Influence of new antimicrobial peptides of the medicinal leech Hirudo medicinalis on the functional activity of neutrophil granule proteins

Daria V. Grigorieva , Irina V. Gorudko , Ekaterina N. Grafskaia , Ivan A. Latsis , Alexey V. Sokolov , Oleg M. Panasenko , Vasily N. Lazarev

Medical academic journal ›› 2021, Vol. 21 ›› Issue (3) : 49 -62.

PDF (410KB)
Medical academic journal ›› 2021, Vol. 21 ›› Issue (3) : 49 -62. DOI: 10.17816/MAJ77649
Original research
research-article

Influence of new antimicrobial peptides of the medicinal leech Hirudo medicinalis on the functional activity of neutrophil granule proteins

Author information +
History +
PDF (410KB)

Abstract

BACKGROUND: Resistance of microorganisms caused dangerous to human health infections to traditional antibiotics is a serious problem for healthcare. In this regard, the development of new effective antimicrobial drugs and therapeutic approaches is an urgent task. Antimicrobial peptides (AMPs) are considered a promising alternative to traditional antibiotic in the fight against resistant microorganisms.

AIM: The aim of this work is to study the effect of new synthesized AMPs of the medicinal leech Hirudo medicinalis (including under conditions of development of oxidative/halogenative stress) on the functional activity of neutrophils granular proteins — the main effector cells of the immune system.

MATERIALS AND METHODS: Myeloperoxidase peroxidase activity was assessed by the rate of o-dianisidine oxidation. Neutrophil elastase activity was determined by the fluorescence method using a specific substrate MeOSuc-AAPV-AMC. Lactoferrin iron-binding activity was assessed spectrophotometrically by the change in absorption of protein solution after addition of Fe3+ salt. Lysozyme activity was determined by the rate of M. lysodeikticus bacterial cells lysis.

RESULTS: Native AMPs 536_1 and 19347_2 inhibited and 12530 increased myeloperoxidase peroxidase activity, this tendency persisted after these AMPs modification by hypochlorous acid (HOCl). In contrast to the native AMP halogenated AMP 3967_1 acquired the ability to enhance myeloperoxidase enzymatic activity. In the presence of AMP 3967_1 neutrophil elastase amidolytic activity increased insignificantly, while AMP 19347_2 inhibited neutrophil elastase activity. After HOCl modification these AMPs retained their ability to regulate neutrophil elastase activity. Synergistic effects (~20%) against gram-positive bacteria M. lysodeikticus were revealed for combination of lysozyme with AMPs 12530 and 3967_1. Inhibition lysozyme antimicrobial activity was observed in the presence of AMPs 19347_2 and 536_1, however the severity of this effect decreased after AMPs modification by HOCl. After HOCl modification AMP 3967_1 increased, while AMP 12530 on the contrary acquired the ability to inhibit lysozyme mucolytic activity.

CONCLUSIONS: The use of drugs based on studied AMPs of medicinal leech will have a beneficial effect on the body’s fight against infectious agents due to the antimicrobial action of AMPs themselves. But in addition studied AMPs are capable to modulate the biological activity of own endogenous antimicrobial proteins and peptides: to enhance it, if it is necessary to eliminate pathogen and to inhibit — if it necessary to protect against damage to the body’s own tissues.

Keywords

antimicrobial peptides / medicinal leech / myeloperoxidase / lysozyme / elastase / lactoferrin / neutrophils / hypochlorous acid / halogenative stress

Cite this article

Download citation ▾
Daria V. Grigorieva, Irina V. Gorudko, Ekaterina N. Grafskaia, Ivan A. Latsis, Alexey V. Sokolov, Oleg M. Panasenko, Vasily N. Lazarev. Influence of new antimicrobial peptides of the medicinal leech Hirudo medicinalis on the functional activity of neutrophil granule proteins. Medical academic journal, 2021, 21(3): 49-62 DOI:10.17816/MAJ77649

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Musin KG. Antimicrobial peptides — a potential peplacement for traditional antibiotics. Russian Journal of Infection and Immunity. 2018;8(3):295–308. (In Russ.) DOI: 10.15789/2220-7619-2018-3-295-308

[2]

Мусин Х.Г. Антимикробные пептиды — потенциальная замена традиционным антибиотикам // Инфекция и иммунитет. 2018. Т. 8, № 3. С. 295–308. DOI: 10.15789/2220-7619-2018-3-295-308

[3]

Zharkova MS, Orlov DS, Kokryakov VN, Shamova OV. Mammalian antimicrobial peptides: classification, biological role, perspectives of practicale use. Biological Communications. 2014;(1):98–114. (In Russ.)

[4]

Жаркова М.С., Орлов Д.С., Кокряков В.Н., Шамова О.В. Антимикробные пептиды млекопитающих: классификация, биологическая роль, перспективы практического применения // Вестник Санкт-Петербургского университета. Серия 3. Биология. 2014. № 1. С. 98–114.

[5]

Lei J, Sun L, Huang S, et al. The antimicrobial peptides and their potential clinical applications. Am J Transl Res. 2019;11(7):3919–3931.

[6]

Lei J., Sun L., Huang S. et al. The antimicrobial peptides and their potential clinical applications // Am. J. Transl. Res. 2019. Vol. 11, No. 7. P. 3919–3931.

[7]

Mahlapuu M, Håkansson J, Ringstad L, Björn C. Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol. 2016;6:194. DOI: 10.3389/fcimb.2016.00194

[8]

Mahlapuu M., Håkansson J., Ringstad L., Björn C. Antimicrobial peptides: an emerging category of therapeutic agents // Front. Cell. Infect. Microbiol. 2016. Vol. 6. P. 194. DOI: 10.3389/fcimb.2016.00194

[9]

Huerta-Cantillo J, Navarro-García F. Properties and design of antimicrobial peptides as potential tools against pathogens and malignant cells. Investigación en Discapacidad. 2016;5(2):96–115.

[10]

Huerta-Cantillo J., Navarro-García F. Properties and design of antimicrobial peptides as potential tools against pathogens and malignant cells // Investigación en Discapacidad. 2016. Vol. 5, No. 2. P. 96–115.

[11]

Pavlova IB, Yudina TG, Baskova IP, et al. Studying of prospects of use of the secret of salivary cages of the medical bloodsucker of Hirudo medicinalis and preparation “Piyavit” as the antimicrobic complexes which aren’t causing resistance in microorganisms. Modern Problems of Science and Education. 2015;(2–3):252. (In Russ.)

[12]

Павлова И.Б., Юдина Т.Г., Баскова И.П. и др. Изучение перспектив использования секрета слюнных клеток медицинской пиявки Hirudo medicinalis и препарата «Пиявит» как антимикробных комплексов, не вызывающих резистентности у микроорганизмов // Современные проблемы науки и образования. 2015. № 2–3. С. 252.

[13]

Baskova IP, Kharitonova OV, Zavalova LL. Lysozyme activity of the salivary gland secretion of the medicinal leeches H. verbana, H. medicinalis, and H. orientalis. Biomed Khim. 2011;57(5):511–518. (In Russ.) DOI: 10.18097/pbmc20115705511

[14]

Баскова И.П., Харитонова О.В., Завалова Л.Л. Лизоцимная активность секрета слюнных желез медицинской пиявки видов: H. verbana, H. medicinalis и H. orientalis // Биомедицинская химия. 2011. Т. 57, № 5. C. 511–518. DOI: 10.18097/pbmc20115705511

[15]

Grafskaia EN, Nadezhdin KD, Talyzina IA, et al. Medicinal leech antimicrobial peptides lacking toxicity represent a promising alternative strategy to combat antibiotic-resistant pathogens. Eur J Med Chem. 2019;180:143–153. DOI: 10.1016/j.ejmech.2019.06.080

[16]

Grafskaia E.N., Nadezhdin K.D., Talyzina I.A. et al. Medicinal leech antimicrobial peptides lacking toxicity represent a promising alternative strategy to combat antibiotic-resistant pathogens // Eur. J. Med. Chem. 2019. Vol. 180. P. 143–153. DOI: 10.1016/j.ejmech.2019.06.080

[17]

Shamova OV, Sakuta GA, Orlov DS, et al. Effects of antimicrobial peptides of neutrophils on tumor and normal cells in culture. Tsitologija. 2007;49(12):1000–1010. (In Russ.)

[18]

Шамова О.В., Сакута Г.А., Орлов Д.С. и др. Действие антимикробных пептидов из нейтрофильных гранулоцитов на опухолевые и нормальные клетки в культуре // Цитология. 2007. Т. 49, № 12. С. 1000–1010.

[19]

Nesterova IV, Kolesnikova NV, Chudilova GA, et al. The new look at neutrophilc granulocytes: rethinking old dogmas. Part 2. Russian Journal of Infection and Immunity. 2018;8(1): 7–18. (In Russ.) DOI: 10.15789/2220-7619-2018-1-7-18

[20]

Нестерова И.В., Колесникова Н.В., Чудилова Г.А. и др. Новый взгляд на нейтрофильные гранулоциты: переосмысление старых догм. Часть 2 // Инфекция и иммунитет. 2018. Т. 8, № 1. С. 7–18. DOI: 10.15789/2220-7619-2018-1-7-18

[21]

Nesterova IV, Kolesnikova NV, Chudilova GA, et al. The new look at neutrophilc granulocytes: rethinking old dogmas. Part 1. Russian Journal of Infection and Immunity. 2017;7(3):219–230. (In Russ.) DOI: 10.15789/2220-7619-2017-3-219-230

[22]

Нестерова И.В., Колесникова Н.В., Чудилова Г.А. и др. Новый взгляд на нейтрофильные гранулоциты: переосмысление старых догм. Часть 1 // Инфекция и иммунитет. 2017. Т. 7, № 3. С. 219–230. DOI: 10.15789/2220-7619-2017-3-219-230

[23]

Panyutich AV, Hiemstra PS, van Wetering S, Ganz T. Human neutrophil defensin and serpins form complexes and inactivate each other. Am J Respir Cell Mol Biol. 1995;12(3):351–357. DOI: 10.1165/ajrcmb.12.3.7873202

[24]

Panyutich A.V., Hiemstra P.S., van Wetering S., Ganz T. Human neutrophil defensin and serpins form complexes and inactivate each other // Am. J. Respir. Cell. Mol. Biol. 1995. Vol. 12, No. 3. P. 351–357. DOI: 10.1165/ajrcmb.12.3.7873202

[25]

Shamova OV, Orlov DS, Yamschikova EV, et al. Investigation of the interaction of antimicrobial peptides with proteins of serine protease inhibitors family. Fundamental Research. 2011;9:344–348. (In Russ.)

[26]

Шамова О.В., Орлов Д.С., Ямщикова Е.В. и др. Изучение взаимодействия антимикробных пептидов с белками из семейства ингибиторов сериновых протеиназ // Фундаментальные исследования. 2011. № 9–2. С. 344–348.

[27]

Vissers MC, Winterbourn CC. Myeloperoxidase-dependent oxidative inactivation of neutrophil neutral proteinases and microbicidal enzymes. Biochem J. 1987;245(1):277–280. DOI: 10.1042/bj2450277

[28]

Vissers M.C., Winterbourn C.C. Myeloperoxidase-dependent oxidative inactivation of neutrophil neutral proteinases and microbicidal enzymes // Biochem. J. 1987. Vol. 245, No. 1. P. 277–280. DOI: 10.1042/bj2450277

[29]

Hawkins CL, Davies MJ. Inactivation of protease inhibitors and lysozyme by hypochlorous acid: role of side-chain oxidation and protein unfolding in loss of biological function. Chem Res Toxicol. 2005;18(10):1600–1610. DOI: 10.1021/tx050207b

[30]

Hawkins C.L., Davies M.J. Inactivation of protease inhibitors and lysozyme by hypochlorous acid: role of side-chain oxidation and protein unfolding in loss of biological function // Chem. Res. Toxicol. 2005. Vol. 18, No. 10. P. 1600–1610. DOI: 10.1021/tx050207b

[31]

Vakhrusheva TV, Grigorieva DV, Gorudko IV, et al. Enzymatic and bactericidal activity of myeloperoxidase in conditions of halogenative stress. Biochem Cell Biol. 2018;96(5):580–591. DOI: 10.1139/bcb-2017-0292

[32]

Vakhrusheva T.V., Grigorieva D.V., Gorudko I.V. et al. Enzymatic and bactericidal activity of myeloperoxidase in conditions of halogenative stress // Biochem. Cell. Biol. 2018. Vol. 96, No. 5. P. 580–591. DOI: 10.1139/bcb-2017-0292

[33]

Terekhova MS, Gorudko IV, Grigorieva DV, et al. Iron-binding property of lactoferrin in the case of inflammation. Doklady BGUIR. 2018;(7(117)):80–84. (In Russ.)

[34]

Терехова М.С., Горудко И.В., Григорьева Д.В. и др. Железосвязывающая способность лактоферрина при воспалении // Доклады БГУИР. 2018. № 7(117). С. 80–84.

[35]

Grigorieva DV, Gorudko IV, Kostevich VA, et al. Exocytosis of myeloperoxidase from activated neutrophils in the presence of heparin. Biomed Khim. 2018;64(1):16–22. (In Russ.) DOI: 10.18097/PBMC20186401016

[36]

Григорьева Д.В., Горудко И.В., Костевич В.А. и др. Экзоцитоз миелопероксидазы при активации нейтрофилов в присутствии гепарина // Биомедицинская химия. 2018. Т. 64, № 1. С. 16–22. DOI: 10.18097/PBMC20186401016

[37]

Sokolov AV, Ageeva KV, Kostevich VA, et al. Study of interaction of ceruloplasmin with serprocidins. Biochemistry (Mosc). 2010;75(11):1361–1367. DOI: 10.1134/S0006297910110076

[38]

Sokolov A.V., Ageeva K.V., Kostevich V.A. et al. Study of interaction of ceruloplasmin with serprocidins // Biochemistry (Mosc). 2010. Vol. 75, No. 11. P. 1361–1367. DOI: 10.1134/S0006297910110076

[39]

Sokolov AV, Kostevich VA, Zakharova ET, et al. Interaction of ceruloplasmin with eosinophil peroxidase as compared to its interplay with myeloperoxidase: reciprocal effect on enzymatic properties. Free Radic Res. 2015;49(6):800–811. DOI: 10.3109/10715762.2015.1005615

[40]

Sokolov A.V., Kostevich V.A., Zakharova E.T. et al. Interaction of ceruloplasmin with eosinophil peroxidase as compared to its interplay with myeloperoxidase: reciprocal effect on enzymatic properties // Free Radic. Res. 2015. Vol. 49, No. 6. P. 800–811. DOI: 10.3109/10715762.2015.1005615

[41]

Semak I, Budzevich A, Maliushkova E, et al. Development of dairy herd of transgenic goats as biofactory for large-scale production of biologically active recombinant human lactoferrin. Transgenic Res. 2019;28(5–6):465–478. DOI: 10.1007/s11248-019-00165-y

[42]

Semak I., Budzevich A., Maliushkova E. et al. Development of dairy herd of transgenic goats as biofactory for large-scale production of biologically active recombinant human lactoferrin // Transgenic Res. 2019. Vol. 28, No. 5–6. P. 465–478. DOI: 10.1007/s11248-019-00165-y

[43]

Lukashevich VS, Budzevich AI, Semak IV, et al. Production of recombinant human lactoferrin from the milk of goat-producers and its physiological effects. Doklady of the National Academy of Sciences of Belarus. 2016;60(1):72–81. (In Russ.)

[44]

Лукашевич В.С., Будевич А.И., Семак И.В. и др. Получение рекомбинантного лактоферрина человека из молока коз-продуцентов и его физиологические эффекты // Доклады НАН Беларуси. 2016. Т. 60, № 1. С. 72–81.

[45]

Gorudko IV, Cherkalina OS, Sokolov AV, et al. New approaches to the measurement of the concentration and peroxidase activity of myeloperoxidase in human blood plasma. Russian Journal of Bioorganic Chemistry. 2009;35(5):566–575. DOI: 10.1134/s1068162009050057

[46]

Горудко И.В., Черкалина О.С., Соколов А.В. и др. Новые подходы к определению концентрации и пероксидазной активности миелопероксидазы в плазме крови человека // Биоорганическая химия. 2009. Т. 35, № 5. С. 629–639. DOI: 10.1134/s1068162009050057

[47]

Grigorieva DV, Gorudko IV, Sokolov AV, et al. Myeloperoxidase stimulates neutrophil degranulation. Bulletin of Experimental Biology and Medicine. 2016;161(4):495–500. DOI: 10.1007/s10517-016-3446-7

[48]

Григорьева Д.В., Горудко И.В., Соколов А.В. и др. Миелопероксидаза стимулирует дегрануляцию нейтрофилов // Бюллетень экспериментальной биологии и медицины. 2016. Т. 161, № 4. С. 483–488. DOI: 10.1007/s10517-016-3446-7

[49]

Panasenko OM, Gorudko IV, Sokolov AV. Hypochlorous acid as a precursor of free radicals in living systems. Biochemistry (Mosc). 2013;78(13):1466–1489. DOI: 10.1134/S0006297913130075

[50]

Panasenko O.M., Gorudko I.V., Sokolov A.V. Hypochlorous acid as a precursor of free radicals in living systems // Biochemistry (Mosc). 2013. Vol. 78, No. 13. P. 1466–1489. DOI: 10.1134/S0006297913130075

[51]

Panasenko OM, Sergienko VI. Halogenizing stress and its biomarkers. Annals of the Russian Academy of Medical Sciences. 2010;(1):27–39. (In Russ.)

[52]

Панасенко О.М., Сергиенко В.И. Галогенирующий стресс и его биомаркеры // Вестник Российской академии медицинских наук. 2010. № 1. С. 27–39.

[53]

Golenkina EA, Livenskyi AD, Viryasova GM, et al. Ceruloplasmin-derived peptide is the strongest regulator of oxidative stress and leukotriene synthesis in neutrophils. Biochem Cell Biol. 2017;95(3):445–449. DOI: 10.1139/bcb-2016-0180

[54]

Golenkina E.A., Livenskyi A.D., Viryasova G.M. et al. Ceruloplasmin-derived peptide is the strongest regulator of oxidative stress and leukotriene synthesis in neutrophils // Biochem. Cell. Biol. 2017. Vol. 95, No. 3. P. 445–449. DOI: 10.1139/bcb-2016-0180

[55]

Jugniot N, Voisin P, Bentaher A, Mellet P. Neutrophil elastase activity imaging: recent approaches in the design and applications of activity-based probes and substrate-based probes. Contrast Media Mol Imaging. 2019;2019:7417192. DOI: 10.1155/2019/7417192

[56]

Jugniot N., Voisin P., Bentaher A., Mellet P. Neutrophil elastase activity imaging: recent approaches in the design and applications of activity-based probes and substrate-based probes // Contrast Media Mol. Imaging. 2019. Vol. 2019. P. 7417192. DOI: 10.1155/2019/7417192

[57]

Paramonova NS, Gurina LN, Volkova OA, et al. Sostoyanie elastaza-ingibitornoy sistemy u detey v norme i pri otdel’nykh patologicheskikh sostoyaniyakh. Grodno; 2017. (In Russ.)

[58]

Парамонова Н.С., Гурина Л.Н., Волкова О.А. и др. Состояние эластаза-ингибиторной системы у детей в норме и при отдельных патологических состояниях. Гродно, 2017.

[59]

Kell DB, Heyden EL, Pretorius E. The biology of lactoferrin, an iron-binding protein that can help defend against viruses and bacteria. Front Immunol. 2020;11:1221. DOI: 10.3389/fimmu.2020.01221

[60]

Kell D.B., Heyden E.L., Pretorius E. The biology of lactoferrin, an iron-binding protein that can help defend against viruses and bacteria // Front. Immunol. 2020. Vol. 11. P. 1221. DOI: 10.3389/fimmu.2020.01221

[61]

Borzenkova NV, Balabushevich NG, Larionova NI. Lactoferrin: physical and chemical properties, biological functions, delivery systems, pharmaceutical and nutraceutical preparations (review). Russian Journal of Biopharmaceuticals. 2010;2(3):3–19. (In Russ.)

[62]

Борзенкова Н.В., Балабушевич Н.Г., Ларионова Н.И. Лактоферрин: физико-химические свойства, биологические функции, системы доставки, лекарственные препараты и биологически активные добавки (обзор) // Биофармацевтический журнал. 2010. Т. 2, № 3. С. 3–19.

[63]

Kalyuzhin OV. Antibacterial, antifungal, antiviral and immunomodulatory effects of lysozyme: from mechanisms to pharmacological application [Internet]. Effective pharmacotherapy. Pediatrics. No. 1. 2018. Available from: https://umedp.ru/articles/antibakterialnye_protivogribkovye_protivovirusnye_i_immunomoduliruyushchie_effekty_lizotsima_ot_mekh.html. Accessed: 22.08.2021.

[64]

Калюжин О.В. Антибактериальные, противогрибковые, противовирусные и иммуномодулирующие эффекты лизоцима: от механизмов к фармакологическому применению [Электронный ресурс]. Эффективная фармакотерапия. Педиатрия. № 1. 2018. Режим доступа: https://umedp.ru/articles/antibakterialnye_protivogribkovye_protivovirusnye_i_immunomoduliruyushchie_effekty_lizotsima_ot_mekh.html. Дата обращения: 22.08.2021.

[65]

Goncharova AI, Ziamko VY, Okulich VK. Lysozyme activity determination using peptidoglycan from the cell wall of Micrococcus lysodeikticus. Immunopathology, Allergology, Infectology. 2018;(1):48–55. (In Russ.)

[66]

Гончарова А.И., Земко В.Ю., Окулич В.К. Определение лизоцима с использованием пептидогликана из клеточной стенки культуры Micrococcus lysodeikticus // Иммунопатология, аллергология, инфектология. 2018. № 1. С. 48–55.

RIGHTS & PERMISSIONS

Grigorieva D.V., Gorudko I.V., Grafskaia E.N., Latsis I.A., Sokolov A.V., Panasenko O.M., Lazarev V.N.

AI Summary AI Mindmap
PDF (410KB)

150

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/