Biological properties of the recombinant influenza A/H1N1pdm09 virus expressing a fragment of the Streptococcus pneumoniae surface protein

Yulia A. Desheva , Andrey R. Rekstin , Irina V. Mayorova , Nina V. Kopylova , Olga S. Kopteva , Daria S. Petrachkova , Polina A. Kudar , Tatyana S. Kotomina , Anastasia S. Matushkina , Galina F. Leontieva , Tatyana A. Kramskaya , Irina N. Isakova-Sivak

Medical academic journal ›› 2024, Vol. 24 ›› Issue (4) : 41 -50.

PDF (402KB)
Medical academic journal ›› 2024, Vol. 24 ›› Issue (4) : 41 -50. DOI: 10.17816/MAJ633390
Original research
research-article

Biological properties of the recombinant influenza A/H1N1pdm09 virus expressing a fragment of the Streptococcus pneumoniae surface protein

Author information +
History +
PDF (402KB)

Abstract

BACKGROUND: Live influenza vaccine strains may serve as a promising system for the delivery of target antigens to the body because such a vaccine is administered intranasally and stimulates multiple chains of immunity against both the target pathogen and the influenza virus, a serious infection that causes significant socioeconomic damage worldwide each year.

AIM: The study was aimed to evaluate the biological properties of a recombinant live influenza vaccine strain of subtype A/H1N1pdm09 expressing a fragment of the Streptococcus pneumoniae Spr1875 surface protein.

MATERIALS AND METHODS: The A/H1N1pdm09 recombinant live influenza vaccine strain expressing a 69-amino-acid fragment of the S. pneumoniae surface protein Spr1875 as part of a chimeric hemagglutinin molecule was prepared by reverse genetics using an 8-plasmid system. The reproductive activity of the recombinant virus was studied in chicken embryos, whereas immunogenicity and protective efficiency were studied in Balb/C mice.

RESULTS: The recombinant influenza virus strain with hemagglutinin H1-Spr-69 demonstrated active reproduction in chicken embryos and retained the temperature-sensitive phenotypic trait of vaccine viruses. However, its growth in the respiratory tract of mice was limited compared with the original A/H1N1pdm09 vaccine virus. Intranasal administration of the recombinant H1-Spr strain to mice resulted in stimulation of virus-specific serum IgG antibody production comparable to that induced by the classic live influenza A/H1N1pdm09 vaccine. Furthermore, this strain induced an increase in IgG antibodies against the pneumococcal insertion Spr1875. Although the A/H1N1pdm09 variant was more effective than the chimeric H1-Spr virus in preventing weight loss in mice infected with mouse-adapted influenza A/California/07/09 (H1N1)pdm09 (H1N1)pdm09 virus, the titers of the challenge virus in the lungs of mice from both vaccine groups were significantly reduced compared with unvaccinated animals.

CONCLUSIONS: The results demonstrate the ability of the chimeric recombinant H1-Spr strain to stimulate protective immunity against influenza virus.

Keywords

live influenza vaccine / recombinant influenza virus / A/H1N1pdm09 pandemic strain / Streptococcus pneumoniae

Cite this article

Download citation ▾
Yulia A. Desheva, Andrey R. Rekstin, Irina V. Mayorova, Nina V. Kopylova, Olga S. Kopteva, Daria S. Petrachkova, Polina A. Kudar, Tatyana S. Kotomina, Anastasia S. Matushkina, Galina F. Leontieva, Tatyana A. Kramskaya, Irina N. Isakova-Sivak. Biological properties of the recombinant influenza A/H1N1pdm09 virus expressing a fragment of the Streptococcus pneumoniae surface protein. Medical academic journal, 2024, 24(4): 41-50 DOI:10.17816/MAJ633390

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bello S, Mincholé E, Fandos S, et al. Inflammatory response in mixed viral-bacterial community-acquired pneumonia. BMC Pulm Med. 2014;14:123. doi: 10.1186/1471-2466-14-123

[2]

Bello S., Mincholé E., Fandos S., et al. Inflammatory response in mixed viral-bacterial community-acquired pneumonia // BMC Pulm Med. 2014. Vol. 14. P. 123. doi: 10.1186/1471-2466-14-123

[3]

Chalmers JD, Campling J, Dicker A, et al. A systematic review of the burden of vaccine preventable pneumococcal disease in UK adults. BMC Pulm Med. 2016;16(1):77. doi: 10.1186/s12890-016-0242-0

[4]

Chalmers J.D., Campling J., Dicker A., et al. A systematic review of the burden of vaccine preventable pneumococcal disease in UK adults // BMC Pulm Med. 2016. Vol. 16, N 1. P. 77. doi: 10.1186/s12890-016-0242-0

[5]

Suvorov A, Dukhovlinov I, Leontieva G, et al. Chimeric protein PSPF, a potential vaccine for prevention Streptococcus . Vaccines and Vaccination . 2015;6(6):304. doi: 10.4172/2157-7560.1000304

[6]

Suvorov A., Dukhovlinov I., Leontieva G., et al. Chimeric protein PSPF, a potential vaccine for prevention Streptococcus // Vaccines and Vaccination. 2015. Vol. 6, N 6. P. 304. doi: 10.4172/2157-7560.1000304

[7]

Peppoloni S, Colombari B, Beninati C, et al. The Spr1875 protein confers resistance to the microglia-mediated killing of Streptococcus pneumonia . Microb Pathog. 2013;59:42–47. doi: 10.1016/j.micpath.2013.04.002

[8]

Peppoloni S., Colombari B., Beninati C., et al. The Spr1875 protein confers resistance to the microglia-mediated killing of Streptococcus pneumoniae // Microb Pathog. 2013. Vol. 59. P. 42–47. doi: 10.1016/j.micpath.2013.04.002

[9]

Kramskaya T, Leontieva G, Desheva Y, et al. Combined immunization with attenuated live influenza vaccine and chimeric pneumococcal recombinant protein improves the outcome of virus-bacterial infection in mice. Plos One. 2019;14(9):e0222148. doi: 10.1371/journal.pone.0222148

[10]

Kramskaya T., Leontieva G., Desheva Y., et al. Combined immunization with attenuated live influenza vaccine and chimeric pneumococcal recombinant protein improves the outcome of virus-bacterial infection in mice // Plos One. 2019. Vol. 14, N 9. P. e0222148. doi: 10.1371/journal.pone.0222148

[11]

Rekstin AR, Desheva JA, Kiseleva IV, Isakova-Sivak IN. Early protection against influenza by pandemic live attenuated influenza vaccines. Medical Academic Journal. 2019;19(3):37–46. doi: 10.17816/MAJ19337-46

[12]

Rekstin A.R., Desheva J.A., Kiseleva I.V., Isakova-Sivak I.N. Early protection against influenza by pandemic live attenuated influenza vaccines // Medical academic journal. 2019. Vol. 19, N 3. P. 37–46. doi: 10.17816/MAJ19337-46

[13]

Isakova-Sivak I, Tretiak T, Rudenko L. Cold-adapted influenza viruses as a promising platform for viral-vector vaccines. Expert Rev Vaccines. 2016;15(10):1241–1243. doi: 10.1080/14760584.2016.1208088

[14]

Isakova-Sivak I., Tretiak T., Rudenko L. Cold-adapted influenza viruses as a promising platform for viral-vector vaccines // Expert Rev Vaccines. 2016. Vol. 15, N 10. P. 1241–1243. doi: 10.1080/14760584.2016.1208088

[15]

Cardaci A, Papasergi S, Midiri A, et al. Protective activity of Streptococcus pneumoniae Spr1875 protein fragments identified using a phage displayed genomic library. PLoS One . 2012;7(5):e36588. doi: 10.1371/journal.pone.0036588

[16]

Cardaci A., Papasergi S., Midiri A., et al. Protective activity of Streptococcus pneumoniae Spr1875 protein fragments identified using a phage displayed genomic library // PLoS One. 2012. Vol. 7, N 5. P. e36588. doi: 10.1371/journal.pone.0036588

[17]

Smolonogina TA, Isakova-Sivak IN, Kotomina TS, et al. Generation of a vaccine against group B streptococcal infection on the basis of cold-adapted influenza A virus. Mol Genet Microbiol Virol. 2019;34(1):25–34. doi: 10.3103/S0891416819010087

[18]

Smolonogina T.A., Isakova-Sivak I.N., Kotomina T.S., et al. Generation of a vaccine against group B streptococcal infection on the basis of cold-adapted influenza A virus // Mol Genet Microbiol Virol. 2019. Vol. 34, N 1. P. 25–34. doi: 10.3103/S0891416819010087

[19]

Okonechnikov K, Golosova O, Fursov M; UGENE team. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics . 2012;28(8):1166–1167. doi: 10.1093/bioinformatics/bts091

[20]

Okonechnikov K., Golosova O., Fursov M; UGENE team. Unipro UGENE: a unified bioinformatics toolkit // Bioinformatics. 2012. Vol. 28, N 8. P. 1166–1167. doi: 10.1093/bioinformatics/bts091

[21]

Reed LJ, Muench H. A simple method of estimating fifty per cent endpoints. Am J Epidemiol . 1938;27(3):493–497. doi: 10.1093/OXFORDJOURNALS.AJE.A118408

[22]

Reed L.J., Muench H. A simple method of estimating fifty per cent endpoints // Am J Epidemiol. 1938. Vol. 27, N 3. P. 493–497. doi: 10.1093/OXFORDJOURNALS.AJE.A118408

[23]

Rowe T, Abernathy RA, Hu-Primmer J, et al. Detection of antibody to avian influenza A (H5N1) virus in human serum by using a combination of serologic assays. J Clin Microbiol. 1999;37(4):937–943. doi: 10.1128/JCM.37.4.937-943.1999

[24]

Rowe T., Abernathy R.A., Hu-Primmer J., et al. Detection of antibody to avian influenza A (H5N1) virus in human serum by using a combination of serologic assays // J Clin Microbiol. 1999. Vol. 37, N 4. P. 937–943. doi: 10.1128/JCM.37.4.937-943.1999

[25]

Hoffmann E, Neumann G, Kawaoka Y, et al. A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci. 2000;97(11):6108–6113. doi: 10.1073/pnas.100133697

[26]

Desheva Y.A., Leontieva G.F., Kramskaya T.A., et al. Prevention of influenza A (H7N9) and bacterial infections in mice using intranasal immunization with live influenza vaccine and the group B streptococcus recombinant polypeptides // Virology (Auckl). 2017. Vol. 8. P. 1178122X17710949. doi: 10.1177/1178122X17710949

[27]

Desheva YA, Leontieva GF, Kramskaya TA, et al. Prevention of influenza A (H7N9) and bacterial infections in mice using intranasal immunization with live influenza vaccine and the group B streptococcus recombinant polypeptides. Virology (Auckl). 2017;8:1178122X17710949. doi: 10.1177/1178122X17710949

[28]

Hoffmann E., Neumann G., Kawaoka Y., et al. A DNA transfection system for generation of influenza A virus from eight plasmids // Proc Natl Acad Sci. 2000. Vol. 97, N 11. P. 6108–6113. doi: 10.1073/pnas.100133697

[29]

Gerlach T, Elbahesh H, Saletti G, Rimmelzwaan GF. Recombinant influenza A viruses as vaccine vectors. Expert Rev Vaccines. 2019;18(4):379–392. doi: 10.1080/14760584.2019.1582338

[30]

Gerlach T., Elbahesh H., Saletti G., Rimmelzwaan G.F. Recombinant influenza A viruses as vaccine vectors // Expert Rev Vaccines. 2019. Vol. 18, N 4. P. 379–392. doi: 10.1080/14760584.2019.1582338

[31]

Kiseleva I, Dubrovina I, Fedorova E, et al. Genetic stability of live attenuated vaccines against potentially pandemic influenza viruses. Vaccine . 2015;33(49):7008–7014. doi: 10.1016/j.vaccine.2015.09.050

[32]

Kiseleva I., Dubrovina I., Fedorova E., et al. Genetic stability of live attenuated vaccines against potentially pandemic influenza viruses // Vaccine. 2015. Vol. 33, N 49. P. 7008–7014. doi: 10.1016/j.vaccine.2015.09.050

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (402KB)

79

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/