Biological properties of the recombinant influenza A/H1N1pdm09 virus expressing a fragment of the Streptococcus pneumoniae surface protein
Yulia A. Desheva , Andrey R. Rekstin , Irina V. Mayorova , Nina V. Kopylova , Olga S. Kopteva , Daria S. Petrachkova , Polina A. Kudar , Tatyana S. Kotomina , Anastasia S. Matushkina , Galina F. Leontieva , Tatyana A. Kramskaya , Irina N. Isakova-Sivak
Medical academic journal ›› 2024, Vol. 24 ›› Issue (4) : 41 -50.
Biological properties of the recombinant influenza A/H1N1pdm09 virus expressing a fragment of the Streptococcus pneumoniae surface protein
BACKGROUND: Live influenza vaccine strains may serve as a promising system for the delivery of target antigens to the body because such a vaccine is administered intranasally and stimulates multiple chains of immunity against both the target pathogen and the influenza virus, a serious infection that causes significant socioeconomic damage worldwide each year.
AIM: The study was aimed to evaluate the biological properties of a recombinant live influenza vaccine strain of subtype A/H1N1pdm09 expressing a fragment of the Streptococcus pneumoniae Spr1875 surface protein.
MATERIALS AND METHODS: The A/H1N1pdm09 recombinant live influenza vaccine strain expressing a 69-amino-acid fragment of the S. pneumoniae surface protein Spr1875 as part of a chimeric hemagglutinin molecule was prepared by reverse genetics using an 8-plasmid system. The reproductive activity of the recombinant virus was studied in chicken embryos, whereas immunogenicity and protective efficiency were studied in Balb/C mice.
RESULTS: The recombinant influenza virus strain with hemagglutinin H1-Spr-69 demonstrated active reproduction in chicken embryos and retained the temperature-sensitive phenotypic trait of vaccine viruses. However, its growth in the respiratory tract of mice was limited compared with the original A/H1N1pdm09 vaccine virus. Intranasal administration of the recombinant H1-Spr strain to mice resulted in stimulation of virus-specific serum IgG antibody production comparable to that induced by the classic live influenza A/H1N1pdm09 vaccine. Furthermore, this strain induced an increase in IgG antibodies against the pneumococcal insertion Spr1875. Although the A/H1N1pdm09 variant was more effective than the chimeric H1-Spr virus in preventing weight loss in mice infected with mouse-adapted influenza A/California/07/09 (H1N1)pdm09 (H1N1)pdm09 virus, the titers of the challenge virus in the lungs of mice from both vaccine groups were significantly reduced compared with unvaccinated animals.
CONCLUSIONS: The results demonstrate the ability of the chimeric recombinant H1-Spr strain to stimulate protective immunity against influenza virus.
live influenza vaccine / recombinant influenza virus / A/H1N1pdm09 pandemic strain / Streptococcus pneumoniae
| [1] |
Bello S, Mincholé E, Fandos S, et al. Inflammatory response in mixed viral-bacterial community-acquired pneumonia. BMC Pulm Med. 2014;14:123. doi: 10.1186/1471-2466-14-123 |
| [2] |
Bello S., Mincholé E., Fandos S., et al. Inflammatory response in mixed viral-bacterial community-acquired pneumonia // BMC Pulm Med. 2014. Vol. 14. P. 123. doi: 10.1186/1471-2466-14-123 |
| [3] |
Chalmers JD, Campling J, Dicker A, et al. A systematic review of the burden of vaccine preventable pneumococcal disease in UK adults. BMC Pulm Med. 2016;16(1):77. doi: 10.1186/s12890-016-0242-0 |
| [4] |
Chalmers J.D., Campling J., Dicker A., et al. A systematic review of the burden of vaccine preventable pneumococcal disease in UK adults // BMC Pulm Med. 2016. Vol. 16, N 1. P. 77. doi: 10.1186/s12890-016-0242-0 |
| [5] |
Suvorov A, Dukhovlinov I, Leontieva G, et al. Chimeric protein PSPF, a potential vaccine for prevention Streptococcus . Vaccines and Vaccination . 2015;6(6):304. doi: 10.4172/2157-7560.1000304 |
| [6] |
Suvorov A., Dukhovlinov I., Leontieva G., et al. Chimeric protein PSPF, a potential vaccine for prevention Streptococcus // Vaccines and Vaccination. 2015. Vol. 6, N 6. P. 304. doi: 10.4172/2157-7560.1000304 |
| [7] |
Peppoloni S, Colombari B, Beninati C, et al. The Spr1875 protein confers resistance to the microglia-mediated killing of Streptococcus pneumonia . Microb Pathog. 2013;59:42–47. doi: 10.1016/j.micpath.2013.04.002 |
| [8] |
Peppoloni S., Colombari B., Beninati C., et al. The Spr1875 protein confers resistance to the microglia-mediated killing of Streptococcus pneumoniae // Microb Pathog. 2013. Vol. 59. P. 42–47. doi: 10.1016/j.micpath.2013.04.002 |
| [9] |
Kramskaya T, Leontieva G, Desheva Y, et al. Combined immunization with attenuated live influenza vaccine and chimeric pneumococcal recombinant protein improves the outcome of virus-bacterial infection in mice. Plos One. 2019;14(9):e0222148. doi: 10.1371/journal.pone.0222148 |
| [10] |
Kramskaya T., Leontieva G., Desheva Y., et al. Combined immunization with attenuated live influenza vaccine and chimeric pneumococcal recombinant protein improves the outcome of virus-bacterial infection in mice // Plos One. 2019. Vol. 14, N 9. P. e0222148. doi: 10.1371/journal.pone.0222148 |
| [11] |
Rekstin AR, Desheva JA, Kiseleva IV, Isakova-Sivak IN. Early protection against influenza by pandemic live attenuated influenza vaccines. Medical Academic Journal. 2019;19(3):37–46. doi: 10.17816/MAJ19337-46 |
| [12] |
Rekstin A.R., Desheva J.A., Kiseleva I.V., Isakova-Sivak I.N. Early protection against influenza by pandemic live attenuated influenza vaccines // Medical academic journal. 2019. Vol. 19, N 3. P. 37–46. doi: 10.17816/MAJ19337-46 |
| [13] |
Isakova-Sivak I, Tretiak T, Rudenko L. Cold-adapted influenza viruses as a promising platform for viral-vector vaccines. Expert Rev Vaccines. 2016;15(10):1241–1243. doi: 10.1080/14760584.2016.1208088 |
| [14] |
Isakova-Sivak I., Tretiak T., Rudenko L. Cold-adapted influenza viruses as a promising platform for viral-vector vaccines // Expert Rev Vaccines. 2016. Vol. 15, N 10. P. 1241–1243. doi: 10.1080/14760584.2016.1208088 |
| [15] |
Cardaci A, Papasergi S, Midiri A, et al. Protective activity of Streptococcus pneumoniae Spr1875 protein fragments identified using a phage displayed genomic library. PLoS One . 2012;7(5):e36588. doi: 10.1371/journal.pone.0036588 |
| [16] |
Cardaci A., Papasergi S., Midiri A., et al. Protective activity of Streptococcus pneumoniae Spr1875 protein fragments identified using a phage displayed genomic library // PLoS One. 2012. Vol. 7, N 5. P. e36588. doi: 10.1371/journal.pone.0036588 |
| [17] |
Smolonogina TA, Isakova-Sivak IN, Kotomina TS, et al. Generation of a vaccine against group B streptococcal infection on the basis of cold-adapted influenza A virus. Mol Genet Microbiol Virol. 2019;34(1):25–34. doi: 10.3103/S0891416819010087 |
| [18] |
Smolonogina T.A., Isakova-Sivak I.N., Kotomina T.S., et al. Generation of a vaccine against group B streptococcal infection on the basis of cold-adapted influenza A virus // Mol Genet Microbiol Virol. 2019. Vol. 34, N 1. P. 25–34. doi: 10.3103/S0891416819010087 |
| [19] |
Okonechnikov K, Golosova O, Fursov M; UGENE team. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics . 2012;28(8):1166–1167. doi: 10.1093/bioinformatics/bts091 |
| [20] |
Okonechnikov K., Golosova O., Fursov M; UGENE team. Unipro UGENE: a unified bioinformatics toolkit // Bioinformatics. 2012. Vol. 28, N 8. P. 1166–1167. doi: 10.1093/bioinformatics/bts091 |
| [21] |
Reed LJ, Muench H. A simple method of estimating fifty per cent endpoints. Am J Epidemiol . 1938;27(3):493–497. doi: 10.1093/OXFORDJOURNALS.AJE.A118408 |
| [22] |
Reed L.J., Muench H. A simple method of estimating fifty per cent endpoints // Am J Epidemiol. 1938. Vol. 27, N 3. P. 493–497. doi: 10.1093/OXFORDJOURNALS.AJE.A118408 |
| [23] |
Rowe T, Abernathy RA, Hu-Primmer J, et al. Detection of antibody to avian influenza A (H5N1) virus in human serum by using a combination of serologic assays. J Clin Microbiol. 1999;37(4):937–943. doi: 10.1128/JCM.37.4.937-943.1999 |
| [24] |
Rowe T., Abernathy R.A., Hu-Primmer J., et al. Detection of antibody to avian influenza A (H5N1) virus in human serum by using a combination of serologic assays // J Clin Microbiol. 1999. Vol. 37, N 4. P. 937–943. doi: 10.1128/JCM.37.4.937-943.1999 |
| [25] |
Hoffmann E, Neumann G, Kawaoka Y, et al. A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci. 2000;97(11):6108–6113. doi: 10.1073/pnas.100133697 |
| [26] |
Desheva Y.A., Leontieva G.F., Kramskaya T.A., et al. Prevention of influenza A (H7N9) and bacterial infections in mice using intranasal immunization with live influenza vaccine and the group B streptococcus recombinant polypeptides // Virology (Auckl). 2017. Vol. 8. P. 1178122X17710949. doi: 10.1177/1178122X17710949 |
| [27] |
Desheva YA, Leontieva GF, Kramskaya TA, et al. Prevention of influenza A (H7N9) and bacterial infections in mice using intranasal immunization with live influenza vaccine and the group B streptococcus recombinant polypeptides. Virology (Auckl). 2017;8:1178122X17710949. doi: 10.1177/1178122X17710949 |
| [28] |
Hoffmann E., Neumann G., Kawaoka Y., et al. A DNA transfection system for generation of influenza A virus from eight plasmids // Proc Natl Acad Sci. 2000. Vol. 97, N 11. P. 6108–6113. doi: 10.1073/pnas.100133697 |
| [29] |
Gerlach T, Elbahesh H, Saletti G, Rimmelzwaan GF. Recombinant influenza A viruses as vaccine vectors. Expert Rev Vaccines. 2019;18(4):379–392. doi: 10.1080/14760584.2019.1582338 |
| [30] |
Gerlach T., Elbahesh H., Saletti G., Rimmelzwaan G.F. Recombinant influenza A viruses as vaccine vectors // Expert Rev Vaccines. 2019. Vol. 18, N 4. P. 379–392. doi: 10.1080/14760584.2019.1582338 |
| [31] |
Kiseleva I, Dubrovina I, Fedorova E, et al. Genetic stability of live attenuated vaccines against potentially pandemic influenza viruses. Vaccine . 2015;33(49):7008–7014. doi: 10.1016/j.vaccine.2015.09.050 |
| [32] |
Kiseleva I., Dubrovina I., Fedorova E., et al. Genetic stability of live attenuated vaccines against potentially pandemic influenza viruses // Vaccine. 2015. Vol. 33, N 49. P. 7008–7014. doi: 10.1016/j.vaccine.2015.09.050 |
Eco-Vector
/
| 〈 |
|
〉 |