Myeloperoxidase activity affects the high-density lipoprotein cholesterol level and the course of chronic coronary heart disease in patients with arterial hypertension

Irina A. Churashova , Alexey V. Sokolov , Valeria A. Kostevich , Nikolay P. Gorbunov , Tatyana V. Baranova , Elvira M. Firova , Mikhail Yu. Mandelstam , Vadim B. Vasilyev

Medical academic journal ›› 2025, Vol. 25 ›› Issue (1) : 101 -114.

PDF (885KB)
Medical academic journal ›› 2025, Vol. 25 ›› Issue (1) : 101 -114. DOI: 10.17816/MAJ636892
Original research
research-article

Myeloperoxidase activity affects the high-density lipoprotein cholesterol level and the course of chronic coronary heart disease in patients with arterial hypertension

Author information +
History +
PDF (885KB)

Abstract

BACKGROUND: Coronary heart disease is one of the leading causes of death and disability worldwide. Myeloperoxidase plays the key role in its pathogenesis. Oxidative modification of high-density lipoprotein particles by myeloperoxidase followed by impaired reverse cholesterol transport and the decrease of high-density lipoprotein cholesterol level results in atherosclerosis progression. We studied the effect of myeloperoxidase on reverse cholesterol transport among patients with arterial hypertension and different clinical forms of chronic coronary heart disease, judging by findings in blood plasma.

AIM: The ultimate goal was to establish whether that effect is associated with the total amount of myeloperoxidase or its activity.

METHODS: 93 patients were recruited (65.4 ± 10.1 years old in average; men — 30 (32%)) with arterial hypertension and different clinical forms of chronic coronary heart disease. Depending on the diagnosis established, all participants were divided into 3 groups. Group I (control) contained patients with arterial hypertension, but without chronic coronary heart disease (n = 46). Group II (n = 26) included patients with initially stable coronary syndromes of chronic coronary heart disease (stable angina and/or scheduled surgical interventions for stable coronary heart disease), who never experienced acute adverse cardiac events. Group III (n = 21) contained patients with acute coronary syndrome (acute myocardial infarction) in the past 6 months or earlier. The total myeloperoxidase content (MPO-T) was assayed by enzyme-linked immunosorbent assay (ELISA). Home-modified specific immune-extraction followed by enzymatic detection (SIEFED) test was used to measure the active myeloperoxidase (MPO-A). Then, the coefficient of myeloperoxidase activity (MPO-CA) and the ratio of coefficient of myeloperoxidase activity to high-density lipoprotein cholesterol (MPO-CA/HDL-C) were calculated.

RESULTS: The level of MPO-A was higher in patients from group III with complicated form of chronic coronary heart disease, as compared with group II (p < 0.05). MPO-CA in patients of group III also was higher in comparison with group II (p = 0.001). Weak positive correlation was found between MPO-T and MPO-A in the whole cohort under investigation (r = 0.26; p < 0.05), and the relationship was stronger in the group III (r = 0.59; p < 0.05). In addition, negative correlation between MPO-A and HDL-C was found in group III (r = –0.46; p < 0.05). The MPO-CA/HDL-C ratio was higher in patients with anamnestic acute coronary syndrome, as compared with patients manifesting non-complicated stable coronary heart disease (p < 0.001) and with patients of group I who had no coronary heart disease (p < 0.001). To determine diagnostic value of the MPO-CA/HDL-C the receiver operating characteristic curve (ROC-curve) was plotted. The calculated area under curve (AUC) was 0.8 which indicates a high predictive value of the MPO-CA/HDL-C ratio for different forms of chronic coronary heart disease.

CONCLUSION: The results of our study demonstrate that in patients with preceding history of acute coronary syndrome, as compared with those having a stable course of chronic coronary heart disease, the effect of myeloperoxidase on reverse cholesterol transport depends on its activity rather than concentration. MPO-CA/HDL-C ratio mirrors the complicated chronic coronary heart disease and might serve as an additional indicator of residual risk.

Keywords

myeloperoxidase / high-density lipoprotein cholesterol / coronary heart disease / reverse cholesterol transport / ELISA / SIEFED

Cite this article

Download citation ▾
Irina A. Churashova, Alexey V. Sokolov, Valeria A. Kostevich, Nikolay P. Gorbunov, Tatyana V. Baranova, Elvira M. Firova, Mikhail Yu. Mandelstam, Vadim B. Vasilyev. Myeloperoxidase activity affects the high-density lipoprotein cholesterol level and the course of chronic coronary heart disease in patients with arterial hypertension. Medical academic journal, 2025, 25(1): 101-114 DOI:10.17816/MAJ636892

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

WHO reveals leading causes of death and disability worldwide: 2000-2019 [Internet]. Available from: https://www.who.int/news/item/09-12-2020-who-reveals-leading-causes-of-death-and-disability-worldwide-2000-2019. Accessed: 27 Dec 2024.

[2]

WHO reveals leading causes of death and disability worldwide: 2000-2019 [Электронный ресурс]. Режим доступа: https://www.who.int/news/item/09-12-2020-who-reveals-leading-causes-of-death-and-disability-worldwide-2000-2019. Дата обращения: 27.12.2024.

[3]

Delporte C, Van Antwerpen P, Vanhamme L, et al. Low-density lipoprotein modified by myeloperoxidase in inflammatory pathways and clinical studies. Mediators Inflamm. 2013;2013:971579. doi: 10.1155/2013/971579

[4]

Delporte C., Van Antwerpen P., Vanhamme L., et al. Low-density lipoprotein modified by myeloperoxidase in inflammatory pathways and clinical studies // Mediators Inflamm. 2013. Vol. 2013. P. 971579. doi: 10.1155/2013/971579

[5]

Sokolov AV, Kostevich VA, Runova OL, et al. Proatherogenic modification of LDL by surface-bound myeloperoxidase. Chem Phys Lipids. 2014;180:72–80. doi: 10.1016/j.chemphyslip.2014.02.006

[6]

Sokolov A.V., Kostevich V.A., Runova O.L., et al. Proatherogenic modification of LDL by surface-bound myeloperoxidase // Chem Phys Lipids. 2014. Vol. 180. P. 72–80. doi: 10.1016/j.chemphyslip.2014.02.006

[7]

Ismael FO, Proudfoot JM, Brown BE, et al. Comparative reactivity of the myeloperoxidase-derived oxidants HOCl and HOSCN with low-density lipoprotein (LDL): Implications for foam cell formation in atherosclerosis. Arch Biochem Biophys. 2015;573:40–51. doi: 10.1016/j.abb.2015.03.008

[8]

Ismael F.O., Proudfoot J.M., Brown B.E., et al. Comparative reactivity of the myeloperoxidase-derived oxidants HOCl and HOSCN with low-density lipoprotein (LDL): Implications for foam cell formation in atherosclerosis // Arch Biochem Biophys. 2015. Vol. 573. P. 40–51. doi: 10.1016/j.abb.2015.03.008

[9]

Abdo AI, Rayner BS, van Reyk DM, Hawkins CL. Low-density lipoprotein modified by myeloperoxidase oxidants induces endothelial dysfunction. Redox Biol. 2017;13:623–632. doi: 10.1016/j.redox.2017.08.004

[10]

Abdo A.I., Rayner B.S., van Reyk D.M., Hawkins C.L. Low-density lipoprotein modified by myeloperoxidase oxidants induces endothelial dysfunction // Redox Biol. 2017. Vol. 13. P. 623–632. doi: 10.1016/j.redox.2017.08.004

[11]

Panasenko OM, Torkhovskaya TI, Gorudko IV, Sokolov AV. The role of halogenative stress in atherogenic modification of low-density lipoproteins. Biochemistry (Mosc). 2020;85(Suppl 1):S34–S55. EDN: EZKLSR doi: 10.1134/S0006297920140035

[12]

Панасенко О.М., Торховская Т.И., Горудко И.В., Соколов А.В. Роль галогенирующего стресса в атерогенной модификации липопротеинов низкой плотности // Успехи биологической химии. 2020. Т. 60. С. 75–122. EDN: YJFDYT

[13]

Teng N, Maghzal GJ, Talib J, et al. The roles of myeloperoxidase in coronary artery disease and its potential implication in plaque rupture. Redox Rep. 2017;22(2):51–73. doi: 10.1080/13510002.2016.1256119

[14]

Teng N., Maghzal G.J., Talib J., et al. The roles of myeloperoxidase in coronary artery disease and its potential implication in plaque rupture // Redox Rep. 2017. Vol. 22, N 2. P. 51–73. doi: 10.1080/13510002.2016.1256119

[15]

Zheng L, Nukuna B, Brennan M-L, et al. Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease. J Clin Invest. 2004;114(4):529–541. doi: 10.1172/jci21109

[16]

Zheng L., Nukuna B., Brennan M.-L., et al. Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease // J Clin Invest. 2004. Vol. 114, N 4. P. 529–541. doi: 10.1172/jci21109

[17]

Nicholls SJ, Zheng L, Hazen SL. Formation of dysfunctional high-density lipoprotein by myeloperoxidase. Trends Cardiovasc Med. 2005;15(6):212–219. doi: 10.1016/j.tcm.2005.06.004

[18]

Nicholls S.J., Zheng L., Hazen S.L. Formation of dysfunctional high-density lipoprotein by myeloperoxidase // Trends Cardiovasc Med. 2005. Vol. 15, N 6. P. 212–219. doi: 10.1016/j.tcm.2005.06.004

[19]

Malle E, Marsche G, Panzenboeck U, Sattler W. Myeloperoxidase-mediated oxidation of high-density lipoproteins: Fingerprints of newly recognized potential proatherogenic lipoproteins. Arch Biochem Biophys. 2006;445(2):245–255. doi: 10.1016/j.abb.2005.08.008

[20]

Malle E., Marsche G., Panzenboeck U., Sattler W. Myeloperoxidase-mediated oxidation of high-density lipoproteins: Fingerprints of newly recognized potential proatherogenic lipoproteins // Arch Biochem Biophys. 2006. Vol. 445, N 2. P. 245–255. doi: 10.1016/j.abb.2005.08.008

[21]

Urundhati A, Huang Y, Lupica JA, et al. Modification of high density lipoprotein by myeloperoxidase generates a pro-inflammatory particle. J Biol Chem. 2009;284(45):30825–30835. doi: 10.1074/jbc.M109.047605

[22]

Urundhati A., Huang Y., Lupica J.A., et al. Modification of high density lipoprotein by myeloperoxidase generates a pro-inflammatory particle // J Biol Chem. 2009. Vol. 284, N 45. P. 30825–30835. doi: 10.1074/jbc.M109.047605

[23]

Smith JD. Myeloperoxidase, inflammation, and dysfunctional HDL. J Clin Lipidol. 2010;4(5):382–388. doi: 10.1016/j.jacl.2010.08.007

[24]

Smith J.D. Myeloperoxidase, inflammation, and dysfunctional HDL // J Clin Lipidol. 2010. Vol. 4, N 5. P. 382–388. doi: 10.1016/j.jacl.2010.08.007

[25]

Shao B, Tang C, Sinha A, et al. Humans with atherosclerosis have impaired ABCA1 cholesterol efflux and enhanced high-density lipoprotein oxidation by myeloperoxidase. Circ Res. 2014;114(11):1733–1742. doi: 10.1161/CIRCRESAHA.114.303454

[26]

Shao B., Tang C., Sinha A., et al. Humans with atherosclerosis have impaired ABCA1 cholesterol efflux and enhanced high-density lipoprotein oxidation by myeloperoxidase // Circ Res. 2014. Vol. 114, N 11. P. 1733–1742. doi: 10.1161/CIRCRESAHA.114.303454

[27]

Ouimet M, Barrett TJ, Fisher EA. HDL and reverse cholesterol transport: Basic mechanisms and their roles in vascular health and disease. Circ Res. 2019;124(10):1505–1518. doi: 10.1161/CIRCRESAHA.119.312617

[28]

Ouimet M., Barrett T.J., Fisher E.A. HDL and reverse cholesterol transport: Basic mechanisms and their roles in vascular health and disease // Circ Res. 2019. Vol. 124, N 10. P. 1505–1518. doi: 10.1161/CIRCRESAHA.119.312617

[29]

Cai H, Chuang CY, Hawkins CL, Davies MJ. Binding of myeloperoxidase to the extracellular matrix of smooth muscle cells and subsequent matrix modification. Sci Rep. 2020;10(1):666. doi: 10.1038/S41598-019-57299-6

[30]

Cai H., Chuang C.Y., Hawkins C.L., Davies M.J. Binding of myeloperoxidase to the extracellular matrix of smooth muscle cells and subsequent matrix modification // Sci Rep. 2020. Vol. 10, N 1. P. 666. doi: 10.1038/S41598-019-57299-6

[31]

Cheng D, Talib J, Stanley CP, et al. Inhibition of MPO (myeloperoxidase) attenuates endothelial dysfunction in mouse models of vascular inflammation and atherosclerosis. Arterioscler Thromb Vasc Biol. 2019;39(7):1448–1457. doi: 10.1161/ATVBAHA.119.312725

[32]

Cheng D., Talib J., Stanley C.P., et al. Inhibition of MPO (myeloperoxidase) attenuates endothelial dysfunction in mouse models of vascular inflammation and atherosclerosis // Arterioscler Thromb Vasc Biol. 2019. Vol. 39, N 7. P. 1448–1457. doi: 10.1161/ATVBAHA.119.312725

[33]

Zhang R, Brennan ML, Fu X, et al. Association between myeloperoxidase levels and risk of coronary artery disease. J Am Med Assoc. 2001;286(17):2136–2142. doi: 10.1001/jama.286.17.2136

[34]

Zhang R., Brennan M.L., Fu X., et al. Association between myeloperoxidase levels and risk of coronary artery disease // J Am Med Assoc. 2001. Vol. 286, N 17. P. 2136–2142. doi: 10.1001/jama.286.17.2136

[35]

Brennan ML, Penn MS, Van Lente F, et al. Prognostic value of myeloperoxidase in patients with chest pain. N Engl J Med. 2003;349(17):1595–1604. doi: 10.1056/NEJMoa035003

[36]

Brennan M.L., Penn M.S., Van Lente F., et al. Prognostic value of myeloperoxidase in patients with chest pain // N Engl J Med. 2003. Vol. 349, N 17. P. 1595–1604. doi: 10.1056/NEJMoa035003

[37]

Baldus S, Heeschen C, Meinertz T, et al. Myeloperoxidase serum levels predict risk in patients with acute coronary syndromes. Circulation. 2003;108(12):1440–1445. doi: 10.1161/01.CIR.0000090690.67322.51

[38]

Baldus S., Heeschen C., Meinertz T., et al. Myeloperoxidase serum levels predict risk in patients with acute coronary syndromes // Circulation. 2003. Vol. 108, N 12. P. 1440–1445. doi: 10.1161/01.CIR.0000090690.67322.51

[39]

Tang WHW, Wu Y, Nicholls SJ, Hazen SL. Plasma myeloperoxidase predicts incident cardiovascular risks in stable patients undergoing medical management for coronary artery disease. Clin Chem. 2011;57(1):33–39. doi: 10.1373/CLINCHEM.2010.152827

[40]

Tang W.H.W., Wu Y., Nicholls S.J., Hazen S.L. Plasma myeloperoxidase predicts incident cardiovascular risks in stable patients undergoing medical management for coronary artery disease // Clin Chem. 2011. Vol. 57, N 1. P. 33–39. doi: 10.1373/CLINCHEM.2010.152827

[41]

Panasenko OM, Gorudko IV, Kostevich VA, et al. Selective increase in the concentration and activity of neutrophil azurophilic granule marker myelperoxidase in blood of patients with type 2 diabetes mellitus with complications of ischemic heart disease. Efferentnaya i fiziko-khimicheskaya meditsina. 2012;1:25–29. (In Russ.) EDN: OYWISX

[42]

Панасенко О.М., Горудко И.В., Костевич В.А., и др. Селективное повышение концентрации и активности миелопероксидазы — маркера азурофильных гранул нейтрофилов — в крови больных сахарным диабетом типа 2 с осложнениями ишемической болезнью сердца // Эфферентная и физико-химическая медицина. 2012. № 1. С. 25–29. EDN: OYWISX

[43]

Gach O, Brogneaux C, Franck T, et al. Active and total myeloperoxidase in coronary artery disease and relation to clinical instability. Acta Cardiol. 2015;70(5):522–527. doi: 10.2143/AC.70.5.3110512

[44]

Gach O., Brogneaux C., Franck T., et al. Active and total myeloperoxidase in coronary artery disease and relation to clinical instability // Acta Cardiol. 2015. Vol. 70, N 5. P. 522–527. doi: 10.2143/AC.70.5.3110512

[45]

Grigorieva DV, Gorudko IV, Kostevich VA, et al. Plasma myeloperoxidase activity as a criterion of therapeutic effectiveness for patients with cardiovascular diseases. Biochem. Moscow Suppl. Ser. B. 2016;10(2):173–179. EDN: WUQVEV doi: 10.1134/S1990750816020050

[46]

Григорьева Д.В., Горудко И.В., Костевич В.А., и др. Активность миелопероксидазы в плазме крови как критерий эффективности лечения пациентов с сердечнососудистыми заболеваниями // Биомедицинская химия. 2016. Т. 62, № 3. С. 318–324. EDN: WDNZWJ doi: 10.18097/PBMC20166203318

[47]

Bunenkov NS, Komok VV, Sokolov AV, Nemkov AS. New methods of intraoperative evaluation of myocardial ischemic-reperfusion injury during on and off-pump coronary artery bypass grafting. Clinical and experimental surgery. Petrovsky journal. 2017;5(2(16)):40–48. EDN: YZBGQH doi: 10.24411/2308-1198-2017-00032

[48]

Буненков Н.С., Комок В.В., Соколов А.В., Немков А.С. Новые возможности оценки интраоперационного ишемически-реперфузионного повреждения миокарда при операциях реваскуляризации в условиях искусственного кровообращения и на работающем сердце // Клиническая и экспериментальная хирургия. Журнал им. акад. Б.В. Петровского. 2017. Т. 5, № 2(16). С. 40–48. EDN: YZBGQH doi: 10.24411/2308-1198-2017-00032

[49]

Panasenko OM, Gorudko IV, Sokolov AV. Hypochlorous acid as a precursor of free radicals in living systems. Biochemistry (Mosc). 2013;78(13):1466–1489. doi: 10.1134/S0006297913130075

[50]

Panasenko O.M., Gorudko I.V., Sokolov A.V. Hypochlorous acid as a precursor of free radicals in living systems // Biochemistry (Mosc). 2013. Vol. 78, N 13. P. 1466–1489. doi: 10.1134/S0006297913130075

[51]

Arnhold J. The dual role of myeloperoxidase in immune response. Int J Mol Sci. 2020;21(21):8057. doi: 10.3390/ijms21218057

[52]

Arnhold J. The dual role of myeloperoxidase in immune response // Int J Mol Sci. 2020. Vol. 21, N 21. P. 8057. doi: 10.3390/ijms21218057

[53]

Davies MJ, Hawkins CL. The role of myeloperoxidase in biomolecule modification, chronic inflammation, and disease. Antioxid Redox Signal. 2020;32(13):957–981. doi: 10.1089/ARS.2020.8030

[54]

Davies M.J., Hawkins C.L. The role of myeloperoxidase in biomolecule modification, chronic inflammation, and disease // Antioxid Redox Signal. 2020. Vol. 32, N 13. P. 957–981. doi: 10.1089/ARS.2020.8030

[55]

Vakhrusheva TV, Grigorieva DV, Gorudko IV, et al. Enzymatic and bactericidal activity of myeloperoxidase in conditions of halogenative stress. Biochem Cell Biol. 2018;96(5):580–591. doi: 10.1139/bcb-2017-0292

[56]

Vakhrusheva T.V., Grigorieva D.V., Gorudko I.V., et al. Enzymatic and bactericidal activity of myeloperoxidase in conditions of halogenative stress // Biochem Cell Biol. 2018. Vol. 96, N 5. P. 580–591. doi: 10.1139/bcb-2017-0292

[57]

Astern JM, Pendergraft WF, Falk RJ, et al. Myeloperoxidase interacts with endothelial cell-surface cytokeratin 1 and modulates bradykinin production by the plasma Kallikrein-Kinin system. Am J Pathol. 2007;171(1):349–360. doi: 10.2353/AJPATH.2007.060831

[58]

Astern J.M., Pendergraft W.F., Falk R.J., et al. Myeloperoxidase interacts with endothelial cell-surface cytokeratin 1 and modulates bradykinin production by the plasma Kallikrein-Kinin system // Am J Pathol. 2007. Vol. 171, N 1. P. 349–360. doi: 10.2353/AJPATH.2007.060831

[59]

Gorudko IV, Sokolov AV, Shamova EV, et al. Binding of human myeloperoxidase to red blood cells: Molecular targets and biophysical consequences at the plasma membrane level. Arch Biochem Biophys. 2016;591:87–97. doi: 10.1016/j.abb.2015.12.007

[60]

Gorudko I.V., Sokolov A.V., Shamova E.V., et al. Binding of human myeloperoxidase to red blood cells: Molecular targets and biophysical consequences at the plasma membrane level // Arch Biochem Biophys. 2016. Vol. 591. P. 87–97. doi: 10.1016/j.abb.2015.12.007

[61]

Grigorieva DV, Gorudko IV, Sokolov AV, et al. Myeloperoxidase stimulates neutrophil degranulation. Bull Exp Biol Med. 2016;161(4):495–500. doi: 10.1007/s10517-016-3446-7

[62]

Grigorieva D.V., Gorudko I.V., Sokolov A.V., et al. Myeloperoxidase stimulates neutrophil degranulation // Bull Exp Biol Med. 2016. Vol. 161, N 4. P. 495–500. doi: 10.1007/s10517-016-3446-7

[63]

Sokolov AV, Ageeva KV, Pulina MO, et al. Ceruloplasmin and myeloperoxidase in complex affect the enzymatic properties of each other. Free Radic Res. 2008;42(11–12):989–998. doi: 10.1080/10715760802566574

[64]

Sokolov A.V., Ageeva K.V., Pulina M.O., et al. Ceruloplasmin and myeloperoxidase in complex affect the enzymatic properties of each other // Free Radic Res. 2008. Vol. 42, N 11–12. P. 989–998. doi: 10.1080/10715760802566574

[65]

Sokolov AV, Ageeva KV, Cherkalina OS, et al. Identification and properties of complexes formed by myeloperoxidase with lipoproteins and ceruloplasmin. Chem Phys Lipids. 2010;163(4–5):347–355. doi: 10.1016/J.CHEMPHYSLIP.2010.02.002

[66]

Sokolov A.V., Ageeva K.V., Cherkalina O.S., et al. Identification and properties of complexes formed by myeloperoxidase with lipoproteins and ceruloplasmin // Chem Phys Lipids. 2010. Vol. 163, N 4–5. P. 347–355. doi: 10.1016/J.CHEMPHYSLIP.2010.02.002

[67]

Gorudko IV, Grigorieva DV, Shamova EV, et al. Structure-biological activity relationships of myeloperoxidase to effect on platelet activation. Arch Biochem Biophys. 2022;728:109353. doi: 10.1016/j.abb.2022.109353

[68]

Gorudko I.V., Grigorieva D.V., Shamova E.V., et al. Structure-biological activity relationships of myeloperoxidase to effect on platelet activation // Arch Biochem Biophys. 2022. Vol. 728. P. 109353. doi: 10.1016/j.abb.2022.109353

[69]

Huang Y, Wu Z, Riwanto M, et al. Myeloperoxidase, paraoxonase-1, and HDL form a functional ternary complex. J Clin Invest. 2013;123(9):3815–3828. doi: 10.1172/JCI67478

[70]

Huang Y., Wu Z., Riwanto M., et al. Myeloperoxidase, paraoxonase-1, and HDL form a functional ternary complex // J Clin Invest. 2013. Vol. 123, N 9. P. 3815–3828. doi: 10.1172/JCI67478

[71]

Maitra D, Shaeib F, Abdulhamid I, et al. Myeloperoxidase acts as a source of free iron during steady-state catalysis by a feedback inhibitory pathway. Free Radic Biol Med. 2013;63:90–98. doi: 10.1016/j.freeradbiomed.2013.04.009

[72]

Maitra D., Shaeib F., Abdulhamid I., et al. Myeloperoxidase acts as a source of free iron during steady-state catalysis by a feedback inhibitory pathway // Free Radic Biol Med. 2013. Vol. 63. P. 90–98. doi: 10.1016/j.freeradbiomed.2013.04.009

[73]

Hazen SL, Heinecke JW. 3-Chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J Clin Invest. 1997;99(9):2075–2081. doi: 10.1172/JCI119379

[74]

Hazen S.L., Heinecke J.W. 3-Chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima // J Clin Invest. 1997. Vol. 99, N 9. P. 2075–2081. doi: 10.1172/JCI119379

[75]

Malle E, Marsche G, Arnhold J, Davies MJ. Modification of low-density lipoprotein by myeloperoxidase-derived oxidants and reagent hypochlorous acid. Biochim Biophys Acta. 2006;1761(4):392–415. doi: 10.1016/j.bbalip.2006.03.024

[76]

Malle E., Marsche G., Arnhold J., Davies M.J. Modification of low-density lipoprotein by myeloperoxidase-derived oxidants and reagent hypochlorous acid // Biochim Biophys Acta. 2006. Vol. 1761, N 4. P. 392–415. doi: 10.1016/j.bbalip.2006.03.024

[77]

Afshinnia F, Zeng L, Byun J, et al. Myeloperoxidase levels and its product 3-chlorotyrosine predict chronic kidney disease severity and associated coronary artery disease. Am J Nephrol. 2017;46(1):73–81. doi: 10.1159/000477766

[78]

Afshinnia F., Zeng L., Byun J., et al. Myeloperoxidase levels and its product 3-chlorotyrosine predict chronic kidney disease severity and associated coronary artery disease // Am J Nephrol. 2017. Vol. 46, N 1. P. 73–81. doi: 10.1159/000477766

[79]

Sokolov AV, Kostevich VA, Gorbunov NP, et al. A link between active myeloperoxidase and chlorinated ceruloplasmin in blood plasma of patients with cardiovascular diseases. Medical Immunology (Russia). 2018;20(5):699–710. EDN: YLTKTR doi: 10.15789/1563-0625-2018-5-699-710

[80]

Соколов А.В., Костевич В.А., Горбунов Н.П., и др. Связь между активной миелопероксидазой и хлорированным церулоплазмином в плазме крови пациентов с сердечно-сосудистыми заболеваниями // Медицинская иммунология. Т. 20, № 5. С. 699–710. EDN: YLTKTR doi: 10.15789/1563-0625-2018-5-699-710

[81]

Trentini A, Rosta V, Spadaro S, et al. Development, optimization and validation of an absolute specific assay for active myeloperoxidase (MPO) and its application in a clinical context: Role of MPO specific activity in coronary artery disease. Clin Chem Lab Med. 2020;58(10):1749–1758. doi: 10.1515/cclm-2019-0817

[82]

Trentini A., Rosta V., Spadaro S., et al. Development, optimization and validation of an absolute specific assay for active myeloperoxidase (MPO) and its application in a clinical context: Role of MPO specific activity in coronary artery disease // Clin Chem Lab Med. 2020. Vol. 58, N 10. P. 1749–1758. doi: 10.1515/cclm-2019-0817

[83]

Haraguchi Y, Toh R, Hasokawa M, et al. Serum myeloperoxidase/paraoxonase 1 ratio as potential indicator of dysfunctional high-density lipoprotein and risk stratification in coronary artery disease. Atherosclerosis. 2014;234(2):288–294. doi: 10.1016/j.atherosclerosis.2014.03.009

[84]

Haraguchi Y., Toh R., Hasokawa M., et al. Serum myeloperoxidase/paraoxonase 1 ratio as potential indicator of dysfunctional high-density lipoprotein and risk stratification in coronary artery disease // Atherosclerosis. 2014. Vol. 234, N 2. P. 288–294. doi: 10.1016/j.atherosclerosis.2014.03.009

[85]

Khine HW, Teiber JF, Haley RW, et al. Association of the serum myeloperoxidase/high-density lipoprotein particle ratio and incident cardiovascular events in a multi-ethnic population: Observations from the Dallas Heart Study. Atherosclerosis. 2017;263:156–162. doi: 10.1016/j.atherosclerosis.2017.06.007

[86]

Khine H.W., Teiber J.F., Haley R.W., et al. Association of the serum myeloperoxidase/high-density lipoprotein particle ratio and incident cardiovascular events in a multi-ethnic population: Observations from the Dallas Heart Study // Atherosclerosis. 2017. Vol. 263. P. 156–162. doi: 10.1016/j.atherosclerosis.2017.06.007

[87]

Kimak E, Zięba B, Duma D, Solski J. Myeloperoxidase level and inflammatory markers and lipid and lipoprotein parameters in stable coronary artery disease. Lipids Health Dis. 2018;17(1):71. doi: 10.1186/s12944-018-0718-4

[88]

Kimak E., Zięba B., Duma D., Solski J. Myeloperoxidase level and inflammatory markers and lipid and lipoprotein parameters in stable coronary artery disease // Lipids Health Dis. 2018. Vol. 17, N 1. P. 71. doi: 10.1186/s12944-018-0718-4

[89]

Sokolov AV, Gorbunov NP, Kostevich VA, Panasenko OM. Characteristics and prospects of using monoclonal antibodies against myeloperoxidase. Bioradicals and Antioxidants. 2018;5(3):65–66. (In Russ.) EDN: YLAKHB

[90]

Соколов А.В., Горбунов Н.П., Костевич В.А., Панасенко О.М. Характеристика и перспективы применения моноклональных антител против миелопероксидазы // Биорадикалы и антиоксиданты. 2018. Т. 5, № 3. С. 65–66. EDN: YLAKHB

[91]

Li S, Peng Y, Wang X, et al. Cardiovascular events and death after myocardial infarction or ischemic stroke in an older Medicare population. Clin Cardiol. 2019;42(3):391–399. doi: 10.1002/clc.23160

[92]

Li S., Peng Y., Wang X., et al. Cardiovascular events and death after myocardial infarction or ischemic stroke in an older Medicare population // Clin Cardiol. 2019. Vol. 42, N 3. P. 391–399. doi: 10.1002/clc.23160

[93]

Acharjee S, Boden WE, Hartigan PM, et al. Low levels of high-density lipoprotein cholesterol and increased risk of cardiovascular events in stable ischemic heart disease patients: A post-hoc analysis from the COURAGE trial (clinical outcomes utilizing revascularization and aggressive drug evaluation). J Am Coll Cardiol. 2013;62(20):1826–1833. doi: 10.1016/j.jacc.2013.07.051

[94]

Acharjee S., Boden W.E., Hartigan P.M., et al. Low levels of high-density lipoprotein cholesterol and increased risk of cardiovascular events in stable ischemic heart disease patients: A post-hoc analysis from the COURAGE trial (clinical outcomes utilizing revascularization and aggressive drug evaluation) // J Am Coll Cardiol. 2013. Vol. 62, N 20. P. 1826–1833. doi: 10.1016/j.jacc.2013.07.051

[95]

Churashova IA, Sokolov AV, Kostevich VA, et al. Myeloperoxidase/high-density lipoprotein cholesterol ratio in patients with arterial hypertension and chronic coronary heart disease. Medical Academic Journal. 2021;21(2):75–86. EDN: PLCEQJ doi: 10.17816/MAJ71486

[96]

Churashova I.A., Sokolov A.V., Kostevich V.A., et al. Myeloperoxidase/high-density lipoprotein cholesterol ratio in patients with arterial hypertension and chronic coronary heart disease // Medical Academic Journal. 2021. Vol. 21, N 2. P. 75–86. EDN: PLCEQJ doi: 10.17816/MAJ71486

[97]

Exner M, Minar E, Mlekusch W, et al. Myeloperoxidase predicts progression of carotid stenosis in states of low high-density lipoprotein cholesterol. J Am Coll Cardiol. 2006;47(11):2212–2218. doi: 10.1016/j.jacc.2006.01.067

[98]

Exner M., Minar E., Mlekusch W., et al. Myeloperoxidase predicts progression of carotid stenosis in states of low high-density lipoprotein cholesterol // J Am Coll Cardiol. 2006. Vol. 47, N 11. P. 2212–2218. doi: 10.1016/j.jacc.2006.01.067

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (885KB)

84

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/