Visualisation of GABAergic neurons and synapses in the rat brain using immunohistochemistry for two forms of glutamate decarboxylase
Valeria A. Razenkova , Dmitrii E. Korzhevskii
Medical academic journal ›› 2021, Vol. 21 ›› Issue (2) : 63 -73.
Visualisation of GABAergic neurons and synapses in the rat brain using immunohistochemistry for two forms of glutamate decarboxylase
BACKGROUND: Taking into account the importance of GABAergic brain system research and also the opportunity to achieve specific and accurate results in laboratory studies using immunohistochemical approaches, it seems important to have a reliable method of visualization GABA-synthesizing cells, their projections and synapses, for the morphofunctional analysis of GABAergic system both in normal conditions and in the experimental pathology.
AIM: The aim of the study was to visualize analyze GABAergic neurons and synapses within rat’s brain using three different antibody types against glutamate decarboxylase and to identify the optimal conditions for reaction performing.
MATERIALS AND METHODS: The study was performed on paraffin brain tissue sections of 5 adult Wistar rats. Immunohistochemical reactions using three antibody types against glutamate decarboxylase isoform 67 (GAD67) and glutamate decarboxylase isoform 65 (GAD65) were performed. Additional controls on C57/Bl6 mice and Chinchilla rabbits brain samples were also carried out.
RESULTS: Antibodies used in the research made it possible to achieve high quality of GABAergic structures visualizing without increasing background staining. At the same time different antibody types are distinct in their efficacy to perform immunohistochemistry reaction on laboratory animal brain tissue samples. By performing additional controls, we discovered that there is necessary to adsorb secondary reagent’s immunoglobulins in order to eliminate nonspecific staining. It was found that GAD67 and GAD65 distribution in rat forebrain structures is different. It was stated that GAD67 immunohistochemistry most completely reveals GABAergic brain structures compared to GAD65 immunhistochemistry. The possibility of determining morphological features of GABAergic neurons and synaptic terminals, as well as performing quantitative analysis, was demonstrated.
CONCLUSIONS: The approach proposed makes it possible to specifically visualize GABAergic structures of the central nervous system of different laboratory animals. This could be useful both in fundamental studies and in pathology research.
gamma-aminobutyric acid / glutamate decarboxylase / immunohistochemistry / brain
| [1] |
Gerfen CR, Economo MN, Chandrashekar J. Long distance projections of cortical pyramidal neurons. J Neurosci Res. 2018;96(9):1467–1475. DOI: 10.1002/jnr.23978 |
| [2] |
Gerfen C.R., Economo M.N., Chandrashekar J. Long distance projections of cortical pyramidal neurons // J. Neurosci. Res. 2018. Vol. 96, No. 9. P. 1467–1475. DOI: 10.1002/jnr.23978 |
| [3] |
Xu Q, Cobos I, De La Cruz E, et al. Origins of cortical interneuron subtypes. J Neurosci. 2004;24(11):2612–2622. DOI: 10.1523/JNEUROSCI.5667-03.2004 |
| [4] |
Xu Q., Cobos I., De La Cruz E. et al. Origins of cortical interneuron subtypes // J. Neurosci. 2004. Vol. 24, No. 11. P. 2612–2622. DOI: 10.1523/JNEUROSCI.5667-03.2004 |
| [5] |
Kubota Y. Untangling GABAergic wiring in the cortical microcircuit. Curr Opin Neurobiol. 2014;26:7–14. DOI: 10.1016/j.conb.2013.10.003 |
| [6] |
Kubota Y. Untangling GABAergic wiring in the cortical microcircuit // Curr. Opin. Neurobiol. 2014. No. 26. P. 7–14. DOI: 10.1016/j.conb.2013.10.003 |
| [7] |
Kimoto S, Bazmi HH, Lewis DA. Lower expression of glutamic acid decarboxylase 67 in the prefrontal cortex in schizophrenia: contribution of altered regulation by Zif268. Am J Psychiatry. 2014;171(9):969–978. DOI: 10.1176/appi.ajp.2014.14010004 |
| [8] |
Kimoto S., Bazmi H.H., Lewis D.A. Lower expression of glutamic acid decarboxylase 67 in the prefrontal cortex in schizophrenia: contribution of altered regulation by Zif268 // Am. J. Psychiatry. 2014. Vol. 171, No. 9. P. 969–978. DOI: 10.1176/appi.ajp.2014.14010004 |
| [9] |
LeWitt PA, Rezai AR, Leehey MA, et al. AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol. 2011;10(4):309–319. DOI: 10.1016/S1474-4422(11)70039-4 |
| [10] |
LeWitt P.A., Rezai A.R., Leehey M.A. et al. AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial // Lancet Neurol. 2011. Vol. 10, No. 4. P. 309–319. DOI: 10.1016/S1474-4422(11)70039-4 |
| [11] |
McQuail JA, Frazier CJ, Bizon JL. Molecular aspects of age-related cognitive decline: the role of GABA signaling. Trends Mol Med. 2015;21(7):450–460. DOI: 10.1016/j.molmed.2015.05.002 |
| [12] |
McQuail J.A., Frazier C.J., Bizon J.L. Molecular aspects of age-related cognitive decline: the role of GABA signaling // Trends Mol. Med. 2015. Vol. 21, No. 7. P. 450–460. DOI: 10.1016/j.molmed.2015.05.002 |
| [13] |
Seney ML, Tripp A, McCune S, et al. Laminar and cellular analyses of reduced somatostatin gene expression in the subgenual anterior cingulate cortex in major depression. Neurobiol Dis. 2015;73:213–219. DOI: 10.1016/j.nbd.2014.10.005 |
| [14] |
Seney M.L., Tripp A., McCune S. et al. Laminar and cellular analyses of reduced somatostatin gene expression in the subgenual anterior cingulate cortex in major depression // Neurobiol. Dis. 2015. No. 73. P. 213–219. DOI: 10.1016/j.nbd.2014.10.005 |
| [15] |
Duman RS, Sanacora G, Krystal JH. Altered connectivity in depression: GABA and glutamate neurotransmitter deficits and reversal by novel treatments. Neuron. 2019;102(1):75–90. DOI: 10.1016/j.neuron.2019.03.013 |
| [16] |
Duman R.S., Sanacora G., Krystal J.H. Altered connectivity in depression: GABA and glutamate neurotransmitter deficits and reversal by novel treatments // Neuron. 2019. Vol. 102, No. 1. P. 75–90. DOI: 10.1016/j.neuron.2019.03.013 |
| [17] |
Silkis IG. Role of acetylcholine and GABAergic inhibitory transmission in seizure pattern generation in neural networks integrating the neocortex, hippocampus, basal ganglia, and thalamus. Neyrokhimiya. 2020;37(2):106–124. (In Russ.). DOI: 10.31857/s1027813320020120 |
| [18] |
Силькис И.Г. Роль ацетилхолина и ГАМК-торможения в генерации судорожной активности в нейронных сетях, объединяющих новую кору, гиппокамп, базальные ганглии и таламус // Нейрохимия. 2020. Т. 37, № 2. С. 106–124. DOI: 10.31857/S1027813320020120 |
| [19] |
Theoretical bases and practical applications of methods of immunohistochemistry. 2nd ed. Ed. by D.E. Korzhevskiy. Saint Petersburg; 2014. (In Russ.) |
| [20] |
Теоретические основы и практическое применение методов иммуногистохимии / под ред. Д.Э. Коржевского. 2-е изд. Санкт-Петербург, 2014. |
| [21] |
Martin DL, Liu H, Martin SB, Wu SJ. Structural features and regulatory properties of the brain glutamate decarboxylases. Neurochem Int. 2000;37(2–3):111–119. DOI: 10.1016/s0197-0186(00)00014-0 |
| [22] |
Martin D.L., Liu H., Martin S.B., Wu S.J. Structural features and regulatory properties of the brain glutamate decarboxylases // Neurochem. Int. 2000. Vol. 37, No. 2–3. P. 111–119. DOI: 10.1016/s0197-0186(00)00014-0 |
| [23] |
Petroff OA. GABA and glutamate in the human brain. Neuroscientist. 2002;8(6):562–573. DOI: 10.1177/1073858402238515 |
| [24] |
Petroff O.A. GABA and glutamate in the human brain // Neuroscientist. 2002. Vol. 8, No. 6. P. 562–573. DOI: 10.1177/1073858402238515 |
| [25] |
Kaufman DL, Houser CR, Tobin AJ. Two forms of the gamma-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions. J Neurochem. 1991;56(2):720–723. DOI: 10.1111/j.1471-4159.1991.tb08211.x |
| [26] |
Kaufman D.L., Houser C.R., Tobin A.J. Two forms of the gamma-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions // J. Neurochem. 1991. Vol. 56, No. 2. P. 720–723. DOI: 10.1111/j.1471-4159.1991.tb08211.x |
| [27] |
Pinal CS, Tobin AJ. Uniqueness and redundancy in GABA production. Perspect Dev Neurobiol. 1998;5(2–3):109–118. |
| [28] |
Pinal C.S., Tobin A.J. Uniqueness and redundancy in GABA production // Perspect. Dev. Neurobiol. 1998. Vol. 5, No. 2–3. P. 109–118. |
| [29] |
Saper CB. A guide to the perplexed on the specificity of antibodies. J Histochem Cytochem. 2009;57(1):1–5. DOI: 10.1369/jhc.2008.952770 |
| [30] |
Saper C.B. A guide to the perplexed on the specificity of antibodies // J. Histochem. Cytochem. 2009. Vol. 57, No. 1. P. 1–5. DOI: 10.1369/jhc.2008.952770 |
| [31] |
Korzhevskii DE, Otellin VA, Grigor’ev IP, et al. Immunocytochemical detection of neuronal NO synthase in rat brain cells. Neurosci Behav Physiol. 2008;38(8):835–838. DOI: 10.1007/s11055-008-9063-9 |
| [32] |
Коржевский Д.Э., Отеллин В.А., Григорьев И.П. и др. Иммуноцитохимическое выявления нейрональной NO-синтазы в клетках головного мозга крысы // Морфология. 2007. Т. 2, № 4. С. 77–80. |
| [33] |
Weller MG. Quality Issues of Research Antibodies. Anal Chem Insights. 2016;11:21–27. DOI: 10.4137/ACI.S31614 |
| [34] |
Weller M.G. Quality Issues of Research Antibodies // Anal. Chem. Insights. 2016. No. 11. P. 21–27. DOI: 10.4137/ACI.S31614 |
| [35] |
Bordeaux J, Welsh A, Agarwal S, et al. Antibody validation. Biotechniques. 2010;48(3):197–209. DOI: 10.2144/000113382 |
| [36] |
Bordeaux J., Welsh A., Agarwal S. et al. Antibody validation // Biotechniques. 2010. Vol. 48, No. 3. P. 197–209. DOI: 10.2144/000113382 |
| [37] |
Kirik OV, Grigoriev IP, Sukhorukova EG, et al. Use of immunocytochemical methods to identify the boundaries between the subventricular zone of the telencephalon and the striatum. Neurosci Behav Physi. 2013;43(2):157–159. DOI: 10.1007/s11055-013-9708-1 |
| [38] |
Кирик О.В., Григорьев И.П., Сухорукова Е.Г. и др. Использование методов иммуногистохимии для определения границы между субвентрикулярной зоной и стриатумом // Морфология. 2012. Т. 141, № 1. P. 81–84. |
| [39] |
Fritschy JM. Is my antibody-staining specific? How to deal with pitfalls of immunohistochemistry. Eur J Neurosci. 2008;28(12): 2365–2370. DOI: 10.1111/j.1460-9568.2008.06552.x |
| [40] |
Fritschy J.M. Is my antibody-staining specific? How to deal with pitfalls of immunohistochemistry // Eur. J. Neurosci. 2008. Vol. 28, No. 12. P. 2365–2370. DOI: 10.1111/j.1460-9568.2008.06552.x |
| [41] |
Ward JM, Rehg JE. Rodent immunohistochemistry: pitfalls and troubleshooting. Vet Pathol. 2014;51(1):88–101. DOI: 10.1177/0300985813503571 |
| [42] |
Ward J.M., Rehg J.E. Rodent immunohistochemistry: pitfalls and troubleshooting // Vet. Pathol. 2014. Vol. 51, No. 1. P. 88–101. DOI: 10.1177/0300985813503571 |
| [43] |
Gown AM. Diagnostic immunohistochemistry: What can go wrong and how to prevent it. Arch Pathol Lab Med. 2016;140(9):893–898. DOI: 10.5858/arpa.2016-0119-RA |
| [44] |
Gown A.M. Diagnostic immunohistochemistry: What can go wrong and how to prevent it // Arch. Pathol. Lab. Med. 2016. Vol. 140, No. 9. P. 893–898. DOI: 10.5858/arpa.2016-0119-RA |
| [45] |
Korzhevskii DE, Sukhorukova EG, Kirik OV, Grigorev IP. Immunohistochemical demonstration of specific antigens in the human brain fixed in zinc-ethanol-formaldehyde. Eur J Histochem. 2015;59(3):5–9. DOI: 10.4081/ejh.2015.2530 |
| [46] |
Korzhevskii D.E., Sukhorukova E.G., Kirik O.V., Grigorev I.P. Immunohistochemical demonstration of specific antigens in the human brain fixed in zinc-ethanol-formaldehyde // Eur. J. Histochem. 2015. Vol. 59, No. 3. P. 5–9. DOI: 10.4081/ejh.2015.2530 |
| [47] |
Greif KF, Erlander MG, Tillakaratne NJ, Tobin AJ. Postnatal expression of glutamate decarboxylases in developing rat cerebellum. Neurochem Res. 1991;16(3):235–242. DOI: 10.1007/BF00966086 |
| [48] |
Greif K.F., Erlander M.G., Tillakaratne N.J., Tobin A.J. Postnatal expression of glutamate decarboxylases in developing rat cerebellum // Neurochem. Res. 1991. Vol. 16, No. 3. P. 235–242. DOI: 10.1007/BF00966086 |
| [49] |
Martin DL, Rimvall K. Regulation of gamma-aminobutyric acid synthesis in the brain. J Neurochem. 1993;60(2):395–407. DOI: 10.1111/j.1471-4159.1993.tb03165.x |
| [50] |
Martin D.L., Rimvall K. Regulation of gamma-aminobutyric acid synthesis in the brain // J. Neurochem. 1993. Vol. 60, No. 2. P. 395–407. DOI: 10.1111/j.1471-4159.1993.tb03165.x |
| [51] |
Muñoz-Manchado AB, Bengtsson Gonzales C, Zeisel A, et al. Diversity of interneurons in the dorsal striatum revealed by single-cell RNA sequencing and PatchSeq. Cell Rep. 2018;24(8):2179–2190.e7. DOI: 10.1016/j.celrep.2018.07.053 |
| [52] |
Muñoz-Manchado A.B., Bengtsson Gonzales C., Zeisel A. et al. Diversity of interneurons in the dorsal striatum revealed by single-cell RNA sequencing and PatchSeq // Cell. Rep. 2018. Vol. 24, No. 8. P. 2179–2190.e7. DOI: 10.1016/j.celrep.2018.07.053 |
| [53] |
Lim L, Mi D, Llorca A, Marín O. Development and functional diversification of cortical interneurons. Neuron. 2018;100(2):294–313. DOI: 10.1016/j.neuron.2018.10.009 |
| [54] |
Lim L., Mi D., Llorca A., Marín O. Development and functional diversification of cortical interneurons // Neuron. 2018. Vol. 100, No. 2. P. 294–313. DOI: 10.1016/j.neuron.2018.10.009 |
| [55] |
Petilla Interneuron Nomenclature Group; Ascoli GA, Alonso-Nanclares L, Anderson SA, et al. Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci. 2008;9(7):557–568. DOI: 10.1038/nrn2402 |
| [56] |
Petilla Interneuron Nomenclature Group; Ascoli G.A., Alonso-Nanclares L., Anderson S.A. et al. Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex // Nat. Rev. Neurosci. 2008. Vol. 9, No. 7. P. 557–568. DOI: 10.1038/nrn2402 |
| [57] |
Feldmeyer D, Qi G, Emmenegger V, Staiger JF. Inhibitory interneurons and their circuit motifs in the many layers of the barrel cortex. Neuroscience. 2018;368:132–151. DOI: 10.1016/j.neuroscience.2017.05.027 |
| [58] |
Feldmeyer D., Qi G., Emmenegger V., Staiger J.F. Inhibitory interneurons and their circuit motifs in the many layers of the barrel cortex // Neuroscience. 2018. Vol. 368. P. 132–151. DOI: 10.1016/j.neuroscience.2017.05.027 |
| [59] |
Tremblay R, Lee S, Rudy B. GABAergic interneurons in the neocortex: From cellular properties to circuits. Neuron. 2016;91(2):260–292. DOI: 10.1016/j.neuron.2016.06.033 |
| [60] |
Tremblay R., Lee S., Rudy B. GABAergic interneurons in the neocortex: From cellular properties to circuits // Neuron. 2016. Vol. 91, No. 2. P. 260–292. DOI: 10.1016/j.neuron.2016.06.033 |
| [61] |
Zaitsev AV. Classification and functions of GABAergic interneurons of the mammalian new cortex. Biologicheskie membrany. 2013;30(4):253–270. (In Russ.). DOI: 10.7868/S0233475513040099 |
| [62] |
Зайцев А.В. Классификация и функции ГАМК-эргических интернейронов новой коры млекопитающих // Биологические мембраны. 2013. Т. 30, № 4. С. 253–270. DOI: 10.7868/S0233475513040099 |
| [63] |
Markram H, Toledo-Rodriguez M, Wang Y, et al. Interneurons of the neocortical inhibitory system. Nat Rev Neurosci. 2004;5(10):793–807. DOI: 10.1038/nrn1519 |
| [64] |
Markram H., Toledo-Rodriguez M., Wang Y. et al. Interneurons of the neocortical inhibitory system // Nat. Rev. Neurosci. 2004. Vol. 5, No. 10. P. 793–807. DOI: 10.1038/nrn1519 |
| [65] |
Wang J, Tian Y, Zeng LH, Xu H. Prefrontal disinhibition in social fear: A vital action of somatostatin interneurons. Front Cell Neurosci. 2020;14:611732. DOI: 10.3389/fncel.2020.611732 |
| [66] |
Wang J., Tian Y., Zeng L.H., Xu H. Prefrontal disinhibition in social fear: A vital action of somatostatin interneurons // Front. Cell. Neurosci. 2020. Vol. 14. P. 611732. DOI: 10.3389/fncel.2020.611732 |
| [67] |
Guet-McCreight A, Skinner FK, Topolnik L. Common principles in functional organization of VIP/calretinin cell-driven disinhibitory circuits across cortical areas. Front Neural Circuits. 2020;14:32. DOI: 10.3389/fncir.2020.00032 |
| [68] |
Guet-McCreight A., Skinner F.K., Topolnik L. Common principles in functional organization of VIP/calretinin cell-driven disinhibitory circuits across cortical areas // Front. Neural. Circuits. 2020. Vol. 14. P. 32. DOI: 10.3389/fncir.2020.00032 |
| [69] |
Bereshpolova Y, Hei X, Alonso JM, Swadlow HA. Three rules govern thalamocortical connectivity of fast-spike inhibitory interneurons in the visual cortex. Elife. 2020;9:e60102. DOI: 10.7554/eLife.60102 |
| [70] |
Bereshpolova Y., Hei X., Alonso J.M., Swadlow H.A. Three rules govern thalamocortical connectivity of fast-spike inhibitory interneurons in the visual cortex // Elife. 2020. Vol. 9. P. e60102. DOI: 10.7554/eLife.60102 |
| [71] |
Razenkova VA, Korzhevskii DE. GABAergic axosomatic synapses of rat cortical neurons. Tsitologiya. 2020;62(11):815–821. (In Russ.). DOI: 10.31857/s0041377120110097 |
| [72] |
Разенкова В.А., Коржевский Д.Э. ГАМК-эргические аксосоматические синапсы нейронов коры головного мозга крысы // Цитология. 2020. Т. 62, № 11. С. 815–821. DOI: 10.31857/S0041377120110097 |
| [73] |
Kolos EA, Korzhevskii DA. Heterogeneous choline acetyltransferase staining in cholinergic neurons. Neurochem J. 2016;10(1):47–52. DOI: 10.1134/S1819712416010104 |
| [74] |
Колос Е.А., Коржевский Д.Э. Неоднородность реакции на холинацетилтрансферазу в холинергических нейронах // Нейрохимия. – 2016. – Т. 33. – № 1. – C. 56–62. |
| [75] |
Andrews WD, Barber M, Nemitz M, et al. Semaphorin3A-neuropilin1 signalling is involved in the generation of cortical interneurons. Brain Struct Funct. 2017;222(5):2217–2233. DOI: 10.1007/s00429-016-1337-3 |
| [76] |
Andrews W.D., Barber M., Nemitz M. et al. Semaphorin3A-neuropilin1 signalling is involved in the generation of cortical interneurons // Brain. Struct. Funct. 2017. Vol. 222, No. 5. P. 2217–2233. DOI: 10.1007/s00429-016-1337-3 |
Razenkova V.A., Korzhevskii D.E.
/
| 〈 |
|
〉 |