S, Lee J-E, et al. A p53-inducible microRNA-34a downregulates Ras signaling by targeting IMPDH. Biochem Biophys Res Commun. 2012;418(4):682–688. DOI: 10.1016/j.bbrc.2012.01.077 |
| [76] |
Kim H.-R., Roe J.-S., Lee J.-E. et al. A p53-inducible microRNA-34a downregulates Ras signaling by targeting IMPDH // Biochem. Biophys. Res. Commun. 2012. Vol. 418, No. 4. P. 682–688. DOI: 10.1016/j.bbrc.2012.01.077 |
| [77] |
Sablina AA, Budanov AV, Ilyinskaya GV, et al. The antioxidant function of the p53 tumor suppressor. Nat Med. 2005;11(12):1306–1313. DOI: 10.1038/nm1320 |
| [78] |
Sablina A.A., Budanov A.V., Ilyinskaya G.V. et al. The antioxidant function of the p53 tumor suppressor // Nat. Med. 2005. Vol. 11, No. 12. P. 1306–1313. DOI: 10.1038/nm1320 |
| [79] |
Giacomelli AO, Yang X, Lintner RE, et al. Mutational processes shape the landscape of TP53 mutations in human cancer. Nat Genet. 2018;50(10):1381–1387. DOI: 10.1038/s41588-018-0204-y |
| [80] |
Giacomelli A.O., Yang X., Lintner R.E. et al. Mutational processes shape the landscape of TP53 mutations in human cancer // Nat. Genet. 2018. Vol. 50, No. 10. P. 1381–1387. DOI: 10.1038/s41588-018-0204-y |
| [81] |
Hainaut P, Pfeifer GP. Somatic TP53 mutations in the era of genome sequencing. Cold Spring Harb Perspect Med. 2016;6(11):a026179. DOI: 10.1101/cshperspect.a026179 |
| [82] |
Hainaut P., Pfeifer G.P. Somatic TP53 mutations in the era of genome sequencing // Cold Spring Harb. Perspect. Med. 2016. Vol. 6, No. 11. P. a026179. DOI: 10.1101/cshperspect.a026179 |
| [83] |
Gene: GSTP1 ENSG00000084207 [Internet]. Available from: https://www.ensembl.org/Homo_sapiens/Gene/Variation_Gene/Table?db=core;g=ENSG00000141510;r=17:7661779-7687538. Accessed: Mar 17, 2022. |
| [84] |
Gene: GSTP1 ENSG00000084207 [Электронный ресурс]. Режим доступа: https://www.ensembl.org/Homo_sapiens/Gene/Variation_Gene/Table?db=core;g=ENSG00000141510;r=17:7661779-7687538. Дата обращения: 17.03.2022. |
| [85] |
Jeong B-S, Hu W, Belyi V, et al. Differential levels of transcription of p53-regulated genes by the arginine/proline polymorphism: p53 with arginine at codon 72 favors apoptosis. FASEB J. 2010;24(5):1347–1353. DOI: 10.1096/fj.09-146001 |
| [86] |
Jeong B.-S., Hu W., Belyi V. et al. Differential levels of transcription of p53-regulated genes by the arginine/proline polymorphism: p53 with arginine at codon 72 favors apoptosis // FASEB J. 2010. Vol. 24, No. 5. P. 1347–1353. DOI: 10.1096/fj.09-146001 |
| [87] |
Pim D, Banks L. p53 polymorphic variants at codon 72 exert different effects on cell cycle progression. Int J Cancer. 2004;108(2):196–199. DOI: 10.1002/ijc.11548 |
| [88] |
Pim D., Banks L. p53 polymorphic variants at codon 72 exert different effects on cell cycle progression // Int. J. Cancer. 2004. Vol. 108, No. 2. P. 196–199. DOI: 10.1002/ijc.11548 |
| [89] |
Tzovaras AA, Gentimi F, Nikolaou M. Tumor protein p53 gene and cardiovascular disease. Angiology. 2018;69(8):736–737. DOI: 10.1177/0003319718772412 |
| [90] |
Tzovaras A.A., Gentimi F., Nikolaou M. Tumor protein p53 gene and cardiovascular disease // Angiology. 2018. Vol. 69, No. 8. P. 736–737. DOI: 10.1177/0003319718772412 |
| [91] |
Kolovou V, Tsipis A, Mihas C, et al. Tumor protein p53 (TP53) gene and left main coronary artery disease. Angiology. 2018;69(8):730–735. DOI: 10.1177/0003319718760075 |
| [92] |
Kolovou V., Tsipis A., Mihas C. et al. Tumor protein p53 (TP53) gene and left main coronary artery disease // Angiology. 2018. Vol. 69, No. 8. P. 730–735. DOI: 10.1177/0003319718760075 |
| [93] |
Gaulton KJ, Willer CJ, Li Y, et al. Comprehensive association study of type 2 diabetes and related quantitative traits with 222 candidate genes. Diabetes. 2008;57(11):3136–3144. DOI: 10.2337/db07-1731 |
| [94] |
Gaulton K.J., Willer C.J., Li Y. et al. Comprehensive association study of type 2 diabetes and related quantitative traits with 222 candidate genes // Diabetes. 2008. Vol. 57, No. 11. P. 3136–3144. DOI: 10.2337/db07-1731 |
| [95] |
Burgdorf KS, Grarup N, Justesen JM, et al. Studies of the association of Arg72Pro of tumor suppressor protein p53 with type 2 diabetes in a combined analysis of 55,521 Europeans. PLoS One. 2011;6(1):e15813. DOI: 10.1371/journal.pone.0015813 |
| [96] |
Burgdorf K.S., Grarup N., Justesen J.M. et al. Studies of the association of Arg72Pro of tumor suppressor protein p53 with type 2 diabetes in a combined analysis of 55,521 Europeans // PLoS One. 2011. Vol. 6, No. 1. P. e15813. DOI: 10.1371/journal.pone.0015813 |
| [97] |
Jennis M, Kung C-P, Basu S, et al. An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model. Genes Dev. 2016;30(8):918–930. DOI: 10.1101/gad.275891.115 |
| [98] |
Jennis M., Kung C.-P., Basu S. et al. An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model // Genes Dev. 2016. Vol. 30, No. 8. P. 918–930. DOI: 10.1101/gad.275891.115 |
| [99] |
Wang Y, Wu X-S, He J, et al. A novel TP53 variant (rs78378222 A > C) in the polyadenylation signal is associated with increased cancer susceptibility: evidence from a meta-analysis. Oncotarget. 2016;7(22):32854–32865. DOI: 10.18632/oncotarget.9056 |
| [100] |
Wang Y., Wu X.-S., He J. et al. A novel TP53 variant (rs78378222 A > C) in the polyadenylation signal is associated with increased cancer susceptibility: evidence from a meta-analysis // Oncotarget. 2016. Vol. 7, No. 22. P. 32854–32865. DOI: 10.18632/oncotarget.9056 |
| [101] |
Lee AS, Galea C, DiGiammarino EL, et al. Reversible amyloid formation by the p53 tetramerization domain and a cancer-associated mutant. J Mol Biol. 2003;327(3):699–709. DOI: 10.1016/s0022-2836(03)00175-x |
| [102] |
Lee A.S., Galea C., DiGiammarino E.L. et al. Reversible amyloid formation by the p53 tetramerization domain and a cancer-associated mutant // J. Mol. Biol. 2003. Vol. 327, No. 3. P. 699–709. DOI: 10.1016/s0022-2836(03)00175-x |
| [103] |
Ano Bom APD, Rangel LP, Costa DCF, et al. Mutant p53 aggregates into prion-like amyloid oligomers and fibrils: implications for cancer. J Biol Chem. 2012;287(33):28152–28162. DOI: 10.1074/jbc.M112.340638 |
| [104] |
Ano Bom A.P.D., Rangel L.P., Costa D.C.F. et al. Mutant p53 aggregates into prion-like amyloid oligomers and fibrils: implications for cancer // J. Biol. Chem. 2012. Vol. 287, No. 33. P. 28152–28162. DOI: 10.1074/jbc.M112.340638 |
| [105] |
Kanapathipillai M. Treating p53 mutant aggregation-associated cancer. Cancers (Basel). 2018;10(6):154. DOI: 10.3390/cancers10060154 |
| [106] |
Kanapathipillai M. Treating p53 mutant aggregation-associated cancer // Cancers (Basel). 2018. Vol. 10, No. 6. P. 154. DOI: 10.3390/cancers10060154 |
| [107] |
Perdrix A, Najem A, Saussez S, et al. PRIMA-1 and PRIMA-1Met (APR-246): from mutant/wild type p53 reactivation to unexpected mechanisms underlying their potent anti-tumor effect in combinatorial therapies. Cancers (Basel). 2017;9(12):172. DOI: 10.3390/cancers9120172 |
| [108] |
Perdrix A., Najem A., Saussez S. et al. PRIMA-1 and PRIMA-1Met (APR-246): from mutant/wild type p53 reactivation to unexpected mechanisms underlying their potent anti-tumor effect in combinatorial therapies // Cancers (Basel). 2017. Vol. 9, No. 12. P. 172. DOI: 10.3390/cancers9120172 |
| [109] |
Lambert JMR, Gorzov P, Veprintsev DB, et al. PRIMA-1 reactivates mutant p53 by covalent binding to the core domain. Cancer Cell. 2009;15(5):376–388. DOI: 10.1016/j.ccr.2009.03.003 |
| [110] |
Lambert J.M.R., Gorzov P., Veprintsev D.B. et al. PRIMA-1 reactivates mutant p53 by covalent binding to the core domain // Cancer Cell. 2009. Vol. 15, No. 5. P. 376–388. DOI: 10.1016/j.ccr.2009.03.003 |
| [111] |
Rangel LP, Ferretti GDS, Costa CL, et al. p53 reactivation with induction of massive apoptosis-1 (PRIMA-1) inhibits amyloid aggregation of mutant p53 in cancer cells. J Biol Chem. 2019;294(10):3670–3682. DOI: 10.1074/jbc.RA118.004671 |
| [112] |
Rangel L.P., Ferretti G.D.S., Costa C.L. et al. p53 reactivation with induction of massive apoptosis-1 (PRIMA-1) inhibits amyloid aggregation of mutant p53 in cancer cells // J. Biol. Chem. 2019. Vol. 294, No. 10. P. 3670–3682. DOI: 10.1074/jbc.RA118.004671 |
| [113] |
Dötsch V, Bernassola F, Coutandin D, et al. p63 and p73, the ancestors of p53. Cold Spring Harb Perspect Biol. 2010;2(9):a004887. DOI: 10.1101/cshperspect.a004887 |
| [114] |
Dötsch V., Bernassola F., Coutandin D. et al. p63 and p73, the ancestors of p53 // Cold Spring Harb. Perspect. Biol. 2010. Vol. 2, No. 9. P. a004887. DOI: 10.1101/cshperspect.a004887 |
Gudkova A.Y., Antimonova O.I., Shavlovsky M.M.
/
| 〈 |
|
〉 |