The physicochemical properties and distribution of aluminum in the environment, the effect on living organisms, the reduction of its toxic effect
Victoriia E. Kutai , Vasiliy Yu. Tsygankov
Medical academic journal ›› 2021, Vol. 21 ›› Issue (2) : 25 -36.
The physicochemical properties and distribution of aluminum in the environment, the effect on living organisms, the reduction of its toxic effect
The review examines the physicochemical properties, distribution in the environment, the effect on living organisms, including toxicity and ecotoxicity, ways of removing aluminum and its compounds from the human and animal organism. Analysis of scientific literature has shown that the widespread use of aluminum in nature, its use in the agricultural, food, cosmetic, aluminum, oil-producing industries, medicine, water treatment processes and other fields of activity leads to an increased intake of this element into the human body. The cumulative nature of the toxic effect of aluminum and its compounds leads to negative consequences for the respiratory, nervous, musculoskeletal systems, and mammary glands.
aluminum toxicity / cognitive dysfunction / toxicokinetics and toxicodynamics of aluminum
| [1] |
Wang L. Entry and deposit of aluminum in the brain. Adv Exp Med Biol. 2018;1091:39–51. DOI: 10.1007/978-981-13-1370-7_3 |
| [2] |
Wang L. Entry and deposit of aluminum in the brain // Adv. Exp. Med. Biol. 2018. Vol. 1091. P. 39–51. DOI: 10.1007/978-981-13-1370-7_3 |
| [3] |
Cheng D, Zhang X, Tang J, et al. Chlorogenic acid protects against aluminum toxicity via MAPK/Akt signaling pathway in murine RAW264.7 macrophages. J Inorg Biochem. 2019;190:113–120. DOI: 10.1016/j.jinorgbio.2018.11.001 |
| [4] |
Cheng D., Zhang X., Tang J. et al. Chlorogenic acid protects against aluminum toxicity via MAPK/Akt signaling pathway in murine RAW264.7 macrophages // J. Inorg. Biochem. 2019. Vol. 190. P. 113–120. DOI: 10.1016/j.jinorgbio.2018.11.001 |
| [5] |
Cheng D, Wang X, Xi Y, et al. Identification of the Al-binding proteins that account for aluminum neurotoxicity and transport in vivo. Toxicol Res (Camb). 2017;7(1):127–135. DOI: 10.1039/c7tx00261k |
| [6] |
Cheng D., Wang X., Xi Y. et al. Identification of the Al-binding proteins that account for aluminum neurotoxicity and transport in vivo // Toxicol. Res (Camb). 2017. Vol. 7, No. 1. P. 127–135. DOI: 10.1039/c7tx00261k |
| [7] |
Niu Q. Overview of the relationship between aluminum exposure and health of human being. Adv Exp Med Biol. 2018;1091:1–31. DOI: 10.1007/978-981-13-1370-7_1 |
| [8] |
Niu Q. Overview of the relationship between aluminum exposure and health of human being // Adv. Exp. Med. Biol. 2018. Vol. 1091. P. 1–31. DOI: 10.1007/978-981-13-1370-7_1 |
| [9] |
Toxicological Profile for Aluminum [Internet]. ATSDR. U.S. Department of Health and Human Services, Public Health Service, 2008. Available from: https://www.atsdr.cdc.gov/ToxProfiles/tp22-c4.pdf |
| [10] |
Toxicological Profile for Aluminum [Электронный ресурс] // ATSDR. U.S. Department of Health and Human Services, Public Health Service, 2008. Режим доступа: https://www.atsdr.cdc.gov/ToxProfiles/tp22-c4.pdf |
| [11] |
The life-cycle of aluminium [Internet]. Corporate Communications Department and Sustainability Constellium. Available from: https://www.constellium.com/sites/default/files/constellium_-_life_cycle_of_aluminium.pdf |
| [12] |
The life-cycle of aluminium [Электронный ресурс] // Corporate Communications Department and Sustainability Constellium. Режим доступа: https://www.constellium.com/sites/default/files/constellium_-_life_cycle_of_aluminium.pdf |
| [13] |
Wills MR, Savory J. Water content of aluminum, dialysis dementia, and osteomalacia. Environ Health Perspect. 1985;63:141–147. DOI: 10.1289/ehp.8563141 |
| [14] |
Wills M.R., Savory J. Water content of aluminum, dialysis dementia, and osteomalacia // Environ. Health. Perspect. 1985. Vol. 63. P. 141–147. DOI: 10.1289/ehp.8563141 |
| [15] |
North MR, Fleischer MA, Swaddle TW. Precipitation from alkaline aqueous aluminosilicate solutions. Can J Chem. 2001;79(1):319–325. DOI: 10.1139/v00-182 |
| [16] |
North M.R., Fleischer M.A., Swaddle T.W. Precipitation from alkaline aqueous aluminosilicate solutions // Can. J. Chem. 2001. Vol. 79, No. 1. P. 319–325. DOI: 10.1139/v00-182 |
| [17] |
Stojanovic B, Bukvic M, Epler I. Application of aluminum and aluminum alloys in engineering. Applied engineering letters: Journal of Engineering and Applied Sciences. 2018;3(2):52–62. DOI: 10.18485/aeletters.2018.3.2.2 |
| [18] |
Stojanovic B., Bukvic M., Epler I. Application of aluminum and aluminum alloys in engineering // Applied engineering letters: Journal of Engineering and Applied Sciences. 2018. Vol. 3, No. 2. P. 52–62. DOI: 10.18485/aeletters.2018.3.2.2 |
| [19] |
Sulaj Z, Drishti A, Çeko I, et al. Fatal aluminum phosphide poisonings in Tirana (Albania), 2009–2013. Daru. 2015;23(1):8. DOI: 10.1186/s40199-015-0090-0 |
| [20] |
Sulaj Z., Drishti A., Çeko I. et al. Fatal aluminum phosphide poisonings in Tirana (Albania), 2009–2013 // Daru. 2015. Vol. 23, No. 1. P. 8. DOI: 10.1186/s40199-015-0090-0 |
| [21] |
Etemadi-Aleagha A, Akhgari M, Iravani FS. Aluminum phosphide poisoning-related deaths in Tehran, Iran, 2006 to 2013. Medicine (Baltimore). 2015;94(38):e1637. DOI: 10.1097/MD.0000000000001637 |
| [22] |
Etemadi-Aleagha A., Akhgari M., Iravani F.S. Aluminum phosphide poisoning-related deaths in Tehran, Iran, 2006 to 2013 // Medicine (Baltimore). 2015. Vol. 94, No. 38. P. e1637. DOI: 10.1097/MD.0000000000001637 |
| [23] |
Shafahi A, Mostafazadeh B, Dadpour B. Inhalational toxicity of aluminum phosphide as an ongoing concern; a report of two cases. Arch Acad Emerg Med. 2019;7(1):e69. |
| [24] |
Shafahi A., Mostafazadeh B., Dadpour B. Inhalational toxicity of aluminum phosphide as an ongoing concern; a report of two cases // Arch. Acad. Emerg. Med. 2019. Vol. 7, No. 1. P. e69. |
| [25] |
Alnasser S, Hussain SM, Kirdi TS, Ahmed A. Aluminum phosphide poisoning in Saudi Arabia over a nine-year period. Ann Saudi med. 2018;38(4):277–283. DOI: 10.5144/0256-4947.2018.277 |
| [26] |
Alnasser S., Hussain S.M., Kirdi T.S., Ahmed A. Aluminum phosphide poisoning in Saudi Arabia over a nine-year period // Ann. Saudi. Med. 2018. Vol. 38, No. 4. P. 277–283. DOI: 10.5144/0256-4947.2018.277 |
| [27] |
Navabi SM, Navabi J, Aghaei A, et al. Mortality from aluminum phosphide poisoning in Kermanshah Province, Iran: characteristics and predictive factors. Epidemiol Health. 2018;40:e2018022. DOI: 10.4178/epih.e2018022 |
| [28] |
Navabi S.M., Navabi J., Aghaei A. et al. Mortality from aluminum phosphide poisoning in Kermanshah Province, Iran: characteristics and predictive factors // Epidemiol. Health. 2018. Vol. 40. P. e2018022. DOI: 10.4178/epih.e2018022 |
| [29] |
Sharma T, Sharma A, Kapoor D. Profile of aluminum phosphide poisoning in a tertiary care institute in the sub-Himalayan region. J Family Med Prim Care. 2018;7(3):581–583. DOI: 10.4103/jfmpc.jfmpc_231_17 |
| [30] |
Sharma T., Sharma A., Kapoor D. Profile of aluminum phosphide poisoning in a tertiary care institute in the sub-Himalayan region // J. Family Med. Prim. Care. 2018. Vol. 7, No. 3. P. 581–583. DOI: 10.4103/jfmpc.jfmpc_231_17 |
| [31] |
Sharma A, Sharma A, Acharya A, et al. Extracorporeal membrane oxygenation in aluminum phosphide poisoning in Nepal: a case report. J Med Case Rep. 2018;12(1):311. DOI: 10.1186/s13256-018-1864-z |
| [32] |
Sharma A., Sharma A., Acharya A. et al. Extracorporeal membrane oxygenation in aluminum phosphide poisoning in Nepal: a case report // J. Med. Case Rep. 2018. Vol. 12, No. 1. P. 311. DOI: 10.1186/s13256-018-1864-z |
| [33] |
He P, Zou Y, Hu Z. Advances in aluminum hydroxide based adjuvant research and its mechanism. Hum Vaccin Immunother. 2015;11(2):477–488. DOI: 10.1080/21645515.2014.1004026 |
| [34] |
He P., Zou Y., Hu Z. Advances in aluminum hydroxide based adjuvant research and its mechanism // Hum. Vaccin. Immunother. 2015. Vol. 11, No. 2. P. 477–488. DOI: 10.1080/21645515.2014.1004026 |
| [35] |
Becker LC, Boyer I, Bergfeld WF, et al. Safety assessment of alumina and aluminum hydroxide as used in cosmetics. Int J Toxicol. 2016;35(3 Suppl):16S–33S. DOI: 10.1177/1091581816677948 |
| [36] |
Becker L.C., Boyer I., Bergfeld W.F. et al. Safety assessment of alumina and aluminum hydroxide as used in cosmetics // Int. J. Toxicol. 2016. Vol. 35, No. 3 suppl. P. 16S–33S. DOI: 10.1177/1091581816677948 |
| [37] |
Klotz K, Weistenhöfer W, Neff F, et al. The health effects of aluminum exposure. Dtsch Arztebl Int. 2017;114(39):653–659. DOI: 10.3238/arztebl.2017.0653 |
| [38] |
Klotz K., Weistenhöfer W., Neff F. et al. The health effects of aluminum exposure // Dtsch. Arztebl. Int. 2017. Vol. 114, No. 39. P. 653–659. DOI: 10.3238/arztebl.2017.0653 |
| [39] |
Krewski D, Yokel RA, Nieboer E, et al. Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. J Toxicol Environ Health B Crit Rev. 2007;10(Suppl 1):1–269. DOI: 10.1080/10937400701597766 |
| [40] |
Krewski D., Yokel R.A., Nieboer E. et al. Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide // J. Toxicol. Environ. Health B. Crit. Rev. 2007. Vol. 10, No. Suppl 1. P. 1–269. DOI: 10.1080/10937400701597766 |
| [41] |
Nie J. Exposure to aluminum in daily life and Alzheimer’s disease. Adv Exp Med Biol. 2018;1091:99–111. DOI: 10.1007/978-981-13-1370-7_6 |
| [42] |
Nie J. Exposure to aluminum in daily life and Alzheimer’s disease // Adv. Exp. Med. Biol. 2018. Vol. 1091. P. 99–111. DOI: 10.1007/978-981-13-1370-7_6 |
| [43] |
Bagryantseva ОV, Shatrov GN, Khotimchenko SА, et al. Aluminium: food-related health risk assessment of the consumers. Health Risk Analysis. 2016;1(13):59–68. (In Russ.) |
| [44] |
Багрянцева О.В., Шатров Г.Н., Хотимченко С.А. и др. Алюминий: оценка риска для здоровья потребителей при поступлении c пищевыми продуктами // Анализ риска здоровью. 2016. № 1(13). С. 59–68. |
| [45] |
Redgrove J, Rodriguez I, Mahadevan-Bava S, Exley C. Prescription infant formulas are contaminated with aluminium. Int J Environ Res Public Health. 2019;16(5):899. DOI: 10.3390/ijerph16050899 |
| [46] |
Redgrove J., Rodriguez I., Mahadevan-Bava S., Exley C. Prescription infant formulas are contaminated with aluminium // Int. J. Environ. Res. Public. Health. 2019. Vol. 16, No. 5. P. 899. DOI: 10.3390/ijerph16050899 |
| [47] |
Toxicological Profile for Aluminum [Internet]. ATSDR. U.S. Department of Health and Human Services, Public Health Service, 2008. Available from: https://www.atsdr.cdc.gov/ToxProfiles/tp22-c3.pdf |
| [48] |
Toxicological Profile for Aluminum [Электронный ресурс] // ATSDR. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service, 2008. Режим доступа: https://www.atsdr.cdc.gov/ToxProfiles/tp22-c3.pdf |
| [49] |
Exley C, Mold MJ. Aluminium in human brain tissue: how much is too much? J Biol Inorg Chem. 2019;24(8):1279–1282. DOI: 10.1007/s00775-019-01710-0 |
| [50] |
Exley C., Mold M.J. Aluminium in human brain tissue: how much is too much? // J. Biol. Inorg. Chem. 2019. Vol. 24, No. 8. P. 1279–1282. DOI: 10.1007/s00775-019-01710-0 |
| [51] |
Shaw CA. Aluminum as a CNS and immune system toxin across the life span. Adv Exp Med Biol. 2018;1091:53–83. DOI: 10.1007/978-981-13-1370-7_4 |
| [52] |
Shaw C.A. Aluminum as a CNS and immune system toxin across the life span // Adv. Exp. Med. Biol. 2018. Vol. 1091. P. 53–83. DOI: 10.1007/978-981-13-1370-7_4 |
| [53] |
Banks WA, Kastin AJ. Aluminum-induced neurotoxicity: alterations in membrane function at the blood-brain barrier. Neurosci Biobehav Rev. 1989;13(1):47–53. DOI: 10.1016/s0149-7634(89)80051-x |
| [54] |
Banks W.A., Kastin A.J. Aluminum-induced neurotoxicity: alterations in membrane function at the blood-brain barrier // Neurosci. Biobehav. Rev. 1989. Vol. 13, No. 1. P. 47–53. DOI: 10.1016/s0149-7634(89)80051-x |
| [55] |
Mold M, Chmielecka A, Rodriguez MRR, et al. Aluminium in brain tissue in multiple sclerosis. Int J Environ Res Public Health. 2018;15(8):1777. DOI: 10.3390/ijerph15081777 |
| [56] |
Mold M., Chmielecka A., Rodriguez M.R.R. et al. Aluminium in brain tissue in multiple sclerosis // Int. J. Environ. Res. Public Health. 2018. Vol. 15, No. 8. P. 1777. DOI: 10.3390/ijerph15081777 |
| [57] |
Mold M, Cottle J, Exley C. Aluminium in brain tissue in epilepsy: A case report from Camelford. Int J Environ Res Public Health. 2019;16(12):2129. DOI: 10.3390/ijerph16122129 |
| [58] |
Mold M., Cottle J., Exley C. Aluminium in brain tissue in epilepsy: A case report from Camelford // Int. J. Environ. Res. Public Health. 2019. Vol. 16, No. 12. P. 2129. DOI: 10.3390/ijerph16122129 |
| [59] |
Mold M, Umar D, King A, Exley C. Aluminium in brain tissue in autism. J Trace Elem Med Biol. 2018;46:76–82. DOI: 10.1016/j.jtemb.2017.11.012 |
| [60] |
Mold M., Umar D., King A., Exley C. Aluminium in brain tissue in autism // J. Trace Elem. Med. Biol. 2018. Vol. 46. P. 76–82. DOI: 10.1016/j.jtemb.2017.11.012 |
| [61] |
Mold M, Cottle J, King A, Exley C. Intracellular aluminium in inflammatory and glial cellsin cerebral amyloid angiopathy: A case report. Int J Environ Res Public Health. 2019;16(8):1459. DOI: 10.3390/ijerph16081459 |
| [62] |
Mold M., Cottle J., King A., Exley C. Intracellular aluminium in inflammatory and glial cellsin cerebral amyloid angiopathy: A case report // Int. J. Environ. Res. Public Health. 2019. Vol. 16, No. 8. P. 1459. DOI: 10.3390/ijerph16081459 |
| [63] |
Meng H, Wang S, Guo J, et al. Cognitive impairment of workers in a large-scale aluminium factory in China: a cross-sectional study. BMJ Open. 2019;9(6):e027154. DOI: 10.1136/bmjopen-2018-027154 |
| [64] |
Meng H., Wang S., Guo J. et al. Cognitive impairment of workers in a large-scale aluminium factory in China: a cross-sectional study // BMJ Open. 2019. Vol. 9, No. 6. P. e027154. DOI: 10.1136/bmjopen-2018-027154 |
| [65] |
Klein GL. Aluminum toxicity to bone: A multisystem effect? Osteoporos Sarcopenia. 2019;5(1):2–5. DOI: 10.1016/j.afos.2019.01.001 |
| [66] |
Klein G.L. Aluminum toxicity to bone: A multisystem effect? // Osteoporos. Sarcopenia. 2019. Vol. 5, No. 1. P. 2–5. DOI: 10.1016/j.afos.2019.01.001 |
| [67] |
Omran GA. Hematological and immunological impairment following in-utero and postnatal exposure to aluminum sulfate in female offspring of albino rats. Immunopharmacol Immunotoxicol. 2019;41(1):40–47. DOI: 10.1080/08923973.2018.1533967 |
| [68] |
Omran G.A. Hematological and immunological impairment following in-utero and postnatal exposure to aluminum sulfate in female offspring of albino rats // Immunopharmacol. Immunotoxicol. 2019. Vol. 41, No. 1. P. 40–47. DOI: 10.1080/08923973.2018.1533967 |
| [69] |
Kahbasi S, Samadbin M, Attar F, et al. The effect of aluminum oxide on red blood cell integrity and hemoglobin structure at nanoscale. Int J Biol Macromol. 2019;138:800–809. DOI: 10.1016/j.ijbiomac.2019.07.154 |
| [70] |
Kahbasi S., Samadbin M., Attar F. et al. The effect of aluminum oxide on red blood cell integrity and hemoglobin structure at nanoscale // Int. J. Biol. Macromol. 2019. Vol. 138. P. 800–809. DOI: 10.1016/j.ijbiomac.2019.07.154 |
| [71] |
Jeong CH, Kwon HC, Kim DH, et al. Effects of aluminum on the integrity of the intestinal epithelium: An in vitro and in vivo study. Environ Health Perspect. 2020;128(1):17013. DOI: 10.1289/EHP5701 |
| [72] |
Jeong C.H., Kwon H.C., Kim D.H. et al. Effects of aluminum on the integrity of the intestinal epithelium: An in vitro and in vivo study // Environ. Health. Perspect. 2020. Vol. 128, No. 1. P. 17013. DOI: 10.1289/EHP5701 |
| [73] |
Tsialtas I, Gorgogietas VA, Michalopoulou M, et al. Neurotoxic effects of aluminum are associated with its interference with estrogen receptors signaling. Neurotoxicology. 2020;77:114–126. DOI: 10.1016/j.neuro.2020.01.004 |
| [74] |
Tsialtas I., Gorgogietas V.A., Michalopoulou M. et al. Neurotoxic effects of aluminum are associated with its interference with estrogen receptors signaling // Neurotoxicology. 2020. Vol. 77. P. 114–126. DOI: 10.1016/j.neuro.2020.01.004 |
| [75] |
Aluminum chloride [Internet]. NIOSH. Centers for Disease Control and Prevention. Available from: https://www.cdc.gov/niosh-rtecs/BD802C8.html |
| [76] |
Aluminum chloride [Электронный ресурс] // NIOSH. Centers for Disease Control and Prevention. Режим доступа: https://www.cdc.gov/niosh-rtecs/BD802C8.html |
| [77] |
Lovegrove A, Edwards CH, De Noni I, et al. Role of polysaccharides in food, digestion, and health. Crit Rev Food Sci Nutr. 2017;57(2):237–253. DOI: 10.1080/10408398.2014.939263 |
| [78] |
Lovegrove A., Edwards C.H., De Noni I. et al. Role of polysaccharides in food, digestion, and health // Crit. Rev. Food Sci. Nutr. 2017. Vol. 57, No. 2. P. 237–253. DOI: 10.1080/10408398.2014.939263 |
| [79] |
Khotimchenko MY, Khozhaenko EV, Kolenchenko EA, Khotimchenko YS. Equilibrium studies of sorption of strontium ions by different pectin compounds. Journal of Environmental Science and Technology. 2012;5(5):319–331. DOI: 10.3923/jest.2012.319.331 |
| [80] |
Khotimchenko M.Y., Khozhaenko E.V., Kolenchenko E.A., Khotimchenko Y.S. Equilibrium studies of sorption of strontium ions by different pectin compounds // Journal of Environmental Science and Technology. 2012. Vol. 5, No. 5. P. 319–331. DOI: 10.3923/jest.2012.319.331 |
| [81] |
Khotimchenko MY, Khozhaenko EV, Kolenchenko EA, Khotimchenko YS. Influence of pectin substances on strontium removal in rats. International Journal of Pharmacy and Pharmaceutical Sciences. 2012;4(2):269–273. |
| [82] |
Khotimchenko M.Y., Khozhaenko E.V., Kolenchenko E.A., Khotimchenko Y.S. Influence of pectin substances on strontium removal in rats // International Journal of Pharmacy and Pharmaceutical Sciences. 2012. Vol. 4, No. 2. P. 269–273. |
| [83] |
Khotimchenko Y, Khozhaenko E, Kovalev V, Khotimchenko M. Cerium binding activity of pectins isolated from the seagrasses Zostera marina and Phyllospadix iwatensis. Mar Drugs. 2012;10(4):834–848. DOI: 10.3390/md10040834 |
| [84] |
Khotimchenko Y., Khozhaenko E., Kovalev V., Khotimchenko M. Cerium binding activity of pectins isolated from the seagrasses Zostera marina and Phyllospadix iwatensis // Mar. Drugs. 2012. Vol. 10, No. 4. P. 834–848. DOI: 10.3390/md10040834 |
| [85] |
Khotimchenko MY, Podkorytova EA, Kovalev VV, et al. Removal of cesium from aqueous silutions by sodium and calcium alginates. Journal of Environmental Science and Technology. 2014;7(1):30–43. DOI: 10.3923/jest.2014.30.43 |
| [86] |
Khotimchenko M.Y., Podkorytova E.A., Kovalev V.V. et al. Removal of cesium from aqueous silutions by sodium and calcium alginates // Journal of Environmental Science and Technology. 2014. Vol. 7, No. 1. P. 30–43. DOI: 10.3923/jest.2014.30.43 |
| [87] |
Kakita K, Kishida M. Isolation of aluminum-tolerant and -absorbing yeast. Biocontrol Sci. 2020;25(4):231–234. DOI: 10.4265/bio.25.231 |
| [88] |
Kakita K., Kishida M. Isolation of aluminum-tolerant and -absorbing yeast // Biocontrol. Sci. 2020. Vol. 25, No. 4. P. 231–234. DOI: 10.4265/bio.25.231 |
| [89] |
Li HQ, Ip SP, Zheng GQ, et al. Isorhynchophylline alleviates learning and memory impairments induced by aluminum chloride in mice. Chin Med. 2018;13:29. DOI: 10.1186/s13020-018-0187-8 |
| [90] |
Li H.Q., Ip S.P., Zheng G.Q. et al. Isorhynchophylline alleviates learning and memory impairments induced by aluminum chloride in mice // Chin. Med. 2018. Vol. 13. P. 29. DOI: 10.1186/s13020-018-0187-8 |
| [91] |
Aboelwafa HR, El-Kott AF, Abd-Ella EM, Yousef HN. The possible neuroprotective effect of silymarin against aluminum chloride-prompted Alzheimer’s-like disease in rats. Brain Sci. 2020;10(9):628. DOI: 10.3390/brainsci10090628 |
| [92] |
Aboelwafa H.R., El-Kott A.F., Abd-Ella E.M., Yousef H.N. The possible neuroprotective effect of silymarin against aluminum chloride-prompted Alzheimer’s-like disease in rats // Brain. Sci. 2020. Vol. 10, No. 9. P. 628. DOI: 10.3390/brainsci10090628 |
| [93] |
Liu L, Liu Y, Zhao J, et al. Neuroprotective effects of D-(-)-quinic acid on aluminum chloride-induced dementia in rats. Evid Based Complement Alternat Med. 2020;2020:5602597. DOI: 10.1155/2020/5602597 |
| [94] |
Liu L., Liu Y., Zhao J. et al. Neuroprotective effects of D-(-)-quinic acid on aluminum chloride-induced dementia in rats // Evid. Based Complement. Alternat. Med. 2020. Vol. 2020. P. 5602597. DOI: 10.1155/2020/5602597 |
| [95] |
Hosseini-Sharifabad A, Rabbani M, Seyed-Yousefi Y, Safavi M. Magnesium increases the protective effect of citicoline on aluminum chloride-induced cognitive impairment. Clin Psychopharmacol Neurosci. 2020;18(2):241–248. DOI: 10.9758/cpn.2020.18.2.241 |
| [96] |
Hosseini-Sharifabad A., Rabbani M., Seyed-Yousefi Y., Safavi M. Magnesium increases the protective effect of citicoline on aluminum chloride-induced cognitive impairment // Clin. Psychopharmacol. Neurosci. 2020. Vol. 18, No. 2. P. 241–248. DOI: 10.9758/cpn.2020.18.2.241 |
Kutai V.E., Tsygankov V.Y.
/
| 〈 |
|
〉 |