Increased somatic polyploidization in chorion of arrested pregnancies conceived through assisted reproductive technologies

Andrei V. Tikhonov , Mikhail I. Krapivin , Lyubov I. Petrova , Olga G. Chiryaeva , Elizaveta P. Pashkova , Arina V. Golubeva , Dmitrii A. Staroverov , Ekaterina D. Trusova , Olga A. Efimova , Olesya N. Bespalova , Anna A. Pendina

Medical academic journal ›› 2024, Vol. 24 ›› Issue (4) : 84 -96.

PDF
Medical academic journal ›› 2024, Vol. 24 ›› Issue (4) : 84 -96. DOI: 10.17816/MAJ636078
Original research
research-article

Increased somatic polyploidization in chorion of arrested pregnancies conceived through assisted reproductive technologies

Author information +
History +
PDF

Abstract

BACKGROUND: The search for markers of disorders leading to miscarriage with normal embryonic karyotype is an important clinical and diagnostic problem, especially in pregnancies conceived with assisted reproductive technologies.

AIM: Analysis of chorionic cells ploidy in naturally and assisted reproductive technologies conceived pregnancies.

MATERIALS AND METHODS: A total of 52 chorion samples were included in the study. The samples were divided into groups depending on the developmental status of pregnancy (progressing/arrested), the way of conception (natural/assisted reproductive technologies) and karyotype (normal/trisomy 16). The ploidy of chorionic cells was studied using fluorescence in situ hybridization on interphase nuclei preparations. A total of 50,657 interphase nuclei were analyzed.

RESULTS: Along with predominant diploid cells, polyploid cells were detected in all chorionic samples. Their frequency varied among samples from 0.1 to 8.22%. Polyploid cells comprised mainly tetraploid cells which were detected in all samples; triploid cells were also detected in 45 samples, and octoploid cells — in 5 samples. The highest total frequency of all polyploid cell types was found in chorion from assisted reproductive technologies-conceived arrested pregnancies, and the lowest — in chorion from progressing pregnancies. Frequency of tetraploid cells demonstrated the same pattern. Frequency of triploid cells was not associated with a developmental status of pregnancy and the way of conception. However, in chorion samples with trisomy on chromosome 16 in naturally conceived arrested pregnancies, a tendency towards a decrease in the frequency of triploid cells was noted.

CONCLUSIONS: An elevated frequency of polyploid cells in chorion may indicate placentation abnormalities, leading to miscarriage even in the absence of embryonic karyotype anomalies. Therefore, an increase in somatic polyploidization in chorion may be considered a promising diagnostic marker of disorders in the placenta formation and functioning.

Keywords

miscarriage / somatic polyploidization / tetraploid cells / chorion / fluorescence in situ hybridization / assisted reproductive technologies

Cite this article

Download citation ▾
Andrei V. Tikhonov, Mikhail I. Krapivin, Lyubov I. Petrova, Olga G. Chiryaeva, Elizaveta P. Pashkova, Arina V. Golubeva, Dmitrii A. Staroverov, Ekaterina D. Trusova, Olga A. Efimova, Olesya N. Bespalova, Anna A. Pendina. Increased somatic polyploidization in chorion of arrested pregnancies conceived through assisted reproductive technologies. Medical academic journal, 2024, 24(4): 84-96 DOI:10.17816/MAJ636078

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ellish NJ, Saboda K, O’Connor J, et al. A prospective study of early pregnancy loss. Hum Reprod. 1996;11(2):406–412. doi: 10.1093/humrep/11.2.406

[2]

Ellish N.J., Saboda K., O’Connor J., et al. A prospective study of early pregnancy loss // Hum Reprod. 1996. Vol. 11, N 2. P. 406–412. doi: 10.1093/humrep/11.2.406

[3]

Cohain JS, Buxbaum RE, Mankuta D. Spontaneous first trimester miscarriage rates per woman among parous women with 1 or more pregnancies of 24 weeks or more. BMC Pregnancy Childbirth . 2017;17(1):437. doi: 10.1186/s12884-017-1620-1

[4]

Cohain J.S., Buxbaum R.E., Mankuta D. Spontaneous first trimester miscarriage rates per woman among parous women with 1 or more pregnancies of 24 weeks or more // BMC Pregnancy Childbirth. 2017. Vol. 17, N 1. P. 437. doi: 10.1186/s12884-017-1620-1

[5]

van den Boogaard E, Hermens RP, Verhoeve HR, et al. Selective karyotyping in recurrent miscarriage: are recommended guidelines adopted in daily clinical practice? Hum Reprod. 2011;26(8):1965–1970. doi: 10.1093/humrep/der179

[6]

van den Boogaard E., Hermens R.P., Verhoeve H.R., et al. Selective karyotyping in recurrent miscarriage: are recommended guidelines adopted in daily clinical practice? // Hum Reprod. 2011. Vol. 26, N 8. P. 1965–1970. doi: 10.1093/humrep/der179

[7]

Dimitriadis E., Menkhorst E., Saito S., et al. Recurrent pregnancy loss. Nat Rev Dis Primers . 2020;6(1):98. doi: 10.1038/s41572-020-00228-z

[8]

Dimitriadis E., Menkhorst E., Saito S., et al. Recurrent pregnancy loss // Nat Rev Dis Primers. 2020. Vol. 6, N 1. P. 98. doi: 10.1038/s41572-020-00228-z

[9]

Cao C, Bai S, Zhang J, et al. Understanding recurrent pregnancy loss: recent advances on its etiology, clinical diagnosis, and management. Med Rev. 2021;2(6):570–589. doi: 10.1515/mr-2022-0030

[10]

Cao C., Bai S., Zhang J., et al. Understanding recurrent pregnancy loss: recent advances on its etiology, clinical diagnosis, and management // Med Rev (2021). 2022. Vol. 2, N 6. P. 570–589. doi: 10.1515/mr-2022-0030

[11]

Bespalova ON, Kogan IYu, Abashova EI, et al. Early Reproductive Losses. Moscow: GEOTAR-Media; 2024. 464 p. EDN: EIWUFJ doi: 10.33029/9704-7905-6-RRP-2024-1-464

[12]

Беспалова О.Н., Коган И.Ю., Абашова Е.И., и др. Ранние репродуктивные потери. Москва: ГЭОТАР-Медиа, 2024. 464 с. EDN: EIWUFJ doi: 10.33029/9704-7905-6-RRP-2024-1-464

[13]

Baranov VS, Kuznetsova TV. Cytogenetics of human embryo development . Saint Petersburg: Izdatelstvo N-L; 2007. 640 c. (In Russ.) EDN: UOKSUW

[14]

Баранов В.С., Кузнецова Т.В. Цитогенетика эмбрионального развития человека. Санкт-Петербург: Издательство Н-Л, 2007. 640 c. EDN: UOKSUW

[15]

Nagaishi M, Yamamoto T, Iinuma K, et al. Chromosome abnormalities identified in 347 spontaneous abortions collected in Japan. J Obstet Gynaecol Res. 2004;30(3):237–241. doi: 10.1111/j.1447-0756.2004.00191.x

[16]

Nagaishi M., Yamamoto T., Iinuma K., et al. Chromosome abnormalities identified in 347 spontaneous abortions collected in Japan // J Obstet Gynaecol Res. 2004. Vol. 30, N 3. P. 237–241. doi: 10.1111/j.1447-0756.2004.00191.x

[17]

Ljunger E, Cnattingius S, Lundin C, et al. Chromosomal anomalies in first-trimester miscarriages. Acta Obstet Gynecol Scand. 2005;84(11):1103–1107. doi: 10.1111/j.0001-6349.2005.00882.x

[18]

Ljunger E., Cnattingius S., Lundin C., et al. Chromosomal anomalies in first-trimester miscarriages // Acta Obstet Gynecol Scand. 2005. Vol. 84, N 11. P. 1103–1107. doi: 10.1111/j.0001-6349.2005.00882.x

[19]

Pendina AA, Efimova OA, Chiryaeva OG, et al. A comparative cytogenetic study of miscarriages after IVF and natural conception in women aged under and over 35 years. J Assist Reprod Genet. 2014;31(2):149–155. doi: 10.1007/s10815-013-0148-1

[20]

Pendina A.A., Efimova O.A., Chiryaeva O.G., et al. A comparative cytogenetic study of miscarriages after IVF and natural conception in women aged under and over 35 years // J Assist Reprod Genet. 2014. Vol. 31, N 2. P. 149–155. doi: 10.1007/s10815-013-0148-1

[21]

El-Talatini MR, Taylor AH, Konje JC. Fluctuation in anandamide levels from ovulation to early pregnancy in in-vitro fertilization-embryo transfer women, and its hormonal regulation. Hum Reprod. 2009;(24):1989–1998. doi: 10.1093/humrep/dep065

[22]

El-Talatini M.R., Taylor A.H., Konje J.C. Fluctuation in anandamide levels from ovulation to early pregnancy in in-vitro fertilization-embryo transfer women, and its hormonal regulation // Hum Reprod. 2009. Vol. 24. P. 1989–1998. doi: 10.1093/humrep/dep065

[23]

Joo BS, Park SH, An BM, et al. Serum estradiol levels during controlled ovarian hyperstimulation influence the pregnancy outcome of in vitro fertilization in a concentration-dependent manner. Fertil Steril. 2010;(93):442–446. doi: 10.1016/j.fertnstert.2009.02.066

[24]

Joo B.S., Park S.H., An B.M., et al. Serum estradiol levels during controlled ovarian hyperstimulation influence the pregnancy outcome of in vitro fertilization in a concentration-dependent manner // Fertil Steril. 2010. Vol. 93. P. 442–446. doi: 10.1016/j.fertnstert.2009.02.066

[25]

de Waal E, Yamazaki Y, Ingale P, et al. Gonadotropin stimulation contributes to an increased incidence of epimutations in ICSI-derived mice. Hum Mol Genet . 2012;(21):4460–4472. doi: 10.1093/hmg/dds287

[26]

de Waal E., Yamazaki Y., Ingale P., et al. Gonadotropin stimulation contributes to an increased incidence of epimutations in ICSI -derived mice // Hum Mol Genet. 2012. Vol. 21. P. 4460–4472 . doi: 10.1093/hmg/dds287

[27]

Song S, Ghosh J, Mainigi M, et al. DNA methylation differences between in vitro - and in vivo -conceived children are associated with ART procedures rather than infertility. Clin Epigenetics. 2015;(7):41. doi: 10.1186/s13148-015-0071-7

[28]

Song S., Ghosh J., Mainigi M., et al. DNA methylation differences between in vitro - and in vivo -conceived children are associated with ART procedures rather than infertility // Clin Epigenetics. 2015. Vol. 7. P. 41. doi: 10.1186/s13148-015-0071-7

[29]

Senapati S, Wang F, Ord T, et al. Superovulation alters the expression of endometrial genes critical to tissue remodeling and placentation. J Assist Reprod Genet. 2018;(35):1799–1808. doi: 10.1007/s10815-018-1244-z

[30]

Senapati S., Wang F., Ord T., et al. Superovulation alters the expression of endometrial genes critical to tissue remodeling and placentation // J Assist Reprod Genet. 2018. Vol. 35. P. 1799–1808. doi: 10.1007/s10815-018-1244-z

[31]

Stuart TJ, O’Neill K, Condon D, et al. Diet-induced obesity alters the maternal metabolome and early placenta transcriptome and decreases placenta vascularity in the mouse. Biol Reprod. 2018;(98):795–809. doi: 10.1093/biolre/ioy010

[32]

Stuart T.J., O’Neill K., Condon D., et al. Diet-induced obesity alters the maternal metabolome and early placenta transcriptome and decreases placenta vascularity in the mouse // Biol Reprod. 2018. Vol. 98. P. 795–809. doi: 10.1093/biolre/ioy010

[33]

Vrooman LA, Rhon-Calderon EA, Chao OY, et al. Assisted reproductive technologies induce temporally specific placental defects and the preeclampsia risk marker sFLT1 in mouse. Development. 2020;147(11):dev186551. doi: 10.1242/dev.186551

[34]

Vrooman L.A., Rhon-Calderon E.A., Chao O.Y., et al. Assisted reproductive technologies induce temporally specific placental defects and the preeclampsia risk marker sFLT1 in mouse // Development. 2020. Vol. 147, N 11. P. dev186551. doi: 10.1242/dev.186551

[35]

Weinerman R, Ord T, Bartolomei MS, et al. The superovulated environment, independent of embryo vitrification, results in low birthweight in a mouse model. Biol Reprod . 2017;(97):133–142. doi: 10.1093/biolre/iox067

[36]

Weinerman R., Ord T., Bartolomei M.S., et al. The superovulated environment, independent of embryo vitrification, results in low birthweight in a mouse model // Biol Reprod. 2017. Vol. 97. P. 133–142. doi: 10.1093/biolre/iox067

[37]

Sullivan-Pyke C, Mani S, Rhon-Calderon EA, et al. Timing of exposure to gonadotropins has differential effects on the conceptus: evidence from a mouse model. Biol Reprod. 2020;(103):854–865. doi: 10.1093/biolre/ioaa109

[38]

Sullivan-Pyke C., Mani S., Rhon-Calderon E.A., et al. Timing of exposure to gonadotropins has differential effects on the conceptus: evidence from a mouse model // Biol Reprod. 2020. Vol. 103. P. 854–865. doi: 10.1093/biolre/ioaa109

[39]

Kalra SK, Ratcliffe SJ, Coutifaris C, et al. Ovarian stimulation and low birth weight in newborns conceived through in vitro fertilization. Obstet Gynecol. 2011;(118):863–871. doi: 10.1097/AOG.0b013e31822be65f

[40]

Kalra S.K., Ratcliffe S.J., Coutifaris C., et al. Ovarian stimulation and low birth weight in newborns conceived through in vitro fertilization // Obstet Gynecol. 2011. Vol. 118. P. 863–871. doi: 10.1097/AOG.0b013e31822be65f

[41]

Baczyk D, Drewlo S, Proctor L, et al. Glial cell missing-1 transcription factor is required for the differentiation of the human trophoblast. Cell Death Differ. 2009;16(5):719–727. doi: 10.1038/cdd.2009.1

[42]

Baczyk D., Drewlo S., Proctor L., et al. Glial cell missing-1 transcription factor is required for the differentiation of the human trophoblast // Cell Death Differ. 2009. Vol. 16, N 5. P. 719–727. doi: 10.1038/cdd.2009.1

[43]

Knöfler M, Haider S, Saleh L, et al. Human placenta and trophoblast development: key molecular mechanisms and model systems. Cell Mol Life Sci. 2019;76(18):3479–3496. doi: 10.1007/s00018-019-03104-6

[44]

Knöfler M., Haider S., Saleh L., et al. Human placenta and trophoblast development: key molecular mechanisms and model systems // Cell Mol Life Sci. 2019. Vol. 76, N 18. P. 3479–3496. doi: 10.1007/s00018-019-03104-6

[45]

Pfeffer PL, Pearton DJ. Trophoblast development. Reproduction. 2012;143(3):231–246. doi: 10.1530/REP-11-0374

[46]

Pfeffer P.L., Pearton D.J. Trophoblast development // Reproduction. 2012. Vol. 143, N 3. P. 231–246. doi: 10.1530/REP-11-0374

[47]

Zybina EV. Cytology of trophoblast . Leningrad: Nauka; 1986. 192 p. (In Russ.)

[48]

Зыбина Е.В. Цитология трофобласта. Ленинград: Наука, 1986. 192 c.

[49]

Velicky P, Meinhardt G, Plessl K, et al. Genome amplification and cellular senescence are hallmarks of human placenta development. PLoS Genet. 2018;14(10):e1007698. doi: 10.1371/journal.pgen.1007698

[50]

Velicky P., Meinhardt G., Plessl K., et al. Genome amplification and cellular senescence are hallmarks of human placenta development // PLoS Genet. 2018. Vol. 14, N. 10. P. e1007698. doi: 10.1371/journal.pgen.1007698

[51]

Karpishchenko AL, editor. Medical laboratory technologies and diagnostics. Guide to clinical laboratory diagnostics . In 2 vols. Vol. 2. Saint Petersburg: GEOTAR-Media; 2013. 792 p. (In Russ.) EDN: ZRGHBN

[52]

Медицинские лабораторные технологии и диагностика. Руководство по клинической лабораторной диагностике: в 2 т. Т. 2 / под ред. А.И. Карпищенко. Санкт-Петербург: ГЭОТАР-Медиа, 2013. 792 c. EDN: ZRGHBN

[53]

Efimova OA, Pendina AA, Tikhonov AV, et al. Genome-wide 5-hydroxymethylcytosine patterns in human spermatogenesis are associated with semen quality. Oncotarget. 2017;8(51):88294–88307. doi: 10.18632/oncotarget.18331

[54]

Efimova O.A., Pendina A.A., Tikhonov A.V., et al. Genome-wide 5-hydroxymethylcytosine patterns in human spermatogenesis are associated with semen quality // Oncotarget. 2017. Vol. 8, N 51. P. 88294–88307. doi: 10.18632/oncotarget.18331

[55]

Aplin JD, Haigh T, Vicovac L, et al. Anchorage in the developing placenta: an overlooked determinant of pregnancy outcome? Hum Fertil (Camb). 1998;1(1):75–79. doi: 10.1080/1464727982000198161

[56]

Aplin J.D., Haigh T., Vicovac L., et al. Anchorage in the developing placenta: an overlooked determinant of pregnancy outcome? // Hum Fertil (Camb). 1998. Vol. 1, N 1. P. 75–79. doi: 10.1080/1464727982000198161

[57]

Lee HO, Davidson JM, Duronio RJ. Endoreplication: polyploidy with purpose. Genes Dev. 2009;23(21):2461–2477. doi: 10.1101/gad.1829209

[58]

Lee H.O., Davidson J.M., Duronio R.J. Endoreplication: polyploidy with purpose // Genes Dev. 2009. Vol. 23, N 21. P. 2461–2477. doi: 10.1101/gad.1829209

[59]

Hannon T, Innes BA, Lash GE, et al. Effects of local decidua on trophoblast invasion and spiral artery remodeling in focal placenta creta – an immunohistochemical study. Placenta. 2012;33(12):998–1004. doi: 10.1016/j.placenta.2012.09.004

[60]

Hannon T., Innes B.A., Lash G.E., et al. Effects of local decidua on trophoblast invasion and spiral artery remodeling in focal placenta creta – an immunohistochemical study // Placenta. 2012. Vol. 33, N 12. P. 998–1004. doi: 10.1016/j.placenta.2012.09.004

[61]

Chakraborty C, Gleeson LM, McKinnon T, et al. Regulation of human trophoblast migration and invasiveness. Can J Physiol Pharmacol . 2002;80(2):116–124. doi: 10.1139/y02-016

[62]

Chakraborty C., Gleeson L.M., McKinnon T., et al. Regulation of human trophoblast migration and invasiveness // Can J Physiol Pharmacol. 2002. Vol. 80, N 2. P. 116–124. doi: 10.1139/y02-016

[63]

Jauniaux E, Ayres-de-Campos D, Langhoff-Roos J, et al. FIGO classification for the clinical diagnosis of placenta accreta spectrum disorders. Int J Gynaecol Obstet. 2019;146(1):20–24. doi: 10.1002/ijgo.12761

[64]

Jaunia ux E., Ayres-de-Campos D., Langhoff-Roos J., et al. FIGO classification for the clinical diagnosis of placenta accreta spectrum disorders // Int J Gynaecol Obstet. 2019. Vol. 146, N 1. P. 20–24. doi: 10.1002/ijgo.12761

[65]

Pijnenborg R, Vercruysse L, Hanssens M. The uterine spiral arteries in human pregnancy: facts and controversies. Placenta. 2006;27(9–10):939–958. doi: 10.1016/j.placenta.2005.12.006

[66]

Pijnenborg R., Vercruysse L., Hanssens M. The uterine spiral arteries in human pregnancy: facts and controversies // Placenta. 2006. Vol. 27, N 9–10. P. 939–958. doi: 10.1016/j.placenta.2005.12.006

[67]

Moser G, Weiss G, Gauster M, et al. Evidence from the very beginning: endoglandular trophoblasts penetrate and replace uterine glands in situ and in vitro . Hum Reprod. 2015;(30):2747–2757. doi: 10.1093/humrep/dev266

[68]

Moser G., Weiss G., Gauster M., et al. Evidence from the very beginning: endoglandular trophoblasts penetrate and replace uterine glands in situ and in vitro // Hum Reprod. 2015. Vol. 30. P. 2747–2757. doi: 10.1093/humrep/dev266

[69]

Burton GJ, Jauniaux E. The cytotrophoblastic shell and complications of pregnancy. Placenta. 2017;(60):134–139. doi: 10.1016/j.placenta.2017.06.007

[70]

Burton G.J., Jauniaux E. The cytotrophoblastic shell and complications of pregnancy // Placenta. 2017. Vol. 60. P. 134–139. doi: 10.1016/j.placenta.2017.06.007

[71]

Weiss G, Sundl M, Glasner A, et al. The trophoblast plug during early pregnancy: a deeper insight. Histochem Cell Biol . 2016;(146):749–756. doi: 10.1007/s00418-016-1474-z

[72]

Weiss G., Sundl M., Glasner A., et al. The trophoblast plug during early pregnancy: a deeper insight // Histochem Cell Biol. 2016. Vol. 146. P. 749–756. doi: 10.1007/s00418-016-1474-z

[73]

Foidart JM, Hustin J, Dubois M, Schaaps JP. The human placenta becomes haemochorial at the 13th week of pregnancy. Int J Dev Biol. 1992;(36):451–453.

[74]

Foidart J.M., Hustin J., Dubois M., Schaaps JP. The human placenta becomes haemochorial at the 13th week of pregnancy // Int J Dev Biol. 1992. Vol. 36. P. 451–453.

[75]

Rodesch F, Simon P, Donner C, Jauniaux E. Oxygen measurements in endometrial and trophoblastic tissues during early pregnancy. Obstet Gynecol. 1992;(80):283–285.

[76]

Rodesch F., Simon P., Donner C., Jauniaux E. Oxygen measurements in endometrial and trophoblastic tissues during early pregnancy // Obstet Gynecol. 1992. Vol. 80. P. 283–285.

[77]

Burton GJ, Jauniaux E, Murray AJ. Oxygen and placental development; parallels and differences with tumour biology. Placenta. 2017;(56):14–18. doi: 10.1016/j.placenta.2017.01.130

[78]

Burton G.J., Jauniaux E., Murray A.J. Oxygen and placental development; parallels and differences with tumour biology // Placenta. 2017. Vol. 56. P. 14–18. doi: 10.1016/j.placenta.2017.01.130

[79]

Brosens I, Pijnenborg R, Vercruysse L, et al. The “Great Obstetrical Syndromes” are associated with disorders of deep placentation. Am J Obstet Gynecol . 2011;204(3):193–201. doi: 10.1016/j.ajog.2010.08.009

[80]

Brosens I., Pijnenborg R., Vercruysse L., et al. The “Great Obstetrical Syndromes” are associated with disorders of deep placentation // Am J Obstet Gynecol. 2011. Vol. 204, N. 3. P. 193–201. doi: 10.1016/j.ajog.2010.08.009

[81]

Ball E, Bulmer JN, Ayis S, et al. Late sporadic miscarriage is associated with abnormalities in spiral artery transformation and trophoblast invasion. J Pathol. 2006;(208):535–542. doi: 10.1002/path.1927

[82]

Ball E., Bulmer J.N., Ayis S., et al. Late sporadic miscarriage is associated with abnormalities in spiral artery transformation and trophoblast invasion // J Pathol. 2006. Vol. 208. P. 535–542. doi: 10.1002/path.1927

[83]

Kanter JR, Mani S, Gordon SM, Mainigi M. Uterine natural killer cell biology and role in early pregnancy establishment and outcomes. F S Rev. 2021;2(4):265–286. doi: 10.1016/j.xfnr.2021.06.002

[84]

Kanter J.R., Mani S., Gordon S.M., Mainigi M. Uterine natural killer cell biology and role in early pregnancy establishment and outcomes // F S Rev. 2021. Vol. 2, N 4. P. 265–286. doi: 10.1016/j.xfnr.2021.06.002

[85]

Kanter J, Gordon SM, Mani S, et al. Hormonal stimulation reduces numbers and impairs function of human uterine natural killer cells during implantation. Hum Reprod. 2023;38(6):10471059. doi: 10.1093/humrep/dead069

[86]

Kanter J., Gordon S.M., Mani S., et al. Hormonal stimulation reduces numbers and impairs function of human uterine natural killer cells during implantation // Hum Reprod. 2023. Vol. 38, N 6. P. 1047–1059. doi: 10.1093/humrep/dead069

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

64

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/