Proteins and peptides involved in realization of the protective functions of mixed saliva: antimicrobial peptides, proline-rich proteins and peptides
Maria S. Sukhareva , Olga V. Shamova
Medical academic journal ›› 2025, Vol. 25 ›› Issue (1) : 5 -23.
Proteins and peptides involved in realization of the protective functions of mixed saliva: antimicrobial peptides, proline-rich proteins and peptides
Mixed saliva is an important barrier preventing pathogens invasion. Despite many years of research on the protective factors of saliva, the functional significance of some of them has not yet been disclosed. The fraction of proline-rich proteins and their proteolytic fragments are the major component in mixed saliva, but the functions of these peptides still remain poorly understood. Various diseases of the oral cavity are a common problem for humans, especially for elderly patients, which undoubtedly determines the relevance of studies aimed at clarifying the role of protective molecules of the innate immunity — antimicrobial peptides and poorly studied cationic proline-rich polypeptides in the pathogenesis of these diseases. The purpose of the review is summarizing the data available in the literature revealing the molecular mechanisms of the participation of certain protein components of mixed human saliva — antimicrobial peptides (alpha- and beta-defensins, cathelicidin, histatins, etc.) and proline-rich cationic proteins and peptides (secrets of the parotid glands) in the implementation of its protective functions at normal conditions and under various types of pathology. Based on the analysis of the literature, we can conclude that when studying the biological activity of protective factors of mixed saliva, it is necessary to take into account that each of these compounds implements its effects in tight interaction with other salivary components, modulating their activity. In particular, it can be assumed that functions of proline-rich proteins and peptides of the oral fluid are largely carried out as a result of intermolecular interactions with antimicrobial peptides.
mixed saliva / proline-rich peptides / antimicrobial peptides
| [1] |
Pfaffe T, Cooper-White J, Beyerlein P, et al. Diagnostic potential of saliva: current state and future applications. Clin Chem. 2011;57(5):675–687. doi: 10.1373/clinchem.2010.153767 |
| [2] |
Pfaffe T., Cooper-White J., Beyerlein P., et al. Diagnostic potential of saliva: current state and future applications // Clin Chem. 2011. Vol. 57, N 5. P. 675–687. doi: 10.1373/clinchem.2010.153767 |
| [3] |
Messana I, Inzitari R, Fanali C, et al. Facts and artifacts in proteomics of body fluids. What proteomics of saliva is telling us? J Sep Sci. 2008;31(11):1948–1963. doi: 10.1002/jssc.200800100 |
| [4] |
Messana I., Inzitari R., Fanali C., et al. Facts and artifacts in proteomics of body fluids. What proteomics of saliva is telling us? // J Sep Sci. 2008. Vol. 31, N 11. P. 1948–1963. doi: 10.1002/jssc.200800100 |
| [5] |
Bandhakavi S, Stone MD, Onsongo G, et al. A dynamic range compression and three-dimensional peptide fractionation analysis platform expands proteome coverage and the diagnostic potential of whole saliva. J Proteome Res. 2009;8(12):5590–5600. doi: 10.1021/pr900675w |
| [6] |
Bandhakavi S., Stone M.D., Onsongo G., et al. A dynamic range compression and three-dimensional peptide fractionation analysis platform expands proteome coverage and the diagnostic potential of whole saliva // J Proteome Res. 2009. Vol. 8, N 12. P. 5590–5600. doi: 10.1021/pr900675w |
| [7] |
Carpenter GH. The secretion, components, and properties of saliva. Annu Rev Food Sci Technol. 2013;4:267–276. doi: 10.1146/annurev-food-030212-182700 |
| [8] |
Carpenter G.H. The secretion, components, and properties of saliva // Annu Rev Food Sci Technol. 2013. Vol. 4. P. 267–276. doi: 10.1146/annurev-food-030212-182700 |
| [9] |
Vavilova TP, Yanushev OO, Ostrovskaya IG. Saliva. Analytical Possibilities and Prospects. Moscow: BINOM; 2014. 312 p. (In Russ.) EDN: HXNTHV |
| [10] |
Вавилова Т.П., Янушев О.О., Островская И.Г. Слюна. Аналитические возможности и перспективы. Москва: БИНОМ, 2014. 312 c. EDN: HXNTHV |
| [11] |
Humphrey SP, Williamson RT. A review of saliva: normal composition, flow, and function. J Prosthet Dent. 2001;85(2):162–169. doi: 10.1067/mpr.2001.113778 |
| [12] |
Humphrey S.P., Williamson R.T. A review of saliva: normal composition, flow, and function // J Prosthet Dent. 2001. Vol. 85, N 2. P. 162–169. doi: 10.1067/mpr.2001.113778 |
| [13] |
Butvilovskii AV, Barkovskii EV, Karmal’kova IS. Chemical bases of remineralization and demineralization of tooth enamel. Bulletin of the Vitebsk State Medical University. 2011;10(1):138–144. (In Russ.) EDN: NDXNHF |
| [14] |
Бутвиловский А.В., Барковский Е.В., Кармалькова И.С. Химические основы реминерализации и деминерализации эмали зубов // Вестник Витебского государственного медицинского университета. 2011. Т. 10, № 1. С. 138–144. EDN: NDXNHF |
| [15] |
Marsh PD, Do T, Beighton D, Devine DA. Influence of saliva on the oral microbiota. Periodontol 2000. 2016;70(1):80–92. doi: 10.1111/prd.12098 |
| [16] |
Marsh P.D., Do T., Beighton D., Devine D.A. Influence of saliva on the oral microbiota // Periodontol 2000. 2016. Vol. 70, N 1. P. 80–92. doi: 10.1111/prd.12098 |
| [17] |
Kolesov SA, Fedulova EN, Lavrova AE. Characteristics of human saliva proteome and peptidome. Human Physiology. 2016;42(4):130–136. EDN: WVVSSJ doi: 10.1134/S0362119716040058 |
| [18] |
Колесов С.А., Федулова Э.Н., Лаврова А.Е. Особенности протеома и пептидома слюны человека // Физиология человека. 2016. Т. 42. № 4. С. 130–136. EDN: WFALFB doi: 10.7868/S0131164616040056 |
| [19] |
Lynge Pedersen AM, Belstrøm D. The role of natural salivary defences in maintaining a healthy oral microbiota. J Dent. 2019;80 Suppl 1:S3–S12. doi: 10.1016/j.jdent.2018.08.010 |
| [20] |
Lynge Pedersen A.M., Belstrøm D. The role of natural salivary defences in maintaining a healthy oral microbiota // J Dent. 2019. Vol. 80 Suppl 1. P. S3–S12. doi: 10.1016/j.jdent.2018.08.010 |
| [21] |
Schenkels LC, Veerman EC, Nieuw Amerongen AV. Biochemical composition of human saliva in relation to other mucosal fluids. Crit Rev Oral Biol Med. 1995;6(2):161–175. doi: 10.1177/10454411950060020501 |
| [22] |
Schenkels L.C., Veerman E.C., Nieuw Amerongen A.V. Biochemical composition of human saliva in relation to other mucosal fluids // Crit Rev Oral Biol Med. 1995. Vol. 6, N 2. P. 161–175. doi: 10.1177/10454411950060020501 |
| [23] |
Hardt M, Thomas LR, Dixon SE, et al. Toward defining the human parotid gland salivary proteome and peptidome: identification and characterization using 2D SDS-PAGE, ultrafiltration, HPLC, and mass spectrometry. Biochemistry. 2005;44(8):2885–2899. doi: 10.1021/bi048176r.s001 |
| [24] |
Hardt M., Thomas L.R., Dixon S.E., et al. Toward defining the human parotid gland salivary proteome and peptidome: identification and characterization using 2D SDS-PAGE, ultrafiltration, HPLC, and mass spectrometry // Biochemistry. 2005. Vol. 44, N 8. P. 2885–2899. doi: 10.1021/bi048176r.s001 |
| [25] |
Andrian E, Qi G, Wang J, et al. Role of surface proteins SspA and SspB of Streptococcus gordonii in innate immunity. Microbiology (Reading). 2012;158(Pt 8):2099–2106. doi: 10.1099/mic.0.058073-0 |
| [26] |
Andrian E., Qi G., Wang J., et al. Role of surface proteins SspA and SspB of Streptococcus gordonii in innate immunity // Microbiology (Reading). 2012. Vol. 158, N Pt 8. P. 2099–2106. doi: 10.1099/mic.0.058073-0 |
| [27] |
Ambatipudi KS, Lu B, Hagen FK, et al. Quantitative analysis of age specific variation in the abundance of human female parotid salivary proteins. J Proteome Res. 2009;8(11):5093–5102. doi: 10.1021/pr900478h |
| [28] |
Ambatipudi K.S., Lu B., Hagen F.K., et al. Quantitative analysis of age specific variation in the abundance of human female parotid salivary proteins // J Proteome Res. 2009. Vol. 8, N 11. P. 5093–5102. doi: 10.1021/pr900478h |
| [29] |
Cabras T, Pisano E, Montaldo C, et al. Significant modifications of the salivary proteome potentially associated with complications of Down syndrome revealed by top-down proteomics. Mol Cell Proteomics. 2013;12(7):1844–1852. doi: 10.1074/mcp.m112.026708 |
| [30] |
Cabras T., Pisano E., Montaldo C., et al. Significant modifications of the salivary proteome potentially associated with complications of Down syndrome revealed by top-down proteomics // Mol Cell Proteomics. 2013. Vol. 12, N 7. P. 1844–1852. doi: 10.1074/mcp.m112.026708 |
| [31] |
Soares RV, Lin T, Siqueira CC, et al. Salivary micelles: identification of complexes containing MG2, sIgA, lactoferrin, amylase, glycosylated proline-rich protein and lysozyme. Arch Oral Biol. 2004;49(5):337–343. doi: 10.1016/j.archoralbio.2003.11.007 |
| [32] |
Soares R.V., Lin T., Siqueira C.C., et al. Salivary micelles: identification of complexes containing MG2, sIgA, lactoferrin, amylase, glycosylated proline-rich protein and lysozyme // Arch Oral Biol. 2004. Vol. 49, N 5. P. 337–343. doi: 10.1016/j.archoralbio.2003.11.007 |
| [33] |
Borovskoi EV, Leont’ev VK. Biology of the oral cavity. Moscow: Meditsinskaya kniga; Nizhny Novgorod: NGMA; 2001. 304 p. (In Russ.) |
| [34] |
Боровской Е.В., Леонтьев В.К. Биология полости рта. Москва: Медицинская книга; Нижний Новгород: НГМА, 2001. 304 c. |
| [35] |
Zelenova EG, Zaslavskaya MI, Salina EV, Rassanov SP. Microflora of the oral cavity: norm and pathology. Nizhny Novgorod: NGMA; 2004. 158 p. (In Russ.) |
| [36] |
Зеленова Е.Г., Заславская М.И., Салина Е.В., Рассанов С.П. Микрофлора полости рта: норма и патология. Нижний Новгород: НГМА, 2004. 158 c. |
| [37] |
Shevchenko EA, Potemina TE, Kupriyanova NB, et al. Changes in the level of lysozyme, iga and siga in the oral liquid in the treatment of chronic recurrent aphthous stomatitis in different age groups of women. Modern problems of science and education. 2016;(3):133–133. EDN: WXJBGN |
| [38] |
Шевченко Е.А., Потемина Т.Е., Куприянова Н.Б., и др. Изменение уровня лизоцима, IGA и SIGA в ротовой жидкости при лечении хронического рецидивирующего афтозного стоматита у разных возрастных групп женского пола // Современные проблемы науки и образования. 2016. № 3. С. 133–133. EDN: WXJBGN |
| [39] |
Zaichik ASh, Churilov LP. Pathological physiology. In 3 vol. Vol. 2. 3th ed. Saint Petersburg: ELBI-SPb; 2007. 768 p. |
| [40] |
Зайчик А.Ш., Чурилов Л.П. Патологическая физиология. В 3 т. Т. 2. Изд. 3-е, доп. и испр. Санкт-Петербург: ЭЛБИ-СПб, 2007. 768 с. |
| [41] |
Fleisher GM. Index assessment of oral and tongue hygiene. Guide for doctors. Moscow: Izdatel’skie resheniya; 2019. 220 p. (In Russ.) |
| [42] |
Флейшер Г.М. Индексная оценка гигиены полости рта и языка. Руководство для врачей. Москва: Издательские решения, 2019. 220 с. |
| [43] |
Vaskovskaya GP. Erosive and ulcerative form of red squamous lichen planus of the mucous membrane of the oral cavity and red lip border. In: Proceedings of the scientific-practical conference: Problems of modern dermatology. Stavropol; 2002. P. 208–210. |
| [44] |
Васьковская Г.П. Эрозивно-язвенная форма красного плоского лишая слизистой оболочки полости рта и красной каймы губ. В кн.: Материалы научно-практической конференции: Проблемы современной дерматологии. Ставрополь, 2002. С. 208–210. |
| [45] |
Bahlmann L, Frentzen M, Schroeder J, Fimmers R. Comparison of two interdental cleaning aids: A randomized clinical trial. Int J Dent Hyg. 2018;16(2):e46–e51. doi: 10.1111/idh.12298 |
| [46] |
Bahlmann L., Frentzen M., Schroeder J., Fimmers R. Comparison of two interdental cleaning aids: A randomized clinical trial // Int J Dent Hyg. 2018. Vol. 16, N 2. P. e46–e51. doi: 10.1111/idh.12298 |
| [47] |
Barmes DE. A global view of oral diseases: today and tomorrow. Community Dent Oral Epidemiol. 1999;27(1):2–7. doi: 10.1111/j.1600-0528.1999.tb01985.x |
| [48] |
Barmes D.E. A global view of oral diseases: today and tomorrow // Community Dent Oral Epidemiol. 1999. Vol. 27, N 1. P. 2–7. doi: 10.1111/j.1600-0528.1999.tb01985.x |
| [49] |
Castagnola M, Inzitari R, Rossetti DV, et al. A cascade of 24 histatins (histatin 3 fragments) in human saliva. Suggestions for a pre-secretory sequential cleavage pathway. J Biol Chem. 2004;279(40):41436–41443. doi: 10.1074/jbc.m404322200 |
| [50] |
Castagnola M., Inzitari R., Rossetti D.V., et al. A cascade of 24 histatins (histatin 3 fragments) in human saliva. Suggestions for a pre-secretory sequential cleavage pathway // J Biol Chem. 2004. Vol. 279, N 40. P. 41436–41443. doi: 10.1074/jbc.m404322200 |
| [51] |
Vitorino R, Lobo MJ, Duarte JR, et al. The role of salivary peptides in dental caries. Biomed Chromatogr. 2005;19(3):214–222. doi: 10.1002/bmc.438 |
| [52] |
Vitorino R., Lobo M.J., Duarte J.R., et al. The role of salivary peptides in dental caries // Biomed Chromatogr. 2005. Vol. 19, N 3. P. 214–222. doi: 10.1002/bmc.438 |
| [53] |
Conti HR, Baker O, Freeman AF, et al. New mechanism of oral immunity to mucosal candidiasis in hyper-IgE syndrome. Mucosal Immunol. 2011;4(4):448–455. doi: 10.1038/mi.2011.5 |
| [54] |
Conti H.R., Baker O., Freeman A.F., et al. New mechanism of oral immunity to mucosal candidiasis in hyper-IgE syndrome // Mucosal Immunol. 2011. Vol. 4, N 4. P. 448–455. doi: 10.1038/mi.2011.5 |
| [55] |
White MR, Helmerhorst EJ, Ligtenberg A, et al. Multiple components contribute to ability of saliva to inhibit influenza viruses. Oral Microbiol Immunol. 2009;24(1):18–24. doi: 10.1111/j.1399-302x.2008.00468.x |
| [56] |
White M.R., Helmerhorst E.J., Ligtenberg A., et al. Multiple components contribute to ability of saliva to inhibit influenza viruses // Oral Microbiol Immunol. 2009. Vol. 24, N 1. P. 18–24. doi: 10.1111/j.1399-302x.2008.00468.x |
| [57] |
Oudhoff MJ, Blaauboer ME, Nazmi K, et al. The role of salivary histatin and the human cathelicidin LL-37 in wound healing and innate immunity. Biol Chem. 2010;391(5):541–548. doi: 10.1515/bc.2010.057 |
| [58] |
Oudhoff M.J., Blaauboer M.E., Nazmi K., et al. The role of salivary histatin and the human cathelicidin LL-37 in wound healing and innate immunity // Biol Chem. 2010. Vol. 391, N 5. P. 541–548. doi: 10.1515/bc.2010.057 |
| [59] |
Phattarataratip E, Olson B, Broffitt B, et al. Streptococcus mutans strains recovered from caries-active or caries-free individuals differ in sensitivity to host antimicrobial peptides. Mol Oral Microbiol. 2011;26(3):187–199. doi: 10.1111/j.2041-1014.2011.00607.x |
| [60] |
Phattarataratip E., Olson B., Broffitt B., et al. Streptococcus mutans strains recovered from caries-active or caries-free individuals differ in sensitivity to host antimicrobial peptides // Mol Oral Microbiol. 2011. Vol. 26, N 3. P. 187–199. doi: 10.1111/j.2041-1014.2011.00607.x |
| [61] |
Imatani T, Kato T, Minaguchi K, Okuda K. Histatin 5 inhibits inflammatory cytokine induction from human gingival fibroblasts by Porphyromonas gingivalis. Oral Microbiol Immunol. 2000;15:378–382. doi: 10.1034/j.1399-302x.2000.150607.x |
| [62] |
Imatani T., Kato T., Minaguchi K., Okuda K. Histatin 5 inhibits inflammatory cytokine induction from human gingival fibroblasts by Porphyromonas gingivalis // Oral Microbiol. Immunol. 2000. Vol. 15. P. 378–382. doi: 10.1034/j.1399-302x.2000.150607.x |
| [63] |
Devine DA, Cosseau C. Host defense peptides in the oral cavity. Adv Appl Microbiol. 2008;63:281–322. doi: 10.1016/s0065-2164(07)00008-1 |
| [64] |
Devine D.A., Cosseau C. Host defense peptides in the oral cavity // Adv Appl Microbiol. 2008. Vol. 63. P. 281–322. doi: 10.1016/s0065-2164(07)00008-1 |
| [65] |
Dixon DR, Jeffrey NR, Dubey VS, Leung KP. Antimicrobial peptide inhibition of Porphyromonas gingivalis 381-induced hemagglutination is improved with a synthetic decapeptide. Peptides. 2009;30(12):2161–2167. doi: 10.1016/j.peptides.2009.07.027 |
| [66] |
Dixon D.R., Jeffrey N.R., Dubey V.S., Leung K.P. Antimicrobial peptide inhibition of Porphyromonas gingivalis 381-induced hemagglutination is improved with a synthetic decapeptide // Peptides. 2009. Vol. 30, N 12. P. 2161–2167. doi: 10.1016/j.peptides.2009.07.027 |
| [67] |
Gabay JE, Scott RW, Campanelli D, et al. Antibiotic proteins of human polymorphonuclear leukocytes. Proc Natl Acad Sci USA. 1989;86(14):5610–5614. doi: 10.1073/pnas.86.24.10133-b |
| [68] |
Gabay J.E., Scott R.W., Campanelli D., et al. Antibiotic proteins of human polymorphonuclear leukocytes // Proc Natl Acad Sci USA. 1989. Vol. 86, N 14. P. 5610–5614. doi: 10.1073/pnas.86.24.10133-b |
| [69] |
Guaní-Guerra E, Santos-Mendoza T, Lugo-Reyes SO, Terán LM. Antimicrobial peptides: general overview and clinical implications in human health and disease. Clin Immunol. 2010;135(1):1–11. doi: 10.1016/j.clim.2009.12.004 |
| [70] |
Guaní-Guerra E., Santos-Mendoza T., Lugo-Reyes S.O., Terán L.M. Antimicrobial peptides: general overview and clinical implications in human health and disease // Clin Immunol. 2010. Vol. 135, N 1. P. 1–11. doi: 10.1016/j.clim.2009.12.004 |
| [71] |
Dale BA, Krisanaprakornkit S. Defensin antimicrobial peptides in the oral cavity. J Oral Pathol Med. 2001;30(6):321–327. doi: 10.1034/j.1600-0714.2001.300601.x |
| [72] |
Dale B.A., Krisanaprakornkit S. Defensin antimicrobial peptides in the oral cavity // J Oral Pathol Med. 2001. Vol. 30, N 6. P. 321–327. doi: 10.1034/j.1600-0714.2001.300601.x |
| [73] |
Semple F, MacPherson H, Webb S, et al. Human β-defensin 3 affects the activity of pro-inflammatory pathways associated with MyD88 and TRIF. Eur J Immunol. 2011;41(11):3291–3300. doi: 10.1002/eji.201141648 |
| [74] |
Semple F., MacPherson H., Webb S., et al. Human β-defensin 3 affects the activity of pro-inflammatory pathways associated with MyD88 and TRIF // Eur J Immunol. 2011. Vol. 41, N 11. P. 3291–3300. doi: 10.1002/eji.201141648 |
| [75] |
Murakami M, Ohtake T, Dorschner RA, Gallo RL. Cathelicidin antimicrobial peptides are expressed in salivary glands and saliva. J Dent Res. 2002;81(12):845–850. doi: 10.1177/154405910208101210 |
| [76] |
Murakami M., Ohtake T., Dorschner R.A., Gallo R.L. Cathelicidin antimicrobial peptides are expressed in salivary glands and saliva // J Dent Res. 2002. Vol. 81, N 12. P. 845–850. doi: 10.1177/154405910208101210 |
| [77] |
Bang C, Schilhabel A, Weidenbach K, et al. Effects of antimicrobial peptides on methanogenic archaea. Antimicrob Agents Chemother. 2012;56(8):4123–4130. doi: 10.1128/aac.00661-12 |
| [78] |
Bang C., Schilhabel A., Weidenbach K., et al. Effects of antimicrobial peptides on methanogenic archaea // Antimicrob Agents Chemother. 2012. Vol. 56, N 8. P. 4123–4130. doi: 10.1128/aac.00661-12 |
| [79] |
Overhage J, Campisano A, Bains M, et al. Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun. 2008;76(9):4176–4182. doi: 10.1128/iai.00318-08 |
| [80] |
Overhage J., Campisano A., Bains M., et al. Human host defense peptide LL-37 prevents bacterial biofilm formation // Infect Immun. 2008. Vol. 76, N 9. P. 4176–4182. doi: 10.1128/iai.00318-08 |
| [81] |
Rudney JD, Smith QT. Relationships between levels of lysozyme, lactoferrin, salivary peroxidase, and secretory immunoglobulin A in stimulated parotid saliva. Infect Immun. 1985;49(3):469–475. doi: 10.1128/iai.49.3.469-475.1985 |
| [82] |
Rudney J.D., Smith Q.T. Relationships between levels of lysozyme, lactoferrin, salivary peroxidase, and secretory immunoglobulin A in stimulated parotid saliva // Infect Immun. 1985. Vol. 49, N 3. P. 469–475. doi: 10.1128/iai.49.3.469-475.1985 |
| [83] |
Zaura E, Brandt BW, Prodan A, et al. On the ecosystemic network of saliva in healthy young adults. ISME J. 2017;11(5):1218–1231. doi: 10.1038/ismej.2016.199 |
| [84] |
Zaura E., Brandt B.W., Prodan A., et al. On the ecosystemic network of saliva in healthy young adults // ISME J. 2017. Vol. 11, N 5. P. 1218–1231. doi: 10.1038/ismej.2016.199 |
| [85] |
Yeh CK, Dodds MW, Zuo P, Johnson DA. A population-based study of salivary lysozyme concentrations and candidal counts. Arch Oral Biol. 1997;42(1):25–31. doi: 10.1016/s0003-9969(96)00104-5 |
| [86] |
Yeh C.K., Dodds M.W., Zuo P., Johnson D.A. A population-based study of salivary lysozyme concentrations and candidal counts // Arch Oral Biol. 1997. Vol. 42, N 1. P. 25–31. doi: 10.1016/s0003-9969(96)00104-5 |
| [87] |
Wiesner J, Vilcinskas A. Antimicrobial peptides: the ancient arm of the human immune system. Virulence. 2010;1(5):440–464. doi: 10.4161/viru.1.5.12983 |
| [88] |
Wiesner J., Vilcinskas A. Antimicrobial peptides: the ancient arm of the human immune system // Virulence. 2010. Vol. 1, N 5. P. 440–464. doi: 10.4161/viru.1.5.12983 |
| [89] |
Zupin L, Robino A, Navarra CO, et al. LTF and DEFB1 polymorphisms are associated with susceptibility toward chronic periodontitis development. Oral Dis. 2017;23(7):1001–1008. doi: 10.1111/odi.12689 |
| [90] |
Zupin L., Robino A., Navarra C.O., et al. LTF and DEFB1 polymorphisms are associated with susceptibility toward chronic periodontitis development // Oral Dis. 2017. Vol. 23, N 7. P. 1001–1008. doi: 10.1111/odi.12689 |
| [91] |
Boze H, Marlin T, Durand D, et al. Proline-rich salivary proteins have extended conformations. Biophys J. 2010;99(2):656–665. doi: 10.1016/j.bpj.2010.04.050 |
| [92] |
Boze H., Marlin T., Durand D., et al. Proline-rich salivary proteins have extended conformations // Biophys J. 2010. Vol. 99, N 2. P. 656–665. doi: 10.1016/j.bpj.2010.04.050 |
| [93] |
Azen EA. Genetics of salivary protein polymorphisms. Crit Rev Oral Biol Med. 1993;4(3–4):479–485. doi: 10.1177/10454411930040033201 |
| [94] |
Azen E.A. Genetics of salivary protein polymorphisms // Crit Rev Oral Biol Med. 1993. Vol. 4, N 3–4. P. 479–485. doi: 10.1177/10454411930040033201 |
| [95] |
Chan M, Bennick A. Proteolytic processing of a human salivary proline-rich protein precursor by proprotein convertases. Eur J Biochem. 2001;268(12):3423–3431. doi: 10.1046/j.1432-1327.2001.02241.x |
| [96] |
Chan M., Bennick A. Proteolytic processing of a human salivary proline-rich protein precursor by proprotein convertases // Eur J Biochem. 2001. Vol. 268, N 12. P. 3423–3431. doi: 10.1046/j.1432-1327.2001.02241.x |
| [97] |
Chen F, Liang Y, Zeng Z, et al. Association of increased basic salivary proline-rich protein 1 levels in induced sputum with type 2-high asthma. Immun Inflamm Dis. 2022;10(4):e602. doi: 10.1002/iid3.602 |
| [98] |
Chen F., Liang Y., Zeng Z., et al. Association of increased basic salivary proline-rich protein 1 levels in induced sputum with type 2-high asthma // Immun Inflamm Dis. 2022. Vol. 10, N 4. P. e602. doi: 10.1002/iid3.602 |
| [99] |
Mehansho H, Butler LG, Carlson DM. Dietary tannins and salivary proline-rich proteins: interactions, induction, and defense mechanisms. Annu Rev Nutr. 1987;7:423–440. doi: 10.1146/annurev.nu.07.070187.002231 |
| [100] |
Mehansho H., Butler L.G., Carlson D.M. Dietary tannins and salivary proline-rich proteins: interactions, induction, and defense mechanisms // Annu Rev Nutr. 1987. Vol. 7. P. 423–440. doi: 10.1146/annurev.nu.07.070187.002231 |
| [101] |
Vitali A. Proline-rich peptides: multifunctional bioactive molecules as new potential therapeutic drugs. Curr Protein Pept Sci. 2015;16(2):147–162. |
| [102] |
Vitali A. Proline-rich peptides: multifunctional bioactive molecules as new potential therapeutic drugs // Curr Protein Pept Sci. 2015. Vol. 16, N 2. P. 147–162. |
| [103] |
Roy K, Chakrabarti O, Mukhopadhyay D. Interaction of Grb2 SH3 domain with UVRAG in an Alzheimer’s disease-like scenario. Biochem Cell Biol. 2014;92(3):219–225. doi: 10.1139/bcb-2014-0001 |
| [104] |
Roy K., Chakrabarti O., Mukhopadhyay D. Interaction of Grb2 SH3 domain with UVRAG in an Alzheimer’s disease-like scenario // Biochem Cell Biol. 2014. Vol. 92, N 3. P. 219–225. doi: 10.1139/bcb-2014-0001 |
| [105] |
Niu Y, Shao Z, Wang H, et al. LASP1-S100A11 axis promotes colorectal cancer aggressiveness by modulating TGFβ/Smad signaling. Sci Rep. 2016;6:26112. doi: 10.1038/srep26112 |
| [106] |
Niu Y., Shao Z., Wang H., et al. LASP1-S100A11 axis promotes colorectal cancer aggressiveness by modulating TGFβ/Smad signaling // Sci Rep. 2016. Vol. 6. P. 26112. doi: 10.1038/srep26112 |
| [107] |
Kim YR, Hwang J, Koh HJ, et al. The targeted delivery of the c-Src peptide complexed with schizophyllan to macrophages inhibits polymicrobial sepsis and ulcerative colitis in mice. Biomaterials. 2016;89:1–13. doi: 10.1016/j.biomaterials.2016.02.035 |
| [108] |
Kim Y.R., Hwang J., Koh H.J., et al. The targeted delivery of the c-Src peptide complexed with schizophyllan to macrophages inhibits polymicrobial sepsis and ulcerative colitis in mice // Biomaterials. 2016. Vol. 89. P. 1–13. doi: 10.1016/j.biomaterials.2016.02.035 |
| [109] |
Raj PA, Marcus E, Edgerton M. Delineation of an active fragment and poly(L-proline) II conformation for candidacidal activity of bactenecin 5. Biochemistry. 1996;35(14):4314–4325. doi: 10.1021/bi951681r |
| [110] |
Raj P.A., Marcus E., Edgerton M. Delineation of an active fragment and poly(L-proline) II conformation for candidacidal activity of bactenecin 5 // Biochemistry. 1996. Vol. 35, N 14. P. 4314–4325. doi: 10.1021/bi951681r |
| [111] |
Canon F, Paté F, Cheynier V, et al. Aggregation of the salivary proline-rich protein IB5 in the presence of the tannin EgCG. Langmuir. 2013;29(6):1926–1937. doi: 10.1021/la3041715 |
| [112] |
Canon F., Paté F., Cheynier V., et al. Aggregation of the salivary proline-rich protein IB5 in the presence of the tannin EgCG // Langmuir. 2013. Vol. 29, N 6. P. 1926–1937. doi: 10.1021/la3041715 |
| [113] |
Kauffman D, Wong R, Bennick A, Keller P. Basic proline-rich proteins from human parotid saliva: complete covalent structure of protein IB-9 and partial structure of protein IB-6, members of a polymorphic pair. Biochemistry. 1982;21(25):6558–6562. doi: 10.1021/bi00268a036 |
| [114] |
Kauffman D., Wong R., Bennick A., Keller P. Basic proline-rich proteins from human parotid saliva: complete covalent structure of protein IB-9 and partial structure of protein IB-6, members of a polymorphic pair // Biochemistry. 1982. Vol. 21, N 25. P. 6558–6562. doi: 10.1021/bi00268a036 |
| [115] |
Kauffman D, Hofmann T, Bennick A, Keller P. Basic proline-rich proteins from human parotid saliva: complete covalent structures of proteins IB-1 and IB-6. Biochemistry. 1986;25(9):2387–2392. doi: 10.1021/bi00357a013 |
| [116] |
Kauffman D., Hofmann T., Bennick A., Keller P. Basic proline-rich proteins from human parotid saliva: complete covalent structures of proteins IB-1 and IB-6 // Biochemistry. 1986. Vol. 25, N 9. P. 2387–2392. doi: 10.1021/bi00357a013 |
| [117] |
Kauffman DL, Bennick A, Blum M, Keller PJ. Basic proline-rich proteins from human parotid saliva: relationships of the covalent structures of ten proteins from a single individual. Biochemistry. 1991;30(14):3351–3356. doi: 10.1021/bi00228a001 |
| [118] |
Kauffman D.L., Bennick A., Blum M., Keller P.J. Basic proline-rich proteins from human parotid saliva: relationships of the covalent structures of ten proteins from a single individual // Biochemistry. 1991. Vol. 30, N 14. P. 3351–3356. doi: 10.1021/bi00228a001 |
| [119] |
Saitoh E, Isemura S, Sanada K. Complete amino acid sequence of a basic proline-rich peptide, P-F, from human parotid saliva. J Biochem. 1983;93(3):883–888. doi: 10.1093/jb/93.3.883 |
| [120] |
Saitoh E., Isemura S., Sanada K. Complete amino acid sequence of a basic proline-rich peptide, P-F, from human parotid saliva // J Biochem. 1983. Vol. 93, N 3. P. 883–888. doi: 10.1093/jb/93.3.883 |
| [121] |
Saitoh E, Isemura S, Sanada K. Further fractionation of basic proline-rich peptides from human parotid saliva and complete amino acid sequence of basic proline-rich peptide P-H. J Biochem. 1983;94(6):1991–1999. doi: 10.1093/oxfordjournals.jbchem.a134553 |
| [122] |
Saitoh E., Isemura S., Sanada K. Further fractionation of basic proline-rich peptides from human parotid saliva and complete amino acid sequence of basic proline-rich peptide P-H // J Biochem. 1983. Vol. 94, N 6. P. 1991–1999. doi: 10.1093/oxfordjournals.jbchem.a134553 |
| [123] |
Helmerhorst EJ, Sun X, Salih E, Oppenheim FG. Identification of Lys-Pro-Gln as a novel cleavage site specificity of saliva-associated proteases. J Biol Chem. 2008;283(29):19957–19966. doi: 10.1074/jbc.m708282200 |
| [124] |
Helmerhorst E.J., Sun X., Salih E., Oppenheim F.G. Identification of Lys-Pro-Gln as a novel cleavage site specificity of saliva-associated proteases // J Biol Chem. 2008. Vol. 283, N 29. P. 19957–19966. doi: 10.1074/jbc.m708282200 |
| [125] |
Fábián TK, Hermann P, Beck A, et al. Salivary defense proteins: their network and role in innate and acquired oral immunity. Int J Mol Sci. 2012;13(4):4295–4320. doi: 10.3390/ijms13044295 |
| [126] |
Fábián T.K., Hermann P., Beck A., et al. Salivary defense proteins: their network and role in innate and acquired oral immunity // Int J Mol Sci. 2012. Vol. 13, N 4. P. 4295–4320. doi: 10.3390/ijms13044295 |
| [127] |
Righino B, Pirolli D, Radicioni G, et al. Structural studies and SH3 domain binding properties of a human antiviral salivary proline-rich peptide. Biopolymers. 2016;106(5):714–725. doi: 10.1002/bip.22889 |
| [128] |
Righino B., Pirolli D., Radicioni G., et al. Structural studies and SH3 domain binding properties of a human antiviral salivary proline-rich peptide // Biopolymers. 2016. Vol. 106, N 5. P. 714–725. doi: 10.1002/bip.22889 |
| [129] |
Artamonov AYu, Sukhareva MS, Kopeikin PM, et al. Effects of proline-rich peptides on the functional activity of human leukocytes in vitro. Russian Journal of Immunology. 2019;13(2–2(22)):710–712. EDN: MADASJ doi: 10.31857/S102872210006763-4 |
| [130] |
Артамонов А.Ю., Сухарева М.С., Копейкин П.М., и др. Эффекты пролин-богатых пептидов на функциональную активность лейкоцитов человека in vitro // Российский иммунологический журнал. 2019. Т. 13, № 2–2(22). С. 710–712. EDN: MADASJ doi: 10.31857/S102872210006763-4 |
| [131] |
Shi J, Ross CR, Leto TL, Blecha F. PR-39, a proline-rich antibacterial peptide that inhibits phagocyte NADPH oxidase activity by binding to Src homology 3 domains of p47 phox. Proc Natl Acad Sci USA. 1996;93(12):6014–6018. doi: 10.1073/pnas.93.12.6014 |
| [132] |
Shi J., Ross C.R., Leto T.L., Blecha F. PR-39, a proline-rich antibacterial peptide that inhibits phagocyte NADPH oxidase activity by binding to Src homology 3 domains of p47 phox // Proc Natl Acad Sci USA. 1996. Vol. 93, N 12. P. 6014–6018. doi: 10.1073/pnas.93.12.6014 |
| [133] |
Kolenbrander PE, Andersen RN, Clemans DL, et al. Potential role of functionally similar coaggregation mediators in bacterial succession. Dental plaque revisited: oral biofilms in health and disease. Cardiff, United Kingdom: Bioline; 1999. P. 171–186. |
| [134] |
Kolenbrander P.E., Andersen R.N., Clemans D.L., et al. Potential role of functionally similar coaggregation mediators in bacterial succession. Dental plaque revisited: oral biofilms in health and disease. Cardiff, United Kingdom: Bioline, 1999. P. 171–186. |
| [135] |
Kolenbrander PE, Andersen RN, Moore LV. Coaggregation of Fusobacterium nucleatum, Selenomonas flueggei, Selenomonas infelix, Selenomonas noxia, and Selenomonas sputigena with strains from 11 genera of oral bacteria. Infect Immun. 1989;57(10):3194–3203. doi: 10.1128/iai.57.10.3194-3203.1989 |
| [136] |
Kolenbrander P.E., Andersen R.N., Moore L.V. Coaggregation of Fusobacterium nucleatum, Selenomonas flueggei, Selenomonas infelix, Selenomonas noxia, and Selenomonas sputigena with strains from 11 genera of oral bacteria // Infect Immun. 1989. Vol. 57, N 10. P. 3194–3203. doi: 10.1128/iai.57.10.3194-3203.1989 |
| [137] |
Arweiler NB, Netuschil L. The oral microbiota. Adv Exp Med Biol. 2016;902:45–60. doi: 10.1007/978-3-319-31248-4_4 |
| [138] |
Arweiler N.B., Netuschil L. The oral microbiota // Adv Exp Med Biol. 2016. Vol. 902. P. 45–60. doi: 10.1007/978-3-319-31248-4_4 |
| [139] |
Marsh PD, Lewis MA, Williams D, Martin MV. Oral microbiology e-book. Elsevier health sciences; 2009. 232 p. |
| [140] |
Marsh P.D., Lewis M.A., Williams D., Martin M.V. Oral microbiology e-book. Elsevier health sciences, 2009. 232 p. |
| [141] |
Kilian M, Chapple IL, Hannig M, et al. The oral microbiome—an update for oral healthcare professionals. Br Dent J. 2016;221(10):657–666. doi: 10.1038/sj.bdj.2016.865 |
| [142] |
Kilian M., Chapple I.L., Hannig M., et al. The oral microbiome—an update for oral healthcare professionals // Br Dent J. 2016. Vol. 221, N 10. P. 657–666. doi: 10.1038/sj.bdj.2016.865 |
| [143] |
Bik EM, Long CD, Armitage GC, et al. Bacterial diversity in the oral cavity of 10 healthy individuals. ISME J. 2010;4(8):962–974. doi: 10.1038/ismej.2010.30 |
| [144] |
Bik E.M., Long C.D., Armitage G.C., et al. Bacterial diversity in the oral cavity of 10 healthy individuals // ISME J. 2010. Vol. 4, N 8. P. 962–974. doi: 10.1038/ismej.2010.30 |
| [145] |
Aas JA, Paster BJ, Stokes LN, et al. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol. 2005;43(11):5721–5732. doi: 10.1128/jcm.43.11.5721-5732.2005 |
| [146] |
Aas J.A., Paster B.J., Stokes L.N., et al. Defining the normal bacterial flora of the oral cavity // J Clin Microbiol. 2005. Vol. 43, N 11. P. 5721–5732. doi: 10.1128/jcm.43.11.5721-5732.2005 |
| [147] |
Gao L, Xu T, Huang G, et al. Oral microbiomes: more and more importance in oral cavity and whole body. Protein Cell. 2018;9(5):488–500. doi: 10.1007/s13238-018-0548-1 |
| [148] |
Gao L., Xu T., Huang G., et al. Oral microbiomes: more and more importance in oral cavity and whole body // Protein Cell. 2018. Vol. 9, N 5. P. 488–500. doi: 10.1007/s13238-018-0548-1 |
| [149] |
Do T, Devine D, Marsh PD. Oral biofilms: molecular analysis, challenges, and future prospects in dental diagnostics. Clin Cosmet Investig Dent. 2013;5:11–19. doi: 10.2147/ccide.s31005 |
| [150] |
Do T., Devine D., Marsh P.D. Oral biofilms: molecular analysis, challenges, and future prospects in dental diagnostics // Clin Cosmet Investig Dent. 2013. Vol. 5. P. 11–19. doi: 10.2147/ccide.s31005 |
| [151] |
Hesselmar B, Sjöberg F, Saalman R, et al. Pacifier cleaning practices and risk of allergy development. Pediatrics. 2013;131(6):e1829–e1837. doi: 10.1542/peds.2012-3345 |
| [152] |
Hesselmar B., Sjöberg F., Saalman R., et al. Pacifier cleaning practices and risk of allergy development // Pediatrics. 2013. Vol. 131, N 6. P. e1829–e1837. doi: 10.1542/peds.2012-3345 |
| [153] |
Han YW, Houcken W, Loos BG, et al. Periodontal disease, atherosclerosis, adverse pregnancy outcomes, and head-and-neck cancer. Adv Dent Res. 2014;26(1):47–55. doi: 10.1177/0022034514528334 |
| [154] |
Han Y.W., Houcken W., Loos B.G., et al. Periodontal disease, atherosclerosis, adverse pregnancy outcomes, and head-and-neck cancer // Adv Dent Res. 2014. Vol. 26, N 1. P. 47–55. doi: 10.1177/0022034514528334 |
| [155] |
Dye B, Thornton-Evans G, Li X, Iafolla T. Dental caries and tooth loss in adults in the United States, 2011-2012. NCHS Data Brief. 2015;(197):197. |
| [156] |
Dye B., Thornton-Evans G., Li X., Iafolla T. Dental caries and tooth loss in adults in the United States, 2011-2012 // NCHS Data Brief. 2015. Vol. 197. P. 197. |
| [157] |
Petersen PE, Leous P. The burden of oral disease and risks to oral health at global and regional levels. Medicina stomatologică. 2017;42(1–2):7–13. |
| [158] |
Petersen P.E., Leous P. The burden of oral disease and risks to oral health at global and regional levels // Medicina stomatologică. 2017. Vol. 42, N 1–2. P. 7–13. |
| [159] |
Gorr SU, Abdolhosseini M. Antimicrobial peptides and periodontal disease. J Clin Periodontol. 2011;38 Suppl 11:126–141. doi: 10.1111/j.1600-051x.2010.01664.x |
| [160] |
Gorr S.U., Abdolhosseini M. Antimicrobial peptides and periodontal disease // J Clin Periodontol. 2011. Vol. 38 Suppl 11. P. 126–141. doi: 10.1111/j.1600-051x.2010.01664.x |
| [161] |
Corbella S, Veronesi P, Galimberti V, et al. Is periodontitis a risk indicator for cancer? A meta-analysis. PLoS One. 2018;13(4):e0195683. doi: 10.1371/journal.pone.0195683 |
| [162] |
Corbella S., Veronesi P., Galimberti V., et al. Is periodontitis a risk indicator for cancer? A meta-analysis // PLoS One. 2018. Vol. 13, N 4. P. e0195683. doi: 10.1371/journal.pone.0195683 |
| [163] |
Paster BJ, Olsen I, Aas JA, Dewhirst FE. The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontol 2000. 2006;42:80–87. doi: 10.1111/j.1600-0757.2006.00174.x |
| [164] |
Paster B.J., Olsen I., Aas J.A., Dewhirst F.E. The breadth of bacterial diversity in the human periodontal pocket and other oral sites // Periodontol 2000. 2006. Vol. 42. P. 80–87. doi: 10.1111/j.1600-0757.2006.00174.x |
| [165] |
Socransky SS, Haffajee AD, Cugini MA, et al. Microbial complexes in subgingival plaque. J Clin Periodontol. 1998;25(2):134–144. doi: 10.1111/j.1600-051x.1998.tb02419.x |
| [166] |
Socransky S.S., Haffajee A.D., Cugini M.A., et al. Microbial complexes in subgingival plaque // J Clin Periodontol. 1998. Vol. 25, N 2. P. 134–144. doi: 10.1111/j.1600-051x.1998.tb02419.x |
| [167] |
Diaz PI, Hoare A, Hong BY. Subgingival microbiome shifts and community dynamics in periodontal diseases. J Calif Dent Assoc. 2016;44(7):421–435. |
| [168] |
Diaz P.I., Hoare A., Hong B.Y. Subgingival microbiome shifts and community dynamics in periodontal diseases // J Calif Dent Assoc. 2016. Vol. 44, N 7. P. 421–435. |
| [169] |
Pihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases. Lancet. 2005;366(9499):1809–1820. doi: 10.1016/s0140-6736(05)67728-8 |
| [170] |
Pihlstrom B.L., Michalowicz B.S., Johnson N.W. Periodontal diseases // Lancet. 2005. Vol. 366, N 9499. P. 1809–1820. doi: 10.1016/s0140-6736(05)67728-8 |
| [171] |
Preshaw PM, Seymour RA, Heasman PA. Current concepts in periodontal pathogenesis. Dent Update. 2004;31(10):570–578. doi: 10.12968/denu.2004.31.10.570 |
| [172] |
Preshaw P.M., Seymour R.A., Heasman P.A. Current concepts in periodontal pathogenesis // Dent Update. 2004. Vol. 31, N 10. P. 570–578. doi: 10.12968/denu.2004.31.10.570 |
| [173] |
Darveau RP. Periodontitis: a polymicrobial disruption of host homeostasis. Nat Rev Microbiol. 2010;8(7):481–490. doi: 10.1038/nrmicro2337 |
| [174] |
Darveau R.P. Periodontitis: a polymicrobial disruption of host homeostasis // Nat Rev Microbiol. 2010. Vol. 8, N 7. P. 481–490. doi: 10.1038/nrmicro2337 |
| [175] |
Chen C, Fan X, Yu S, et al. Association between Periodontitis and Gene polymorphisms of hBD-1 and CD14: a meta-analysis. Arch Oral Biol. 2019;104:141–149. doi: 10.1016/j.archoralbio.2019.05.029 |
| [176] |
Chen C., Fan X., Yu S., et al. Association between Periodontitis and Gene polymorphisms of hBD-1 and CD14: a meta-analysis // Arch Oral Biol. 2019. Vol. 104. P. 141–149. doi: 10.1016/j.archoralbio.2019.05.029 |
| [177] |
Selwitz RH, Ismail AI, Pitts NB. Dental caries. Lancet. 2007;369(9555):51–59. doi: 10.1016/s0140-6736(07)60031-2 |
| [178] |
Selwitz R.H., Ismail A.I., Pitts N.B. Dental caries // Lancet. 2007. Vol. 369, N 9555. P. 51–59. doi: 10.1016/s0140-6736(07)60031-2 |
| [179] |
Gao X, Jiang S, Koh D, Hsu CY. Salivary biomarkers for dental caries. Periodontol 2000. 2016;70(1):128–141. doi: 10.1111/prd.12100 |
| [180] |
Gao X., Jiang S., Koh D., Hsu C.Y. Salivary biomarkers for dental caries // Periodontol 2000. 2016. Vol. 70, N 1. P. 128–141. doi: 10.1111/prd.12100 |
| [181] |
Colombo NH, Ribas LF, Pereira JA, et al. Antimicrobial peptides in saliva of children with severe early childhood caries. Arch Oral Biol. 2016;69:40–46. doi: 10.1016/j.archoralbio.2016.05.009 |
| [182] |
Colombo N.H., Ribas L.F., Pereira J.A., et al. Antimicrobial peptides in saliva of children with severe early childhood caries // Arch Oral Biol. 2016. Vol. 69. P. 40–46. doi: 10.1016/j.archoralbio.2016.05.009 |
| [183] |
Davidopoulou S, Diza E, Menexes G, Kalfas S. Salivary concentration of the antimicrobial peptide LL-37 in children. Arch Oral Biol. 2012;57(7):865–869. doi: 10.1016/j.archoralbio.2012.01.008 |
| [184] |
Davidopoulou S., Diza E., Menexes G., Kalfas S. Salivary concentration of the antimicrobial peptide LL-37 in children // Arch Oral Biol. 2012. Vol. 57, N 7. P. 865–869. doi: 10.1016/j.archoralbio.2012.01.008 |
| [185] |
Nishimura E, Eto A, Kato M, et al. Oral streptococci exhibit diverse susceptibility to human beta-defensin-2: antimicrobial effects of hBD-2 on oral streptococci. Curr Microbiol. 2004;48(2):85–87. doi: 10.1007/s00284-003-4108-3 |
| [186] |
Nishimura E., Eto A., Kato M., et al. Oral streptococci exhibit diverse susceptibility to human beta-defensin-2: antimicrobial effects of hBD-2 on oral streptococci // Curr Microbiol. 2004. Vol. 48, N 2. P. 85–87. doi: 10.1007/s00284-003-4108-3 |
| [187] |
da Silva BR, de Freitas VA, Nascimento-Neto LG, et al. Antimicrobial peptide control of pathogenic microorganisms of the oral cavity: a review of the literature. Peptides. 2012;36(2):315–321. doi: 10.1016/j.peptides.2012.05.015 |
| [188] |
da Silva B.R., de Freitas V.A., Nascimento-Neto L.G., et al. Antimicrobial peptide control of pathogenic microorganisms of the oral cavity: a review of the literature // Peptides. 2012. Vol. 36, N 2. P. 315–321. doi: 10.1016/j.peptides.2012.05.015 |
| [189] |
Stojković B, Igić M, Jevtović Stoimenov T, et al. Can salivary biomarkers be used as predictors of dental caries in young adolescents? Med Sci Monit. 2020;26:e923471. doi: 10.12659/msm.923471 |
| [190] |
Stojković B., Igić M., Jevtović Stoimenov T., et al. Can salivary biomarkers be used as predictors of dental caries in young adolescents? // Med Sci Monit. 2020. Vol. 26. P. e923471. doi: 10.12659/msm.923471 |
| [191] |
Ng JH, Iyer NG, Tan MH, Edgren G. Changing epidemiology of oral squamous cell carcinoma of the tongue: A global study. Head Neck. 2017;39(2):297–304. doi: 10.1002/hed.24589 |
| [192] |
Ng J.H., Iyer N.G., Tan M.H., Edgren G. Changing epidemiology of oral squamous cell carcinoma of the tongue: A global study // Head Neck. 2017. Vol. 39, N 2. P. 297–304. doi: 10.1002/hed.24589 |
| [193] |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi: 10.3322/caac.21492 Erratum in: CA Cancer J Clin. 2020;70(4):313. doi: 10.3322/caac.21609 |
| [194] |
Bray F., Ferlay J., Soerjomataram I., et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries // CA Cancer J Clin. 2018. Vol. 68, N 6. P. 394–424. doi: 10.3322/caac.21492 Erratum in: CA Cancer J Clin. 2020. Vol. 70, N 4. P. 313. doi: 10.3322/caac.21609 |
| [195] |
Hase K, Murakami M, Iimura M, et al. Expression of LL-37 by human gastric epithelial cells as a potential host defense mechanism against Helicobacter pylori. Gastroenterology. 2003;125(6):1613–1625. doi: 10.1053/j.gastro.2003.08.028 |
| [196] |
Hase K., Murakami M., Iimura M., et al. Expression of LL-37 by human gastric epithelial cells as a potential host defense mechanism against Helicobacter pylori // Gastroenterology. 2003. Vol. 125, N 6. P. 1613–1625. doi: 10.1053/j.gastro.2003.08.028 |
| [197] |
Frohm Nilsson M, Sandstedt B, Sørensen O, et al. The human cationic antimicrobial protein (hCAP18), a peptide antibiotic, is widely expressed in human squamous epithelia and colocalizes with interleukin-6. Infect Immun. 1999;67(5):2561–2566. doi: 10.1128/iai.67.5.2561-2566.1999 |
| [198] |
Frohm Nilsson M., Sandstedt B., Sørensen O., et al. The human cationic antimicrobial protein (hCAP18), a peptide antibiotic, is widely expressed in human squamous epithelia and colocalizes with interleukin-6 // Infect Immun. 1999. Vol. 67, N 5. P. 2561–2566. doi: 10.1128/iai.67.5.2561-2566.1999 |
| [199] |
Chen X, Qi G, Qin M, et al. DNA methylation directly downregulates human cathelicidin antimicrobial peptide gene (CAMP) promoter activity. Oncotarget. 2017;8(17):27943–27952. doi: 10.18632/oncotarget.15847 |
| [200] |
Chen X., Qi G., Qin M., et al. DNA methylation directly downregulates human cathelicidin antimicrobial peptide gene (CAMP) promoter activity // Oncotarget. 2017. Vol. 8, N 17. P. 27943–27952. doi: 10.18632/oncotarget.15847 |
| [201] |
Vierthaler M, Rodrigues PC, Sundquist E, et al. Fluctuating role of antimicrobial peptide hCAP18/LL-37 in oral tongue dysplasia and carcinoma. Oncol Rep. 2020;44(1):325–338. doi: 10.3892/or.2020.7609 |
| [202] |
Vierthaler M., Rodrigues P.C., Sundquist E., et al. Fluctuating role of antimicrobial peptide hCAP18/LL-37 in oral tongue dysplasia and carcinoma // Oncol Rep. 2020. Vol. 44, N 1. P. 325–338. doi: 10.3892/or.2020.7609 |
| [203] |
Dale BA, Fredericks LP. Antimicrobial peptides in the oral environment: expression and function in health and disease. Curr Issues Mol Biol. 2005;7(2):119–133. doi: 10.21775/cimb.007.119 |
| [204] |
Dale B.A., Fredericks L.P. Antimicrobial peptides in the oral environment: expression and function in health and disease // Curr Issues Mol Biol. 2005. Vol. 7, N 2. P. 119–133. doi: 10.21775/cimb.007.119 |
| [205] |
Joly S, Maze C, McCray PB Jr, Guthmiller JM. Human beta-defensins 2 and 3 demonstrate strain-selective activity against oral microorganisms. J Clin Microbiol. 2004;42(3):1024–1029. doi: 10.1128/jcm.42.3.1024-1029.2004 |
| [206] |
Joly S., Maze C., McCray P.B. Jr., Guthmiller J.M. Human beta-defensins 2 and 3 demonstrate strain-selective activity against oral microorganisms // J Clin Microbiol. 2004. Vol. 42, N 3. P. 1024–1029. doi: 10.1128/jcm.42.3.1024-1029.2004 |
| [207] |
Silva ON, Porto WF, Ribeiro SM, et al. Host-defense peptides and their potential use as biomarkers in human diseases. Drug Discov Today. 2018;23(9):1666–1671. doi: 10.1016/j.drudis.2018.05.024 |
| [208] |
Silva O.N., Porto W.F., Ribeiro S.M., et al. Host-defense peptides and their potential use as biomarkers in human diseases // Drug Discov Today. 2018. Vol. 23, N 9. P. 1666–1671. doi: 10.1016/j.drudis.2018.05.024 |
| [209] |
Prasad SV, Fiedoruk K, Daniluk T, et al. Expression and function of host defense peptides at inflammation sites. Int J Mol Sci. 2019;21(1):104. doi: 10.3390/ijms21010104 |
| [210] |
Prasad S.V., Fiedoruk K., Daniluk T., et al. Expression and function of host defense peptides at inflammation sites // Int J Mol Sci. 2019. Vol. 21, N 1. P. 104. doi: 10.3390/ijms21010104 |
| [211] |
Dommisch H, Açil Y, Dunsche A, et al. Differential gene expression of human beta-defensins (hBD-1, -2, -3) in inflammatory gingival diseases. Oral Microbiol Immunol. 2005;20(3):186–190. doi: 10.1111/j.1399-302x.2005.00211.x |
| [212] |
Dommisch H., Açil Y., Dunsche A., et al. Differential gene expression of human beta-defensins (hBD-1, -2, -3) in inflammatory gingival diseases // Oral Microbiol Immunol. 2005. Vol. 20, N 3. P. 186–190. doi: 10.1111/j.1399-302x.2005.00211.x |
| [213] |
Krisanaprakornkit S, Kimball JR, Weinberg A, et al. Inducible expression of human beta-defensin 2 by Fusobacterium nucleatum in oral epithelial cells: multiple signaling pathways and role of commensal bacteria in innate immunity and the epithelial barrier. Infect Immun. 2000;68(5):2907–2915. doi: 10.1128/iai.68.5.2907-2915.2000 |
| [214] |
Krisanaprakornkit S., Kimball J.R., Weinberg A., et al. Inducible expression of human beta-defensin 2 by Fusobacterium nucleatum in oral epithelial cells: multiple signaling pathways and role of commensal bacteria in innate immunity and the epithelial barrier // Infect Immun. 2000. Vol. 68, N 5. P. 2907–2915. doi: 10.1128/iai.68.5.2907-2915.2000 |
| [215] |
Wang P, Duan D, Zhou X, et al. Relationship between expression of human gingival beta-defensins and levels of periodontopathogens in subgingival plaque. J Periodontal Res. 2015;50(1):113–122. doi: 10.1111/jre.12187 |
| [216] |
Wang P., Duan D., Zhou X., et al. Relationship between expression of human gingival beta-defensins and levels of periodontopathogens in subgingival plaque // J Periodontal Res. 2015. Vol. 50, N 1. P. 113–122. doi: 10.1111/jre.12187 |
| [217] |
Zhu M, Miao B, Zhu J, et al. Expression and antimicrobial character of cells transfected with human β-defensin-3 against periodontitis-associated microbiota in vitro. Mol Med Rep. 2017;16(3):2455–2460. doi: 10.3892/mmr.2017.6913 |
| [218] |
Zhu M., Miao B., Zhu J., et al. Expression and antimicrobial character of cells transfected with human β-defensin-3 against periodontitis-associated microbiota in vitro // Mol Med Rep. 2017. Vol. 16, N 3. P. 2455–2460. doi: 10.3892/mmr.2017.6913 |
| [219] |
Li X, Duan D, Yang J, et al. The expression of human β-defensins (hBD-1, hBD-2, hBD-3, hBD-4) in gingival epithelia. Arch Oral Biol. 2016;66:15–21. doi: 10.1016/j.archoralbio.2016.01.012 |
| [220] |
Li X., Duan D., Yang J., et al. The expression of human β-defensins (hBD-1, hBD-2, hBD-3, hBD-4) in gingival epithelia // Arch Oral Biol. 2016. Vol. 66. P. 15–21. doi: 10.1016/j.archoralbio.2016.01.012 |
| [221] |
Sidharthan S, Dharmarajan G, Kulloli A. Gingival crevicular fluid levels of Interleukin-22 (IL-22) and human β Defensin-2 (hBD-2) in periodontal health and disease: A correlative study. J Oral Biol Craniofac Res. 2020;10(4):498–503. doi: 10.1016/j.jobcr.2020.07.021 |
| [222] |
Sidharthan S., Dharmarajan G., Kulloli A. Gingival crevicular fluid levels of Interleukin-22 (IL-22) and human β Defensin-2 (hBD-2) in periodontal health and disease: A correlative study // J Oral Biol Craniofac Res. 2020. Vol. 10, N 4. P. 498–503. doi: 10.1016/j.jobcr.2020.07.021 |
| [223] |
Fruitwala S, El-Naccache DW, Chang TL. Multifaceted immune functions of human defensins and underlying mechanisms. Semin Cell Dev Biol. 2019;88:163–172. doi: 10.1016/j.semcdb.2018.02.023 |
| [224] |
Fruitwala S., El-Naccache D.W., Chang T.L. Multifaceted immune functions of human defensins and underlying mechanisms // Semin Cell Dev Biol. 2019. Vol. 88. P. 163–172. doi: 10.1016/j.semcdb.2018.02.023 |
| [225] |
Polesello V, Zupin L, Di Lenarda R, et al. Impact of DEFB1 gene regulatory polymorphisms on hBD-1 salivary concentration. Arch Oral Biol. 2015;60(7):1054–1058. doi: 10.1016/j.archoralbio.2015.03.009 |
| [226] |
Polesello V., Zupin L., Di Lenarda R., et al. Impact of DEFB1 gene regulatory polymorphisms on hBD-1 salivary concentration // Arch Oral Biol. 2015. Vol. 60, N 7. P. 1054–1058. doi: 10.1016/j.archoralbio.2015.03.009 |
| [227] |
Polesello V, Zupin L, Di Lenarda R, et al. DEFB1 polymorphisms and salivary hBD-1 concentration in Oral Lichen Planus patients and healthy subjects. Arch Oral Biol. 2017;73:161–165. doi: 10.1016/j.archoralbio.2016.10.008 |
| [228] |
Polesello V., Zupin L., Di Lenarda R., et al. DEFB1 polymorphisms and salivary hBD-1 concentration in Oral Lichen Planus patients and healthy subjects // Arch Oral Biol. 2017. Vol. 73. P. 161–165. doi: 10.1016/j.archoralbio.2016.10.008 |
| [229] |
Joly S, Compton LM, Pujol C, et al. Loss of human beta-defensin 1, 2, and 3 expression in oral squamous cell carcinoma. Oral Microbiol Immunol. 2009;24(5):353–360. doi: 10.1111/j.1399-302x.2009.00512.x |
| [230] |
Joly S., Compton L.M., Pujol C., et al. Loss of human beta-defensin 1, 2, and 3 expression in oral squamous cell carcinoma // Oral Microbiol Immunol. 2009. Vol. 24, N 5. P. 353–360. doi: 10.1111/j.1399-302x.2009.00512.x |
| [231] |
Zupin L, Polesello V, Martinelli M, et al. Human β-defensin 1 in follicular fluid and semen: impact on fertility. J Assist Reprod Genet. 2019;36(4):787–797. doi: 10.1007/s10815-019-01409-w |
| [232] |
Zupin L., Polesello V., Martinelli M., et al. Human β-defensin 1 in follicular fluid and semen: impact on fertility // J Assist Reprod Genet. 2019. Vol. 36, N 4. P. 787–797. doi: 10.1007/s10815-019-01409-w |
Eco-Vector
/
| 〈 |
|
〉 |