The participation of monoamines in the realization of vasopressin analgesic effects during electrical stimulation of paws in rats

Alexandra A. Nikitina , Svetlana G. Belokoskova , Victoria A. Maystrenko , Nina S. Pestereva , Tatiana V. Tyutyunnik , Marina N. Karpenko , Sergey G. Tsikunov

Medical academic journal ›› 2024, Vol. 24 ›› Issue (2) : 45 -52.

PDF
Medical academic journal ›› 2024, Vol. 24 ›› Issue (2) : 45 -52. DOI: 10.17816/MAJ633203
Original research
research-article

The participation of monoamines in the realization of vasopressin analgesic effects during electrical stimulation of paws in rats

Author information +
History +
PDF

Abstract

BACKGROUND: Arginine vasopressin has been implicated in the modulation of stress and pain. The influence of a synthetic analogue of arginine vasopressin, 1-deamino-8-D-arginine-vasopressin, оn pain sensitivity, stress reactivity, levels of monoamines and brain neurotrophic factor in a model of paw electrical stimulation in rats has not been studied.

AIM: The aim was to evaluate the effect of a synthetic vasopressin analog, 1-deamino-8-D-arginine-vasopressin, on pain sensitivity and the content of norepinephrine, serotonin, dopamine, brain neurotrophic factor in the parietal cortex and spinal cord in electrocutaneous paw stimulation test in rats.

MATERIALS AND METHODS: The study was conducted on male Wistar rats who were injected with 1-deamino-8-D-arginine-vasopressin intranasally once a day for 5 days in small (single 20 ng, course 100 ng) and large doses (single 2 ug, course 10 ug). The content of brain neurotrophic factor in the parietal cortex and spinal cord, and corticosterone in blood serum were determined using enzyme immunoassay. The levels of norepinephrine, serotonin, dopamine and their metabolites in the brain were evaluated using high-performance liquid chromatography.

RESULTS: 1-Deamino-8-D-arginine-vasopressin in different doses reduced pain sensitivity in rats, more pronounced when administered in large doses. The peptide in small doses in the parietal cortex increased the content of dopamine and reduced the levels of 5-hydroxyindolacetic acid, a metabolite of serotonin; in the spinal cord, it reduced the content of 5-hydroxyindolacetic acid. 1-Deamino-8-D-arginine-vasopressin in high doses in the parietal cortex increased the content of dopamine and reduced the levels of 5-hydroxyindolacetic acid; in the spinal cord ― reduced the content of serotonin and 3,4-dihydroxyphenylacetic acid, a metabolite of dopamine; increased the levels of norepinephrine and homovanilic acid, a metabolite of dopamine. The peptide had no effect on corticosterone levels in the blood and brain neurotrophic factor levels in the brain in rats.

CONCLUSIONS: The analgesic effects of 1-deamino-8-D-arginine-vasopressin were revealed with intranasal administration in different subendocrine doses. Regardless of the administered doses, dopamine and serotonin at the supraspinal level were involved in peptide-induced anesthesia; serotonin at the spinal cord level. More pronounced analgesia with the administration of 1-deamino-8-D-arginine-vasopressin in high doses was due to the additional involvement of dopamine and norepinephrine at the spinal cord level.

Keywords

vasopressin / pain / electrocutaneous stimulation / corticosterone / norepinephrine / serotonin / dopamine / brain-derived neurotrophic factor

Cite this article

Download citation ▾
Alexandra A. Nikitina, Svetlana G. Belokoskova, Victoria A. Maystrenko, Nina S. Pestereva, Tatiana V. Tyutyunnik, Marina N. Karpenko, Sergey G. Tsikunov. The participation of monoamines in the realization of vasopressin analgesic effects during electrical stimulation of paws in rats. Medical academic journal, 2024, 24(2): 45-52 DOI:10.17816/MAJ633203

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Belokoskova SG, Tsikunov SG. Vasopressin in the regulation of brain functions. Saint Petersburg: Art Express; 2020. 253 p. (In Russ.)

[2]

Белокоскова С.Г., Цикунов С.Г. Вазопрессин в регуляции функций мозга. Санкт-Петербург: Арт-экспресс, 2020. 253 c.

[3]

Kordower JH, Bodnar RJ. Differential effects of dPTyr(Me)AVP, a vasopressin antagonist, upon foot shock analgesia. Int J Neurosci. 1985;28(3–4):269–278. doi: 10.3109/00207458508985394

[4]

Kordower J.H., Bodnar R.J. Differential effects of dPTyr(Me)AVP, a vasopressin antagonist, upon foot shock analgesia // Int J Neurosci. 1985. Vol. 28, N 3–4. P. 269–278. doi: 10.3109/00207458508985394

[5]

Thurston CL, Campbell IG, Culhane ES, et al. Characterization of intrathecal vasopressin-induced antinociception, scratching behavior, and motor suppression. Peptides. 1992;13(1):17–25. doi: 10.1016/0196-9781(92)90135-p

[6]

Thurston C.L., Campbell I.G., Culhane E.S., et al. Characterization of intrathecal vasopressin-induced antinociception, scratching behavior, and motor suppression // Peptides. 1992. Vol. 13, N 1. P. 17–25. doi: 10.1016/0196-9781(92)90135-p

[7]

Schorscher-Petcu A, Sotocinal S, Ciura S, et al. Oxytocin-induced analgesia and scratching are mediated by the vasopressin-1A receptor in the mouse. J Neurosci. 2010;30(24):8274–8284. doi: 10.1523/JNEUROSCI.1594-10.2010

[8]

Schorscher-Petcu A., Sotocinal S., Ciura S., et al. Oxytocin-induced analgesia and scratching are mediated by the vasopressin-1A receptor in the mouse // J Neurosci. 2010. Vol. 30, N 24. P. 8274–8284. doi: 10.1523/JNEUROSCI.1594-10.2010

[9]

Belokoskova SG, Tsikunov SG. Efficacy of selective agonist v2 vasopressin receptor, 1-dezamino-8-D-arginine-vasopressin, in the treatment of pain in patients with degenerative-dystrophic diseases of the spine. Reviews on Clinical Pharmacology and Drug Therapy. 2016;14(3):58–65. EDN: WWUKHN doi: 10.17816/RCF14358-65

[10]

Белокоскова C.Г., Цикунов С.Г. Эффективность селективного агониста V2 рецепторов вазопрессина, 1-дезамино-8-D-аргинин-вазопрессина, ДДАВП, в лечении болевого синдрома у больных с дегенеративно-дистрофическими заболеваниями позвоночника // Обзоры по клинической фармакологии и лекарственной терапии. 2016. Т. 14, № 3. С. 58–65. EDN: WWUKHN doi: 10.17816/RCF14358-65

[11]

Merighi A, Salio C, Ghirri A, et al. BDNF as a pain modulator. Prog Neurobiol. 2008;85:297–317. doi: 10.1016/j.pneurobio.2008.04.004

[12]

Merighi A., Salio C., Ghirri A., et al. BDNF as a pain modulator // Prog Neurobiol. 2008. Vol. 85. P. 297–317. doi: 10.1016/j.pneurobio.2008.04.004

[13]

Obata H. Analgesic mechanisms of antidepressants for neuropathic pain. Int J Mol Sci. 2017;18(11):2483. doi: 10.3390/ijms18112483

[14]

Obata H. Analgesic mechanisms of antidepressants for neuropathic pain // Int J Mol Sci. 2017. Vol. 18, N 11. P. 2483. doi: 10.3390/ijms18112483

[15]

Jacob SN, Nienborg H. Monoaminergic neuromodulation of sensory processing. Front Neural Circuits. 2018;12:51. doi: 10.3389/fncir.2018.00051

[16]

Jacob S.N., Nienborg H. Monoaminergic neuromodulation of sensory processing // Front Neural Circuits. 2018. Vol. 12. P. 51. doi: 10.3389/fncir.2018.00051

[17]

Belokoskova SG, Krytskaya DV, Beznin GV, et al. 1-Desamino-8-D-arginin-vasopressin, DDAVP, increases the content of brain-derived neurotrophic factor (BDNF) in blood plasma of rats in model of post-traumatic stress disorder. Medical Academic Journal. 2020;20(4):27–34. EDN: WPADRT doi: 10.17816/MAJ46393

[18]

Белокоскова С.Г., Крицкая Д.В., Безнин Г.В. и др. 1-Дезамино-8-D-аргинин-вазопрессин увеличивает содержание нейротрофического фактора мозга (BDNF) в плазме крови у крыс в модели посттравматического стрессового расстройства // Медицинский академический журнал. 2020. Т. 20, № 4. С. 27–34. EDN: WPADRT doi: 10.17816/MAJ46393

[19]

Zhou AW, Li WX, Guo J, et al. Facilitation of AVP(4-8) on gene expression of BDNF and NGF in rat brain. Peptides. 1997;18(8):1179–1187. doi: 10.1016/s0196-9781(97)00184-8

[20]

Zhou A.W., Li W.X., Guo J., et al. Facilitation of AVP(4-8) on gene expression of BDNF and NGF in rat brain // Peptides. 1997. Vol. 18, N 8. P. 1179–1187. doi: 10.1016/s0196-9781(97)00184-8

[21]

Barrot M. Tests and models of nociception and pain in rodents. Neuroscience. 2012;211:39–50. doi: 10.1016/j.neuroscience.2011.12.041

[22]

Barrot M. Tests and models of nociception and pain in rodents // Neuroscience. 2012. Vol. 211. P. 39–50. doi: 10.1016/j.neuroscience.2011.12.041

[23]

Bali A, Jaggi AS. Electric foot shock stress: a useful tool in neuropsychiatric studies. Rev Neurosci. 2015;26(6):655–677. doi: 10.1515/revneuro-2015-0015

[24]

Bali A., Jaggi A.S. Electric foot shock stress: a useful tool in neuropsychiatric studies // Rev Neurosci. 2015. Vol. 26, N 6. P. 655–677. doi: 10.1515/revneuro-2015-0015

[25]

Yaushkina NI. Stress-induced analgesia: the role of the HPA axis hormones. Integrative Physiology. 2020;1(1):23–31. doi: 10.33910/2687-1270-2020-1-1-23-31

[26]

Ярушкина Н.И. Стресс-вызванная анальгезия: роль гормонов гипоталамо-гипофизарно-адренокортикальной системы // Интегративная физиология. 2020. Т. 1, № 1. С. 23–31. doi: 10.33910/2687-1270-2020-1-1-23-31

[27]

Zubov AS, Ivleva IS, Pestereva NS, et al. Glibenclamide alters serotonin and dopamine levels in the rat striatum and hippocampus, reducing cognitive impairment. Psychopharmacology (Berl). 2022;239(9):2787–2798. doi: 10.1007/s00213-022-06159-9

[28]

Zubov A.S., Ivleva I.S., Pestereva N.S., et al. Glibenclamide alters serotonin and dopamine levels in the rat striatum and hippocampus, reducing cognitive impairment // Psychopharmacology (Berl). 2022. Vol. 239, N 9. P. 2787–2798. doi: 10.1007/s00213-022-06159-9

[29]

Nikitina AA, Belokoskova SG, Tsikunov SG. Neurochemical changes in the brain during vasopressin administration in different types of pain in rats. In: Proceedings of the XXV Scientific school-conference of young scientists on the Physiology of Higher Nervous Activity and Neurophysiology. Moscow, October 26–27, 2022. P. 215–220. (In Russ.) EDN: IVPUZU doi: 10.24412/CL-36993-2022-1-215-221

[30]

Никитина А.А., Белокоскова С.Г., Цикунов С.Г. Нейрохимические изменения в мозге при введении вазопрессина при различных видах боли у крыс. В кн.: Сборник тезисов XXV Научной школы-конференции молодых ученых по физиологии высшей нервной деятельности и нейрофизиологии, Москва, 26–27 октября 2022 г. С. 215–220. EDN: IVPUZU doi: 10.24412/CL-36993-2022-1-215-221

[31]

Kjaer A. Vasopressin as a neuroendocrine regulator of anterior pituitary hormone secretion. Acta Endocrinol (Copenh). 1993;129(6):489–496. doi: 10.1530/acta.0.1290489

[32]

Kjaer A. Vasopressin as a neuroendocrine regulator of anterior pituitary hormone secretion // Acta Endocrinol (Copenh). 1993. Vol. 129, N 6. P. 489–496. doi: 10.1530/acta.0.1290489

[33]

Williams TD, Lightman SL, Leadbeater MJ. Hormonal and cardiovascular responses to DDAVP in man. Clin Endocrinol (Oxf). 1986;24(1):89–96. doi: 10.1111/j.1365-2265.1986.tb03258.x

[34]

Williams T.D., Lightman S.L., Leadbeater M.J. Hormonal and cardiovascular responses to DDAVP in man // Clin Endocrinol (Oxf). 1986. Vol. 24, N 1. P. 89–96. doi: 10.1111/j.1365-2265.1986.tb03258.x

[35]

Foppiani L, Sessarego P, Valenti S, et al. Lack of effect of desmopressin on ACTH and cortisol responses to ovine corticotropin-releasing hormone in anorexia nervosa. Eur J Clin Invest. 1996;26(10):879–883. doi: 1365-2362.1996.tb02133

[36]

Foppiani L., Sessarego P., Valenti S., et al. Lack of effect of desmopressin on ACTH and cortisol responses to ovine corticotropin-releasing hormone in anorexia nervosa // Eur J Clin Invest. 1996. Vol. 26, N 10. P. 879–883. doi: 1365-2362.1996.tb02133

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

64

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/