Platelets and other cells interactions in the atherosclerosis development
Nina S. Parfenova
Medical academic journal ›› 2021, Vol. 21 ›› Issue (4) : 73 -84.
Platelets and other cells interactions in the atherosclerosis development
Atherosclerosis of the blood vessels is one of the main causes of severe chronic vascular pathologies, which quite often lead to the fatal end. It is well known that the development of atherosclerosis is an inflammatory process going through several stages until the formation of an atherosclerotic plaque. The latter, due to increased instability, would come off and cause thromboembolism. Low density lipoproteins, endothelium, platelets, neutrophils, monocytes / macrophages and smooth muscle cells of the vessel wall are all active participants in the development of atherosclerosis. Thus, they trigger and carry out the process by forming a platelet thrombus on the surface of the ulcerated calcified atherosclerotic plaque. In the recent time interest in the role of platelets in inflammatory processes has grown immensely, first of all due to their ability to interact with cells participating in different stages of atherosclerosis development through adhesion, formation of aggregations, the exchange of exovesicles and microparticles, as well as through the mutually increasing secretion of cytokines, chemokines, growth factors and other chemical mediators. This review is devoted to the role of platelets in the formation and regulation of the multicellular ensemble and also local cell modules specific for each stage of atherosclerosis development.
atherosclerosis / platelets / endotheliocytes / neutrophils / monocytes/macrophages / vessel smooth muscle cells
| [1] |
Tabas I, Lichtman AH. Monocyte-macrophages and T cells in atherosclerosis. Immunity. 2017;47(4):621–634. DOI: 10.1016/j.immuni.2017.09.008 |
| [2] |
Tabas I., Lichtman A.H. Monocyte-macrophages and T cells in atherosclerosis // Immunity. 2017. Vol. 47, No. 4. P. 621–634. DOI: 10.1016/j.immuni.2017.09.008 |
| [3] |
Parfenova NS. The role of endothelium in atherogenesis: dependence of atherosclerosis development on the properties of vessel endothelium. Medical Academic Journal. 2020;20(1):23–36. (In Russ.). DOI: 10.17816/MAJ25755 |
| [4] |
Парфенова Н.С. Роль эндотелия в атерогенезе: зависимость развития атеросклероза от свойств эндотелия сосудов // Медицинский академический журнал. 2020. Т. 20, № 1. С. 23–36. DOI: 10.17816/MAJ25755 |
| [5] |
Fung KYY, Fairn GD, Lee WL. Transcellular vesicular transport in epithelial and endothelial cells: Challenges and opportunities. Traffic. 2018;19(1):5–18. DOI: 10.1111/tra.12533 |
| [6] |
Fung K.Y.Y., Fairn G.D., Lee W.L. Transcellular vesicular transport in epithelial and endothelial cells: Challenges and opportunities // Traffic. 2018. Vol. 19, No. 1. P. 5–18. DOI: 10.1111/tra.12533 |
| [7] |
Parton RG, Tillu VA, Collins BM. Caveolae. Curr Biol. 2018;28(8):R402–R405. DOI: 10.1016/j.cub.2017. 11.075 |
| [8] |
Parton R.G., Tillu V.A., Collins B.M. Caveolae // Curr. Biol. 2018. Vol. 28, No. 8. P. R402–R405. DOI: 10.1016/j.cub.2017.11.075 |
| [9] |
Badrnya S, Schrottmaier WC, Kral JB, et al. Platelets mediate oxidized low-density lipoprotein-induced monocyte extravasation and foam cell formation. Arterioscler Thromb Vasc Biol. 2014;34(3):571–580. DOI: 10.1161/ATVBAHA.113.302919 |
| [10] |
Badrnya S., Schrottmaier W.C., Kral J.B. et al. Platelets mediate oxidized low-density lipoprotein-induced monocyte extravasation and foam cell formation // Arterioscler. Thromb. Vasc. Biol. 2014. Vol. 34, No. 3. P. 571–580. DOI: 10.1161/ATVBAHA.113.302919 |
| [11] |
Chatterjee M, Gawaz M. Platelets in atherosclerosis. In: Platelets in Thrombotic and Non-Thrombotic Disorders. Springer; 2017. P. 993–1013. DOI: 10.1007/978-3-319-47462-5_66 |
| [12] |
Chatterjee M., Gawaz M. Platelets in atherosclerosis // Platelets in Thrombotic and Non-Thrombotic Disorders. Springer, 2017. P. 993–1013. DOI: 10.1007/978-3-319-47462-5_66 |
| [13] |
Farmer DGS, Kennedy S. RAGE, vascular tone and vascular disease. Pharmacol Ther. 2009;124(2):185–194. DOI: 10.1016/j.pharmthera.2009.06.013 |
| [14] |
Farmer D.G.S., Kennedy S. RAGE, vascular tone and vascular disease // Pharmacol. Ther. 2009. Vol. 124, No. 2. P. 185–194. DOI: 10.1016/j.pharmthera.2009.06.013 |
| [15] |
Fuentes E, Rojas A, Palomo I. Role of multiligand/RAGE axis in platelet activation. Thromb Res. 2014;133(3):308–314. DOI: 10.1016/j.thromres.2013.11.007 |
| [16] |
Fuentes E., Rojas A., Palomo I. Role of multiligand/RAGE axis in platelet activation // Thromb. Res. 2014. Vol. 133, No. 3. P. 308–314. DOI: 10.1016/j.thromres.2013.11.007 |
| [17] |
Wang JH, Zhang YW, Zhang P, et al. CD40 ligand as a potential biomarker for atherosclerotic instability. Neurol Res. 2013;35(7):693–700. DOI: 10.1179/1743132813Y.0000000190 |
| [18] |
Wang J.H., Zhang Y.W., Zhang P. et al. CD40 ligand as a potential biomarker for atherosclerotic instability // Neurol. Res. 2013. Vol. 35, No. 7. P. 693–700. DOI: 10.1179/1743132813Y.0000000190 |
| [19] |
Pereira-da-Silva T, Napoleão P, Pinheiro T, et al. The Pro-inflammatory Soluble CD40 Ligand is associated with the systemic extent of stable atherosclerosis. Medicina (Kaunas). 2021;57(1):39. DOI: 10.3390/medicina57010039 |
| [20] |
Pereira-da-Silva T., Napoleão P., Pinheiro T. et al. The Pro-inflammatory soluble CD40 ligand is associated with the systemic extent of stable atherosclerosis // Medicina (Kaunas). 2021. Vol. 57, No. 1. P. 39. DOI: 10.3390/medicina57010039 |
| [21] |
Ashino T, Yamamoto M, Yoshida T, Numazawa S. Redox-sensitive transcription factor Nrf2 regulates vascular smooth muscle cell migration and neointimal hyperplasia. Arterioscler Thromb Vasc Biel. 2013;33(4):760–768. DOI: 10.1161/ATVBAHA.112.300614 |
| [22] |
Ashino T., Yamamoto M., Yoshida T., Numazawa S. Redox-sensitive transcription factor Nrf2 regulates vascular smooth muscle cell migration and neointimal hyperplasia // Arterioscler. Thromb. Vasc. Biol. 2013. Vol. 33, No. 4. P. 760–768. DOI: 10.1161/ATVBAHA.112.300614 |
| [23] |
Sorokin V, Vickneson K, Kofidis T, et al. Role of vascular smooth muscle cell plasticity and interactions in vessel wall inflammation. Front Immunol. 2020;11:599415. DOI: 10.3389/fimmu.2020.599415 |
| [24] |
Sorokin V., Vickneson K., Kofidis T. et al. Role of vascular smooth muscle cell plasticity and interactions in vessel wall inflammation // Front. Immunol. 2020. Vol. 11. P. 599415. DOI: 10.3389/fimmu.2020.599415 |
| [25] |
Grootaert MOJ, Moulis M, Roth L, et al. Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis. Cardiovasc Res. 2018;114(4):622–634. DOI: 10.1093/cvr/cvy007 |
| [26] |
Grootaert M.O.J., Moulis M., Roth L. et al. Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis // Cardiovasc. Res. 2018. Vol. 114, No. 4. P. 622–634. DOI: 10.1093/cvr/cvy007 |
| [27] |
Gistera A, Hansson GK. The immunology of atherosclerosis. Nat Rev Nephrol. 2017;13(6):368–380. DOI: 10.1038/nrneph.2017.51 |
| [28] |
Gistera A., Hansson G.K. The immunology of atherosclerosis // Nat. Rev. Nephrol. 2017. Vol. 13, No. 6. P. 368–380. DOI: 10.1038/nrneph.2017.51 |
| [29] |
Rossaint J, Margraf A, Zarbock A. Role of platelets in leukocyte recruitment and resolution of inflammation. Rev Front Immunol. 2018;9:2712. DOI: 10.3389/fimmu.2018.02712 |
| [30] |
Rossaint J., Margraf A., Zarbock A. Role of platelets in leukocyte recruitment and resolution of inflammation // Rev. Front. Immunol. 2018. Vol. 9. P. 2712. DOI: 10.3389/fimmu.2018.02712 |
| [31] |
Lim GB. Pro-inflammatory atherogenic role of platelets. Nat Rev Cardiol. 2020;17(1):6–7. DOI: 10.1038/s41569-019-0312-0 |
| [32] |
Lim G.B. Pro-inflammatory atherogenic role of platelets // Nat. Rev. Cardiol. 2020. Vol. 17, No. 1. P. 6–7. DOI: 10.1038/s41569-019-0312-0 |
| [33] |
Frostegård J, Ulfgren A-K, Nyberg P, et al. Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines. Atherosclerosis. 1999;145(1):33–43. DOI: 10.1016/s0021-9150(99)00011-8 |
| [34] |
Frostegård J., Ulfgren A.-K., Nyberg P. et al. Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines // Atherosclerosis. 1999. Vol. 145, No. 1. P. 33–43. DOI: 10.1016/s0021-9150(99)00011-8 |
| [35] |
Duchen J, von Hundelshausen P. Platelet-derived chemokines in atherosclerosis. Hamostaseologie. 2015;35(2):137–141. DOI: 10.5482/HAMO-14-11-0058 |
| [36] |
Duchen J., von Hundelshausen P. Platelet-derived chemokines in atherosclerosis // Hamostaseologie. 2015. Vol. 35, No. 2. P. 137–141. DOI: 10.5482/HAMO-14-11-0058 |
| [37] |
Koupenova M, Clancy L, Corkrey HA, Freedman JE. Circulating platelets as mediators of immunity, inflammation, and thrombosis. Circ Res. 2018;122(2):337–351. DOI: 10.1161/ CIRCRESAHA.117.310795 |
| [38] |
Koupenova M., Clancy L., Corkrey H.A., Freedman J.E. Circulating platelets as mediators of immunity, inflammation, and thrombosis // Circ. Res. 2018. Vol. 122, No. 2. P. 337–351. DOI: 10.1161/ CIRCRESAHA.117.310795 |
| [39] |
Serebryanaya NB, Shanin SN, Fomicheva EE, Yakutseni PP. Blood platelets as activators and regulators of inflammatory and immune reactions. Part 1. Dasic characteristics of platelets as inflammatory cells. Medical Immunology (Russia). 2018;20(6):785–796. (In Russ.). DOI: 10.15789/1563-0625-2018-6-785-796 |
| [40] |
Серебряная Н.Б., Шанин С.Н., Фомичева Е.Е., Якуцени П.П. Тромбоциты как активаторы и регуляторы воспалительных и иммунных реакций. Часть 1. Основные характеристики тромбоцитов как воспалительных клеток // Медицинская иммунология. 2018. Т. 20, № 6. С. 785–796. DOI: 10.15789/1563-0625-2018-6-785-796 |
| [41] |
Machlus KR, Italiano JE Jr. The incredible journey: from megakaryocyte development to platelet formation. J Cell Biol. 2013;201(6):785–796. DOI: 10.1083/jcb.201304054 |
| [42] |
Machlus K.R., Italiano J.E. Jr. The incredible journey: from megakaryocyte development to platelet formation // J. Cell. Biol. 2013. Vol. 201, No. 6. P. 785–796. DOI: 10.1083/jcb.201304054 |
| [43] |
Cunin P, Bouslama R, Machlus KR, et al. Megakaryocyte emperipolesis mediates membrane transfer from intracytoplasmic neutrophils to platelets. Elife. 2019;8:e44031. DOI: 10.7554/eLife.44031 |
| [44] |
Cunin P., Bouslama R., Machlus K.R. et al. Megakaryocyte emperipolesis mediates membrane transfer from intracytoplasmic neutrophils to platelets // Elife. 2019. Vol. 8. P. e44031. DOI: 10.7554/eLife.44031 |
| [45] |
Rapkiewicz AV, Mai X, Carsons SE, et al. Megakaryocytes and platelet-fibrin thrombi characterize multi-organ thrombosis at autopsy in COVID-19: A case series. EClinicalMedcine. 2020;24:100434. DOI: 10.1016/j.eclinm.2020.100434 |
| [46] |
Rapkiewicz A.V., Mai X., Carsons S.E. et al. Megakaryocytes and platelet-fibrin thrombi characterize multi-organ thrombosis at autopsy in COVID-19: A case series // EClinicalMedcine. 2020. Vol. 24. P. 100434. DOI: 10.1016/j.eclinm.2020.100434 |
| [47] |
Liu Y, Sun W, Guo Y, et al. Association between platelete’s parametrs and mortalitiy in coronavirus disease 2019: Retrospective cohort study. Platelets. 2020;31(4):490–496. DOI: 10.1080/09537104.2020.1754383 |
| [48] |
Liu Y., Sun W., Guo Y. et al. Association between platelete’s parametrs and mortalitiy in coronavirus disease 2019: Retrospective cohort study // Platelets. 2020. Vol. 31, No. 4. P. 490–496. DOI: 10.1080/09537104.2020.1754383 |
| [49] |
Xu P, Zhou Q, Xu J. Mechanism of thrombocytopenia in COVID-19 patients. Ann Hematol. 2020;99(6):1205–1208. DOI: 10.1007/s00277-020-04019-0 |
| [50] |
Xu P., Zhou Q., Xu J. Mechanism of thrombocytopenia in COVID-19 patients // Ann. Hematol. 2020. Vol. 99, No. 6. P. 1205–1208. DOI: 10.1007/s00277-020-04019-0 |
| [51] |
Takahashi A, Tsujino T, Yamaguchi S, et al. Distribution of platelets, transforming growth factor-beta1, platelet-derived growth factor-BB, vascular endothelial growth factor and matrix metalloprotease-9 in advanced platelet-rich fibrin and concentrated growth factor matrices. J Investig Clin Dent. 2019;10(4):e12458. DOI: 101111/jicd.12458 |
| [52] |
Takahashi A., Tsujino T., Yamaguchi S. et al. Distribution of platelets, transforming growth factor-beta1, platelet-derived growth factor-BB, vascular endothelial growth factor and matrix metalloprotease-9 in advanced platelet-rich fibrin and concentrated growth factor matrices // J. Investig. Clin. Dent. 2019. Vol. 10, No. 4. P. e12458. DOI: 101111/jicd.12458 |
| [53] |
Corbett BF, Luz S, Arner J, et al. Sphingosine-1-phosphate receptor 3 in the medial prefrontal cortex promotes stress resilience by reducing inflammatory processes. Nat Commun. 2019;10(1):3146. DOI: 10.1038/s41467-019-10904-8 |
| [54] |
Corbett B.F., Luz S., Arner J. et al. Sphingosine-1-phosphate receptor 3 in the medial prefrontal cortex promotes stress resilience by reducing inflammatory processes // Nat. Commun. 2019. Vol. 10, No. 1. P. 3146. DOI: 10.1038/s41467-019-10904-8 |
| [55] |
Awojoodu AO, Ogle ME, Sefcik LS, et al. Sphingosine 1-phosphate receptor 3 regulates recruitment of anti-inflammatory monocytes to microvessels during implant arteriogenesis. Proc Natl Acad Sci USA. 2013;110(34):13785–13790. DOI: 10.1073/pnas.1221309110 |
| [56] |
Awojoodu A.O., Ogle M.E., Sefcik L.S. et al. Sphingosine 1-phosphate receptor 3 regulates recruitment of anti-inflammatory monocytes to microvessels during implant arteriogenesis // Proc. Natl. Acad. Sci. USA. 2013. Vol. 110, No. 34. P. 13785–13790. DOI: 10.1073/pnas.1221309110 |
| [57] |
Duerschmied D, Suidan GL, Demers M, et al. Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice. Blood. 2013;121(6):1008–1015. DOI: 10.1182/blood-2012-06-437392 |
| [58] |
Duerschmied D., Suidan G.L., Demers M. et al. Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice // Blood. 2013. Vol. 121, No. 6. P. 1008–1015. DOI: 10.1182/blood-2012-06-437392 |
| [59] |
Hansen CE, Qiu Y, McCarty OJT, Lam WA. Platelet mechanotransduction. Annu Rev Biomed Eng. 2018;20:253–275. DOI: 10.1146/annurev-bioeng-062117-121215 |
| [60] |
Hansen C.E., Qiu Y., McCarty O.J.T., Lam W.A. Platelet mechanotransduction // Annu. Rev. Biomed. Eng. 2018. Vol. 20. P. 253–275. DOI: 10.1146/annurev-bioeng-062117-121215 |
| [61] |
Dehghani T, Panitch A. Endothelial cells, neutrophils and platelets: getting to the bottom of an inflammatory triangle. Open Biol. 2020;10(10):200161. DOI: 10.1098/rsob.200161 |
| [62] |
Dehghani T., Panitch A. Endothelial cells, neutrophils and platelets: getting to the bottom of an inflammatory triangle // Open Biol. 2020. Vol. 10, No. 10. P. 200161. DOI: 10.1098/rsob.200161 |
| [63] |
Kuravi SJ, Harrison P, Rainger GE, Nash GB. Ability of platelet-derived extracellular vesicles to promote neutrophil-endothelial cell interactions. Inflammation. 2019;42(1):290–305. DOI: 10.1007/s10753-018-0893-5 |
| [64] |
Kuravi S.J., Harrison P., Rainger G.E., Nash G.B. Ability of platelet-derived extracellular vesicles to promote neutrophil-endothelial cell interactions // Inflammation. 2019. Vol. 42, No. 1. P. 290–305. DOI: 10.1007/s10753-018-0893-5 |
| [65] |
Kojok K, El-Kadiry AE, Merhi Y. Role of NF-κB in platelet function. Int J Mol Sci. 2019;20(17):4185. DOI: 10.3390/ijms20174185 |
| [66] |
Kojok K., El-Kadiry A.E., Merhi Y. Role of NF-κB in platelet function // Int. J. Mol. Sci. 2019. Vol. 20, No. 17. P. 4185. DOI: 10.3390/ijms20174185 |
| [67] |
Gaertner F, Ahmad Z, Rosenberger G, et al. Migrating platelets are mechano-scavengers that collect and bundle bacteria. Cell. 2017;171(6):1368–1382.e23. DOI: 10.1016/j.cell.2017.11.001 |
| [68] |
Gaertner F., Ahmad Z., Rosenberger G. et al. Migrating platelets are mechano-scavengers that collect and bundle bacteria // Cell. 2017. Vol. 171, No. 6. P. 1368–1382.e23. DOI: 10.1016/j.cell.2017.11.001 |
| [69] |
Gros A, Ollivier V, Ho-Tin-Noe B. Platelets in inflammation: regulation of leukocyte activities and vascular repair. Front Immunol. 2015;5:678. DOI: 10.3389/fimmu.2014.00678 |
| [70] |
Gros A., Ollivier V., Ho-Tin-Noe B. Platelets in inflammation: regulation of leukocyte activities and vascular repair // Front. Immunol. 2015. Vol. 5. P. 678. DOI: 10.3389/fimmu.2014.00678 |
| [71] |
Müller JP, Mielke S, Löf A, et al. Force sensing by the vascular protein von Willebrand factor is tuned by a strong intermonomer interaction. Proc Natl Acad Sci USA. 2016;113(5):1208–1213. DOI: 10.1073/pnas.1516214113 |
| [72] |
Müller J.P., Mielke S., Löf A. et al. Force sensing by the vascular protein von Willebrand factor is tuned by a strong intermonomer interaction // Proc. Natl. Acad. Sci. USA. 2016. Vol. 113, No. 5. P. 1208–1213. DOI: 10.1073/pnas.1516214113 |
| [73] |
Nikolai L, Schiefelbein K, Lipsky M, et al. Vascular surveillance by haptotactic blood platelets in inflammation and infection. Nat Commun. 2020;11(1):5778. DOI: 10.1038/s41467-020-19515-0 |
| [74] |
Nikolai L., Schiefelbein K., Lipsky M. et al. Vascular surveillance by haptotactic blood platelets in inflammation and infection // Nat. Commun. 2020. Vol. 11, No. 1. P. 5778. DOI: 10.1038/s41467-020-19515-0 |
| [75] |
Zuchtriegel G, Uhl B, Puhr-Westerheide D. Platelets guide leukocytes to their sites of extravasation. PLoS Biol. 2016;14(5):e1002459. DOI: 10.1371/journal.pbio.1002459 |
| [76] |
Zuchtriegel G., Uhl B., Puhr-Westerheide D. Platelets guide leukocytes to their sites of extravasation // PLoS Biol. 2016. Vol. 14, No. 5. P. e1002459. DOI: 10.1371/journal.pbio.1002459 |
| [77] |
Hillgruber C, Pöppelmann B, Weishaupt C, et al. Blocking neutrophil diapedesis prevents hemorrhage during thrombocytopenia. J Exp Med. 2015;212(8):1255–1266. DOI: 10.1084/jem.20142076 |
| [78] |
Hillgruber C., Pöppelmann B., Weishaupt C. et al. Blocking neutrophil diapedesis prevents hemorrhage during thrombocytopenia // J. Exp. Med. 2015. Vol. 212, No. 8. P. 1255–1266. DOI: 10.1084/jem.20142076 |
| [79] |
Ho-Tin-Noé B, Boulaftali Y, Camerer E. Platelets and vascular integrity: how platelets prevent bleeding in inflammation. Blood. 2018;131(3):277–288. DOI: 10.1182/blood-2017-06-742676 |
| [80] |
Ho-Tin-Noé B., Boulaftali Y., Camerer E. Platelets and vascular integrity: how platelets prevent bleeding in inflammation // Blood. 2018. Vol. 131, No. 3. P. 277–288. DOI: 10.1182/blood-2017-06-742676 |
| [81] |
Masselli E, Pozzi G, Vaccarezza M, et al. ROS in platelet biology: functional aspects and methodological insights. Int J Mol Sci. 2020;21(14):4866. DOI: 10.3390/ijms21144866 |
| [82] |
Masselli E., Pozzi G., Vaccarezza M. et al. ROS in platelet biology: functional aspects and methodological insights // Int. J. Mol. Sci. 2020. Vol. 21, No. 14. P. 4866. DOI: 10.3390/ijms21144866 |
| [83] |
Lisman T. Platelet-neutrophil interactions as drivers of inflammatory and thrombotic disease. Cell Tissue Res. 2018;371(3):567–576. DOI: 10.1007/s00441-017-2727-4 |
| [84] |
Lisman T. Platelet-neutrophil interactions as drivers of inflammatory and thrombotic disease // Cell. Tissue Res. 2018. Vol. 371, No. 3. P. 567–576. DOI: 10.1007/s00441-017-2727-4 |
| [85] |
Warnatsch A, Ioannou M, Wang Q, Papayannopoulos V. Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science. 2015;349(6245):316–320. DOI: 10.1126/science.aaa8064 |
| [86] |
Warnatsch A., Ioannou M., Wang Q., Papayannopoulos V. Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis // Science. 2015. Vol. 349, No. 6245. P. 316–320. DOI: 10.1126/science.aaa8064 |
| [87] |
Barrett TJ, Schlegel M, Zhou F, et al. Platelet regulation of myeloid suppressor of cytokine signaling 3 accelerates atherosclerosis. Sci Transl Med. 2019;11(517):eaax0481. DOI: 10.1126/scitranslmed.aax0481 |
| [88] |
Barrett T.J., Schlegel M., Zhou F. et al. Platelet regulation of myeloid suppressor of cytokine signaling 3 accelerates atherosclerosis // Sci. Transl. Med. 2019. Vol. 11, No. 517. P. eaax0481. DOI: 10.1126/scitranslmed.aax0481 |
| [89] |
Polasky C, Wendt F, Pries R, Wollenberg B. Platelet induced functional alteration of CD4+ and CD8+ T cells in HNSCC. Int J Mol Sci. 2020;21(20):7507. DOI: 10.3390/ijms21207507 |
| [90] |
Polasky C., Wendt F., Pries R., Wollenberg B. Platelet induced functional alteration of CD4+ and CD8+ T cells in HNSCC // Int. J. Mol. Sci. 2020. Vol. 21, No. 20. P. 7507. DOI: 10.3390/ijms21207507 |
| [91] |
Collin J, Gössl M, Matsuo Y, et al. Osteogenic monocytes within the coronary circulation and their association with plaque vulnerability in patients with early atherosclerosis. Int J Cardiol. 2015;181:57–64. DOI: 10.1016/j.ijcard.2014.11.156 |
| [92] |
Collin J., Gössl M., Matsuo Y. et al. Osteogenic monocytes within the coronary circulation and their association with plaque vulnerability in patients with early atherosclerosis // Int. J. Cardiol. 2015. Vol. 181. P. 57–64. DOI: 10.1016/j.ijcard.2014.11.156 |
| [93] |
Cochain C, Vafadarnejad E, Arampatzi P, et al. Single-cell RNA-seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis. Circ Res. 2018;122(12):1661–1674. DOI: 10.1161/CIRCRESAHA.117.312509 |
| [94] |
Cochain C., Vafadarnejad E., Arampatzi P. et al. Single-cell RNA-seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis // Circ. Res. 2018. Vol. 122, No. 12. P. 1661–1674. DOI: 10.1161/CIRCRESAHA.117.312509 |
| [95] |
Kapellos TS, Bonaguro L, Gemünd I, et al. Human monocyte subsets and phenotypes in major chronic inflammatory diseases. Front Immunol. 2019;10:2035. DOI: 10.3389/fimmu.2019.02035 |
| [96] |
Kapellos T.S., Bonaguro L., Gemünd I. et al. Human monocyte subsets and phenotypes in major chronic inflammatory diseases // Front. Immunol. 2019. Vol. 10. P. 2035. DOI: 10.3389/fimmu.2019.02035 |
| [97] |
Guilliams M, Mildner A, Yona S. Developmental and functional heterogeneity of monocytes. Immunity. 2018;49(4): 595–613. DOI: 10.1016/j.immuni.2018.10.005 |
| [98] |
Guilliams M., Mildner A., Yona S. Developmental and functional heterogeneity of monocytes // Immunity. 2018. Vol. 49, No. 4. P. 595–613. DOI: 10.1016/j.immuni.2018.10.005 |
| [99] |
Loguinova M, Pinegina N, Kogan K, et al. Monocytes of different subsets in complexes with platelets in patients with myocardial infarction. Thromb Haemost. 2018;118(11):1969–1981. DOI: 10.1055/s-0038-1673342 |
| [100] |
Loguinova M., Pinegina N., Kogan K. et al. Monocytes of different subsets in complexes with platelets in patients with myocardial infarction // Thromb. Haemost. 2018. Vol. 118, No. 11. P. 1969–1981. DOI: 10.1055/s-0038-1673342 |
| [101] |
Tsuji T, Nagata K, Koike J, et al. Induction of superoxide anion production from monocytes an neutrophils by activated platelets through the P-selectin-sialyl Lewis X interaction. J Leukoc Biol. 1994;56(5):583–587. DOI: 10.1002/jlb.56.5.583 |
| [102] |
Tsuji T., Nagata K., Koike J. et al. Induction of superoxide anion production from monocytes an neutrophils by activated platelets through the P-selectin-sialyl Lewis X interaction // J. Leukoc. Biol. 1994. Vol. 56, No. 5. P. 583–587. DOI: 10.1002/jlb.56.5.583 |
| [103] |
Clark SR, Ma AC, Tavener SA, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med. 2007;13(4):463–469. DOI: 10.1038/nm1565 |
| [104] |
Clark S.R., Ma A.C., Tavener S.A. et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood // Nat. Med. 2007. Vol. 13, No. 4. P. 463–469. DOI: 10.1038/nm1565 |
| [105] |
Carestia A, Kaufman T, Rivadeneyra L, et al. Mediators and molecular pathways involved in the regulation of neutrophil extracellular trap formation mediated by activated platelets. J Leukoc Biol. 2016;99(1):153–162. DOI: 10.1189/jlb.3A0415-161R |
| [106] |
Carestia A., Kaufman T., Rivadeneyra L. et al. Mediators and molecular pathways involved in the regulation of neutrophil extracellular trap formation mediated by activated platelets // J. Leukoc. Biol. 2016. Vol. 99, No. 1. P. 153–162. DOI: 10.1189/jlb.3A0415-161R |
| [107] |
Fuchs TA, Brill A, Duerschmied D, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA. 2010;107(36):15880–15885. DOI: 10.1073/pnas.1005743107 |
| [108] |
Fuchs T.A., Brill A., Duerschmied D. et al. Extracellular DNA traps promote thrombosis // Proc. Natl. Acad. Sci. USA. 2010. Vol. 107, No. 36. P. 15880–15885. DOI: 10.1073/pnas.1005743107 |
| [109] |
Bennett MR, Sinha S, Owens GK. Vascular smooth muscle cells in atherosclerosis. Circ Res. 2016;118(4):692–702. DOI: 10.1161/CIRCRESAHA.115.306361 |
| [110] |
Bennett M.R., Sinha S., Owens G.K. Vascular smooth muscle cells in atherosclerosis // Circ. Res. 2016. Vol. 118, No. 4. P. 692–702. DOI: 10.1161/CIRCRESAHA.115.306361 |
| [111] |
Durham AL, Speer MY, Scatena M, et al. Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness. Cardiovasc Res. 2018;114(4):590–600. DOI: 10.1093/cvr/cvy010 |
| [112] |
Durham A.L., Speer M.Y., Scatena M. et al. Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness // Cardiovasc. Res. 2018. Vol. 114, No. 4. P. 590–600. DOI: 10.1093/cvr/cvy010 |
Parfenova N.S.
/
| 〈 |
|
〉 |