Mast cells and neuroinflammation in pathogenesis of neurologic and psychiatric diseases

Igor P. Grigorev , Dmitrii E. Korzhevskii

Medical academic journal ›› 2021, Vol. 21 ›› Issue (2) : 7 -24.

PDF (252KB)
Medical academic journal ›› 2021, Vol. 21 ›› Issue (2) : 7 -24. DOI: 10.17816/MAJ63228
Analytical reviews
review-article

Mast cells and neuroinflammation in pathogenesis of neurologic and psychiatric diseases

Author information +
History +
PDF (252KB)

Abstract

The review summarizes current data on the role of neuroinflammation and mast cells in the pathogenesis of nervous and mental diseases, such as multiple sclerosis, Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, depression, autism, migraine, schizophrenia and some others. The contribution of neuroinflammation to the pathogenesis of many of these diseases has been demonstrated. The involvement of mast cells in the development of the neuroinflammatory process has with varying degrees of evidence been shown for multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer’s disease and migraine. There is still no convincing evidence that mast cells contribute to neuroinflammation in Parkinson’s disease, depression, schizophrenia and autism spectrum disorder, although it is possible that they play a role in the pathogenesis of these diseases. Data on the causal role of neuroinflammation and mast cells in the development of neuropsychiatric diseases may become the basis for the development of new approaches to their pharmacological treatment. The review provides data on the first clinical trials of anti-inflammatory and mast cell activity-modulating drugs for the treatment of migraine, Alzheimer’s disease, multiple sclerosis and amyotrophic lateral sclerosis.

Keywords

mast cells / neuroinflammation / multiple sclerosis / Alzheimer’s disease / Parkinson’s disease / amyotrophic lateral sclerosis / depression / autism / migraine / schizophrenia

Cite this article

Download citation ▾
Igor P. Grigorev, Dmitrii E. Korzhevskii. Mast cells and neuroinflammation in pathogenesis of neurologic and psychiatric diseases. Medical academic journal, 2021, 21(2): 7-24 DOI:10.17816/MAJ63228

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Komi EAD, Wohrl S, Bielory L. Mast cell biology at molecular level: a comprehensive review. Clin Rev Allergy Immunol. 2020;58(3):342–365. DOI: 10.1007/s12016-019-08769-2

[2]

Komi E.A.D., Wohrl S., Bielory L. Mast cell biology at molecular level: a comprehensive review // Clin. Rev. Allergy Immunol. 2020. Vol. 58, No. 3. P. 342–365. DOI: 10.1007/s12016-019-08769-2

[3]

Mukai K, Tsai M, Saito H, Galli SJ. Mast cells as sources of cytokines, chemokines, and growth factors. Immunol Rev. 2018;282(1):121–150. DOI: 10.1111/imr.12634

[4]

Mukai K., Tsai M., Saito H., Galli S.J. Mast cells as sources of cytokines, chemokines, and growth factors // Immunol. Rev. 2018. Vol. 282, No. 1. P. 121–150. DOI: 10.1111/imr.12634

[5]

Neumann J. Ueber das Vorkommen der sogenannten “Mastzellen” bei pathologischen Veranderungen des Gehirns. Archiv f. Pathol. Anat. 1890;122:378–380. DOI: 10.1007/bf01884453

[6]

Neumann J. Ueber das Vorkommen der sogenannten “Mastzellen” bei pathologischen Veranderungen des Gehirns // Archiv. f. Pathol. Anat. 1890. Vol. 122. P. 378–380. DOI: 10.1007/bf01884453

[7]

Grigorev IP, Korzhevskii DE. Mast cells in the vertebrate brain: localization and functions. Journal of Evolutionary Biochemistry and Physiology. 2021;57(1):16–33. DOI: 10.1134/S0022093021010026

[8]

Григорьев И.П., Коржевский Д.Э. Тучные клетки в головном мозге позвоночных – локализация и функции // Журнал эволюционной биохимии и физиологии. 2021. Т. 57, № 1. С. 17–31. DOI: 10.31857/S0044452921010046

[9]

Fiala M, Chattopadhay M, La Cava A, et al. IL-17A is increased in the serum and in spinal cord CD8 and mast cells of ALS patients. J Neuroinflammation. 2010;7:76. DOI: 10.1186/1742-2094-7-76

[10]

Fiala M., Chattopadhay M., La Cava A. et al. IL-17A is increased in the serum and in spinal cord CD8 and mast cells of ALS patients // J. Neuroinflammation. 2010. Vol. 7. P. 76. DOI: 10.1186/1742-2094-7-76

[11]

Kempuraj D, Thangavel R, Selvakumar GP, et al. Mast cell proteases activate astrocytes and glia-neurons and release interleukin-33 by activating p38 and ERK1/2 MAPKs and NF-B. Mol Neurobiol. 2019;56(3):1681–1693. DOI: 10.1007/s12035-018-1177-7

[12]

Kempuraj D., Thangavel R., Selvakumar G.P. et al. Mast cell proteases activate astrocytes and glia-neurons and release interleukin-33 by activating p38 and ERK1/2 MAPKs and NF-B // Mol. Neurobiol. 2019. Vol. 56, No. 3. P. 1681–1693. DOI: 10.1007/s12035-018-1177-7

[13]

Dong H, Zhang X, Wang Y, et al. Suppression of brain mast cells degranulation inhibits microglial activation and central nervous system inflammation. Mol Neurobiol. 2017;54(2):997–1007. DOI: 10.1007/s12035-016-9720-x

[14]

Dong H., Zhang X., Wang Y. et al. Suppression of brain mast cells degranulation inhibits microglial activation and central nervous system inflammation // Mol. Neurobiol. 2017. Vol. 54, No. 2. P. 997–1007. DOI: 10.1007/s12035-016-9720-x

[15]

Zhang X, Wang Y, Dong H, et al. Induction of microglial activation by mediators released from mast cells. Cell Physiol Biochem. 2016;38(4):1520–1531. DOI: 10.1159/000443093

[16]

Zhang X., Wang Y., Dong H. et al. Induction of microglial activation by mediators released from mast cells // Cell. Physiol. Biochem. 2016. Vol. 38, No. 4. P. 1520–1531. DOI: 10.1159/000443093

[17]

Kempuraj D, Mentor S, Thangavel R, et al. Mast cells in stress, pain, blood-brain barrier, neuroinflammation and Alzheimer’s disease. Front Cell Neurosci. 2019;13:54. DOI: 10.3389/fncel.2019.00054

[18]

Kempuraj D., Mentor S., Thangavel R. et al. Mast cells in stress, pain, blood-brain barrier, neuroinflammation and Alzheimer’s disease // Front. Cell. Neurosci. 2019. Vol. 13. P. 54. DOI: 10.3389/fncel.2019.00054

[19]

Ribatti D. The crucial role of mast cells in blood-brain barrier alterations. Exp Cell Res. 2015;338(1):119–125. DOI: 10.1016/j.yexcr.2015.05.013

[20]

Ribatti D. The crucial role of mast cells in blood-brain barrier alterations // Exp. Cell. Res. 2015. Vol. 338, No. 1. P. 119–125. DOI: 10.1016/j.yexcr.2015.05.013

[21]

Pinke KH, Zorzella-Pezavento SFG, Lara VS, Sartori A. Should mast cells be considered therapeutic targets in multiple sclerosis? Neural Regen Res. 2020;15(11):1995–2007. DOI: 10.4103/1673-5374.282238

[22]

Pinke K.H., Zorzella-Pezavento S.F.G., Lara V.S., Sartori A. Should mast cells be considered therapeutic targets in multiple sclerosis? // Neural. Regen. Res. 2020. Vol. 15, No. 11. P. 1995–2007. DOI: 10.4103/1673-5374.282238

[23]

Sandhu JK, Kulka M. Decoding mast cell-microglia communication in neurodegenerative diseases. Int J Mol Sci. 2021;22(3):1093. DOI: 10.3390/ijms22031093

[24]

Sandhu J.K., Kulka M. Decoding mast cell-microglia communication in neurodegenerative diseases // Int. J. Mol. Sci. 2021. Vol. 22, No. 3. P. 1093. DOI: 10.3390/ijms22031093

[25]

Ibrahim MZM, Reder AT, Lawand R, et al. The mast cells of the multiple sclerosis brain. J Neuroimmunol. 1996;70(2):131–138. DOI: 10.1016/S0165-5728(96)00102-6

[26]

Ibrahim M.Z.M., Reder A.T., Lawand R. et al. The mast cells of the multiple sclerosis brain // J. Neuroimmunol. 1996. Vol. 70, No. 2. P. 131–138. DOI: 10.1016/S0165-5728(96)00102-6

[27]

Krüger PG. Multiple sclerosis: a mast cell mediated psycho-somatic disease? World J Neurosci. 2018;8(4):444–453. DOI: 10.4236/wjns.2018.84035

[28]

Krüger P.G. Multiple sclerosis: a mast cell mediated psycho-somatic disease? // World J. Neurosci. 2018. Vol. 8, No. 4. P. 444–453. DOI: 10.4236/wjns.2018.84035

[29]

Conti P, Kempuraj D. Important role of mast cells in multiple sclerosis. Mult Scler Relat Disord. 2016;5:77–80. DOI: 10.1016/j.msard.2015.11.005

[30]

Conti P., Kempuraj D. Important role of mast cells in multiple sclerosis // Mult. Scler. Relat. Disord. 2016. Vol. 5. P. 77–80. DOI: 10.1016/j.msard.2015.11.005

[31]

Skaper SD, Facci L, Zusso M, Giusti P. An inflammation-centric view of neurological disease: beyond the neuron. Front Cell Neurosci. 2018;12:72. DOI: 10.3389/fncel.2018.00072

[32]

Skaper S.D., Facci L., Zusso M., Giusti P. An inflammation-centric view of neurological disease: beyond the neuron // Front. Cell. Neurosci. 2018. Vol. 12. P. 72. DOI: 10.3389/fncel.2018.00072

[33]

Kim DY, Jeoung D, Ro JY. Signaling pathways in the activation of mast cells cocultured with astrocytes and colocalization of both cells in experimental allergic encephalomyelitis. J Immunol. 2010;185(1):273–283. DOI: 10.4049/jimmunol.1000991

[34]

Kim D.Y., Jeoung D., Ro J.Y. Signaling pathways in the activation of mast cells cocultured with astrocytes and colocalization of both cells in experimental allergic encephalomyelitis // J. Immunol. 2010. Vol. 185, No. 1. P. 273–283. DOI: 10.4049/jimmunol.1000991

[35]

Letourneau R, Rozniecki JJ, Dimitriadou V, Theoharides TC. Ultrastructural evidence of brain mast cell activation without degranulation in monkey experimental allergic encephalomyelitis. J Neuroimmunol. 2003;145(1–2):18–26. DOI: 10.1016/j.jneuroim.2003.09.004

[36]

Letourneau R., Rozniecki J.J., Dimitriadou V., Theoharides T.C. Ultrastructural evidence of brain mast cell activation without degranulation in monkey experimental allergic encephalomyelitis // J. Neuroimmunol. 2003. Vol. 145, No. 1–2. P. 18–26. DOI: 10.1016/j.jneuroim.2003.09.004

[37]

Rodrigues F, Edjlali M, Georgin-Lavialle S, et al. Neuroinflammatory disorders and mastocytosis: A possible association? J Allergy Clin Immunol Pract. 2019;7(8):2878–2881.e1. DOI: 10.1016/j.jaip.2019.04.033

[38]

Rodrigues F., Edjlali M., Georgin-Lavialle S. et al. Neuroinflammatory disorders and mastocytosis: A possible association? // J. Allergy Clin. Immunol. Pract. 2019. Vol. 7, No. 8. P. 2878–2881.e1. DOI: 10.1016/j.jaip.2019.04.033

[39]

Smith JH, Butterfield JH, Pardanani A, et al. Neurologic symptoms and diagnosis in adults with mast cell disease. Clin Neurol Neurosurg. 2011;113(7):570–574. DOI: 10.1016/j.clineuro.2011.05.002

[40]

Smith J.H., Butterfield J.H., Pardanani A. et al. Neurologic symptoms and diagnosis in adults with mast cell disease // Clin. Neurol. Neurosurg. 2011. Vol. 113, No. 7. P. 570–574. DOI: 10.1016/j.clineuro.2011.05.002

[41]

Brown MA, Weinberg RB. Mast cells and innate lymphoid cells: underappreciated players in CNS autoimmune demyelinating disease. Front Immunol. 2018;9:514. DOI: 10.3389/fimmu.2018.00514

[42]

Brown M.A., Weinberg R.B. Mast cells and innate lymphoid cells: underappreciated players in CNS autoimmune demyelinating disease // Front. Immunol. 2018. Vol. 9. P. 514. DOI: 10.3389/fimmu.2018.00514

[43]

Li H, Nourbakhsh B, Safavi F, et al. Kit (W-sh) mice develop earlier and more severe experimental autoimmune encephalomyelitis due to absence of immune suppression. J Immunol. 2011;187(1):274–282. DOI: 10.4049/jimmunol.1003603

[44]

Li H., Nourbakhsh B., Safavi F. et al. Kit (W-sh) mice develop earlier and more severe experimental autoimmune encephalomyelitis due to absence of immune suppression // J. Immunol. 2011. Vol. 187, No. 1. P. 274–282. DOI: 10.4049/jimmunol.1003603

[45]

Medic N, Lorenzon P, Vita F, et al. Mast cell adhesion induces cytoskeletal modifications and programmed cell death in oligodendrocytes. J Neuroimmunol. 2009;218(1–2):57–66. DOI: 10.1016/j.jneuroim.2009.10.011

[46]

Medic N., Lorenzon P., Vita F. et al. Mast cell adhesion induces cytoskeletal modifications and programmed cell death in oligodendrocytes // J. Neuroimmunol. 2009. Vol. 218, No. 1–2. P. 57–66. DOI: 10.1016/j.jneuroim.2009.10.011

[47]

Russi AE, Walker-Caulfield ME, Brown MA. Mast cell inflammasome activity in the meninges regulates EAE disease severity. Clin Immunol. 2018;189:14–22. DOI: 10.1016/j.clim.2016.04.009

[48]

Russi A.E., Walker-Caulfield M.E., Brown M.A. Mast cell inflammasome activity in the meninges regulates EAE disease severity // Clin. Immunol. 2018. Vol. 189. P. 14–22. DOI: 10.1016/j.clim.2016.04.009

[49]

Batoulis H, Addicks K, Kuerten S. Emerging concepts in autoimmune encephalomyelitis beyond the CD4/T(H)1 paradigm. Ann Anat. 2010;192(4):179–193. DOI: 10.1016/j.aanat.2010.06.006

[50]

Batoulis H., Addicks K., Kuerten S. Emerging concepts in autoimmune encephalomyelitis beyond the CD4/T(H)1 paradigm // Ann. Anat. 2010. Vol. 192, No. 4. P. 179–193. DOI: 10.1016/j.aanat.2010.06.006

[51]

Holman DW, Klein RS, Ransohoff RM. The blood-brain barrier, chemokines and multiple sclerosis. Biochim Biophys Acta. 2011;1812(2):220–230. DOI: 10.1016/j.bbadis.2010.07.019

[52]

Holman D.W., Klein R.S., Ransohoff R.M. The blood-brain barrier, chemokines and multiple sclerosis // Biochim. Biophys. Acta. 2011. Vol. 1812, No. 2. P. 220–230. DOI: 10.1016/j.bbadis.2010.07.019

[53]

Russi AE, Walker-Caulfield ME, Guo Y, et al. Meningeal mast cell-T cell crosstalk regulates T cell encephalitogenicity. J Autoimmun. 2016;73:100–110. DOI: 10.1016/j.jaut.2016.06.015

[54]

Russi A.E., Walker-Caulfield M.E., Guo Y. et al. Meningeal mast cell-T cell crosstalk regulates T cell encephalitogenicity // J. Autoimmun. 2016. Vol. 73. P. 100–110. DOI: 10.1016/j.jaut.2016.06.015

[55]

Adzemovic MV, Zeitelhofer M, Eriksson U, et al. Imatinib ameliorates neuroinflammation in a rat model of multiple sclerosis by enhancing blood-brain barrier integrity and by modulating the peripheral immune response. PLoS One. 2013;8(2):e56586. DOI: 10.1371/journal.pone.0056586

[56]

Adzemovic M.V., Zeitelhofer M., Eriksson U. et al. Imatinib ameliorates neuroinflammation in a rat model of multiple sclerosis by enhancing blood-brain barrier integrity and by modulating the peripheral immune response // PLoS One. 2013. Vol. 8, No. 2. P. e56586. DOI: 10.1371/journal.pone.0056586

[57]

Folch J, Petrov D, Ettcheto M, et al. Masitinib for the treatment of mild to moderate Alzheimer’s disease. Expert Rev Neurother. 2015;15(6):587–596. DOI: 10.1586/14737175.2015.1045419

[58]

Folch J., Petrov D., Ettcheto M. et al. Masitinib for the treatment of mild to moderate Alzheimer’s disease // Expert. Rev. Neurother. 2015. Vol. 15, No. 6. P. 587–596. DOI: 10.1586/14737175.2015.1045419

[59]

Giovannoni G, Comi G, Cook S, et al. A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N Engl J Med. 2010;362(5):416–426. DOI: 10.1056/NEJMoa0902533

[60]

Giovannoni G., Comi G., Cook S. et al. A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis // N. Engl. J. Med. 2010. Vol. 362, No. 5. P. 416–426. DOI: 10.1056/NEJMoa0902533

[61]

Menzfeld C, John M, van Rossum D, et al. Tyrphostin AG126 exerts neuroprotection in CNS inflammation by a dual mechanism. Glia. 2015;63(6):1083–1099. DOI: 10.1002/glia.22803

[62]

Menzfeld C., John M., van Rossum D. et al. Tyrphostin AG126 exerts neuroprotection in CNS inflammation by a dual mechanism // Glia. 2015. Vol. 63, No. 6. P. 1083–1099. DOI: 10.1002/glia.22803

[63]

Montalban X, Arnold DL, Weber MS, et al. Placebo-controlled trial of an oral BTK inhibitor in multiple sclerosis. N Engl J Med. 2019;380(25):2406–2417. DOI: 10.1056/NEJMoa1901981

[64]

Montalban X., Arnold D.L., Weber M.S. et al. Placebo-controlled trial of an oral BTK inhibitor in multiple sclerosis // N. Engl. J. Med. 2019. Vol. 380, No. 25. P. 2406–2417. DOI: 10.1056/NEJMoa1901981

[65]

Pinke KH, Zorzella-Pezavento SFG, de Campos Fraga-Silva TF, et al. Calming down mast cells with ketotifen: a potential strategy for multiple sclerosis therapy? Neurotherapeutics. 2020;17(1):218–234. DOI: 10.1007/s13311-019-00775-8

[66]

Pinke K.H., Zorzella-Pezavento S.F.G., de Campos Fraga-Silva T.F. et al. Calming down mast cells with ketotifen: a potential strategy for multiple sclerosis therapy? // Neurotherapeutics. 2020. Vol. 17, No. 1. P. 218–234. DOI: 10.1007/s13311-019-00775-8

[67]

Yong HY, McKay KA, Daley CGJ, Tremlett H. Drug exposure and the risk of multiple sclerosis: A systematic review. Pharmacoepidemiol Drug Saf. 2018;27(7):133–139. DOI: 10.1002/pds.4357

[68]

Yong H.Y., McKay K.A., Daley C.G.J., Tremlett H. Drug exposure and the risk of multiple sclerosis: A systematic review // Pharmacoepidemiol. Drug Saf. 2018. Vol. 27, No. 7. P. 133–139. DOI: 10.1002/pds.4357

[69]

Maslinska D, Laure-Kamionowska M, Maslinski KT, et al. Distribution of tryptase-containing mast cells and metallothionein reactive astrocytes in human brains with amyloid deposits. Inflamm. Res. 2007;56 Suppl 1:S17–S18. DOI: 10.1007/s00011-006-0508-8

[70]

Maslinska D., Laure-Kamionowska M., Maslinski K.T. et al. Distribution of tryptase-containing mast cells and metallothionein reactive astrocytes in human brains with amyloid deposits // Inflamm. Res. 2007. Vol. 56 Suppl 1. P. S17–S18. DOI: 10.1007/s00011-006-0508-8

[71]

Harcha PA, Vargas A, Yi C, et al. Hemichannels are required for amyloid -peptide-induced degranulation and are activated in brain mast cells of APPswe/PS1dE9 mice. J Neurosci. 2015;35(25):9526–9538. DOI: 10.1523/JNEUROSCI.3686-14.2015

[72]

Harcha P.A., Vargas A., Yi C. et al. Hemichannels are required for amyloid -peptide-induced degranulation and are activated in brain mast cells of APPswe/PS1dE9 mice // J. Neurosci. 2015. Vol. 35, No. 25. P. 9526–9538. DOI: 10.1523/JNEUROSCI.3686-14.2015

[73]

Swardfager W, Lanctot K, Rothenburg L, et al. A meta-analysis of cytokines in Alzheimer’s disease. Biol Psychiatry. 2010;68(10):930–941. DOI: 10.1016/j.biopsych.2010.06.012

[74]

Swardfager W., Lanctot K., Rothenburg L. et al. A meta-analysis of cytokines in Alzheimer’s disease // Biol. Psychiatry. 2010. Vol. 68, No. 10. P. 930–941. DOI: 10.1016/j.biopsych.2010.06.012

[75]

Malashenkova IK, Krynskiy SA, Khailov NA, et al. The role of cytokines in memory consolidation. Biol Bull Rev. 2016;6(2):126–140. DOI: 10.1134/S2079086416020055

[76]

Малашенкова И.К., Крынский С.А., Хайлов Н.А. и др. Роль цитокинов в консолидации памяти // Успехи современной биологии. 2015. № 5. С. 419–436.

[77]

Zhang X, Yao H, Qian Q, et al. Cerebral mast cells participate in postoperative cognitive dysfunction by promoting astrocyte activation. Cell Physiol Biochem. 2016;40(1–2): 104–116. DOI: 10.1159/000452528

[78]

Zhang X., Yao H., Qian Q. et al. Cerebral mast cells participate in postoperative cognitive dysfunction by promoting astrocyte activation // Cell. Physiol. Biochem. 2016. Vol. 40, No. 1–2. P. 104–116. DOI: 10.1159/000452528

[79]

Gupta PP, Pandey RD, Jha D, et al. Role of traditional nonsteroidal anti-inflammatory drugs in Alzheimer’s disease: a meta-analysis of randomized clinical trials. Am J Alzheimers Dis Other Demen. 2015;30(2):178–182. DOI: 10.1177/1533317514542644

[80]

Gupta P.P., Pandey R.D., Jha D. et al. Role of traditional nonsteroidal anti-inflammatory drugs in Alzheimer’s disease: a meta-analysis of randomized clinical trials // Am. J. Alzheimers Dis. Other. Demen. 2015. Vol. 30, No. 2. P. 178–182. DOI: 10.1177/1533317514542644

[81]

McGeer PL, Guo JP, Lee M, et al. Alzheimer’s disease can be spared by nonsteroidal anti-inflammatory drugs. J Alzheimers Dis. 2018;62(3):1219–1222. DOI: 10.3233/JAD-170706

[82]

McGeer P.L., Guo J.P., Lee M. et al. Alzheimer’s disease can be spared by nonsteroidal anti-inflammatory drugs // J. Alzheimers Dis. 2018. Vol. 62, No. 3. P. 1219–1222. DOI: 10.3233/JAD-170706

[83]

Safety and efficacy study of ALZT-OP1 in subjects with evidence of early Alzheimer’s disease (COGNITE). Available from: https://clinicaltrials.gov/ct2/show/NCT02547818. Accessed: June 21, 2021.

[84]

Safety and efficacy study of ALZT-OP1 in subjects with evidence of early Alzheimer’s disease (COGNITE). Режим доступа: https://clinicaltrials.gov/ct2/show/NCT02547818. Дата обращения: 21.06. 2021.

[85]

Graves MC, Fiala M, Dinglasan LA, et al. Inflammation in amyotrophic lateral sclerosis spinal cord and brain is mediated by activated macrophages, mast cells and T cells. Amyotroph Lateral Scler Other Motor Neuron Disord. 2004;5(4):213–219. DOI: 10.1080/14660820410020286

[86]

Graves M.C., Fiala M., Dinglasan L.A. et al. Inflammation in amyotrophic lateral sclerosis spinal cord and brain is mediated by activated macrophages, mast cells and T cells // Amyotroph. Lateral Scler. Other Motor Neuron Disord. 2004. Vol. 5, No. 4. P. 213–219. DOI: 10.1080/14660820410020286

[87]

Jones MK, Nair A, Gupta M. Mast cells in neurodegenerative disease. Front Cell Neurosci. 2019;13:171. DOI: 10.3389/fncel.2019.00171

[88]

Jones M.K., Nair A., Gupta M. Mast cells in neurodegenerative disease // Front. Cell. Neurosci. 2019. Vol. 13. P. 171. DOI: 10.3389/fncel.2019.00171

[89]

Rodrigues MC, Hernandez-Ontiveros DG, Louis MK, et al. Neurovascular aspects of amyotrophic lateral sclerosis. Int Rev Neurobiol. 2012;102:91–106. DOI: 10.1016/B978-0-12-386986-9.00004-1

[90]

Rodrigues M.C., Hernandez-Ontiveros D.G., Louis M.K. et al. Neurovascular aspects of amyotrophic lateral sclerosis // Int. Rev. Neurobiol. 2012. Vol. 102. P. 91–106. DOI: 10.1016/B978-0-12-386986-9.00004-1

[91]

Kempuraj D, Thangavel R, Selvakumar GP, et al. Brain and peripheral atypical inflammatory mediators potentiate neuroinflammation and neurodegeneration. Front Cell Neurosci. 2017;11:216. DOI: 10.3389/fncel.2017.00216

[92]

Kempuraj D., Thangavel R., Selvakumar G.P. et al. Brain and peripheral atypical inflammatory mediators potentiate neuroinflammation and neurodegeneration // Front. Cell. Neurosci. 2017. Vol. 11. P. 216. DOI: 10.3389/fncel.2017.00216

[93]

Trias E, King PH, Si Y, et al. Mast cells and neutrophils mediate peripheral motor pathway degeneration in ALS. JCI Insight. 2018;3(19):e123249. DOI: 10.1172/jci.insight.123249

[94]

Trias E., King P.H., Si Y. et al. Mast cells and neutrophils mediate peripheral motor pathway degeneration in ALS // JCI Insight. 2018. Vol. 3, No. 19. P. e123249. DOI: 10.1172/jci.insight.123249

[95]

Kuhle J, Lindberg RL, Regeniter A, et al. Increased levels of inflammatory chemokines in amyotrophic lateral sclerosis. Eur J Neurol. 2009;16(6):771–774. DOI: 10.1111/j.1468-1331.2009.02560.x

[96]

Kuhle J., Lindberg R.L., Regeniter A. et al. Increased levels of inflammatory chemokines in amyotrophic lateral sclerosis // Eur. J. Neurol. 2009. Vol. 16, No. 6. P. 771–774. DOI: 10.1111/j.1468-1331.2009.02560.x

[97]

Mitchell RM, Freeman WM, Randazzo WT, et al. A CSF biomarker panel for identification of patients with amyotrophic lateral sclerosis. Neurology. 2009;72(1):14–19. DOI: 10.1212/01.wnl.0000333251.36681.a5

[98]

Mitchell R.M., Freeman W.M., Randazzo W.T. et al. A CSF biomarker panel for identification of patients with amyotrophic lateral sclerosis // Neurology. 2009. Vol. 72, No. 1. P. 14–19. DOI: 10.1212/01.wnl.0000333251.36681.a5

[99]

Rentzos M, Rombos A, Nikolaou C, et al. Interleukin-15 and interleukin-12 are elevated in serum and cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Eur Neurol. 2010;63(5):285–290. DOI: 10.1159/000287582

[100]

Rentzos M., Rombos A., Nikolaou C. et al. Interleukin-15 and interleukin-12 are elevated in serum and cerebrospinal fluid of patients with amyotrophic lateral sclerosis // Eur. Neurol. 2010. Vol. 63, No. 5. P. 285–290. DOI: 10.1159/000287582

[101]

Granucci EJ, Griciuc A, Mueller KA, et al. Cromolyn sodium delays disease onset and is neuroprotective in the SOD1(G93A) Mouse Model of amyotrophic lateral sclerosis. Sci Rep. 2019;9(1):17728. DOI: 10.1038/s41598-019-53982-w

[102]

Granucci E.J., Griciuc A., Mueller K.A. et al. Cromolyn sodium delays disease onset and is neuroprotective in the SOD1(G93A) Mouse Model of amyotrophic lateral sclerosis // Sci. Rep. 2019. Vol. 9, No. 1. P. 17728. DOI: 10.1038/s41598-019-53982-w

[103]

Theoharides TC, Tsilioni I. Amyotrophic lateral sclerosis, neuroinflammation, and cromolyn. Clin Ther. 2020;42(3):546–549. DOI: 10.1016/j.clinthera.2020.01.010

[104]

Theoharides T.C., Tsilioni I. Amyotrophic lateral sclerosis, neuroinflammation, and cromolyn // Clin. Ther. 2020. Vol. 42, No. 3. P. 546–549. DOI: 10.1016/j.clinthera.2020.01.010

[105]

Mora JS, Genge A, Chio A, et al. Masitinib as an add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: a randomized clinical trial. Amyotroph Lateral Scler Frontotemporal Degener. 2020;21(1–2):5–14. DOI: 10.1080/21678421.2019.1632346

[106]

Mora J.S., Genge A., Chio A. et al. Masitinib as an add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: a randomized clinical trial // Amyotroph. Lateral Scler. Frontotemporal Degener. 2020. Vol. 21, No. 1–2. P. 5–14. DOI: 10.1080/21678421.2019.1632346

[107]

Guzman-Martinez L, Maccioni RB, Andrade V, et al. Neuroinflammation as a common feature of neurodegenerative disorders. Front Pharmacol. 2019;10:1008. DOI: 10.3389/fphar.2019.01008

[108]

Guzman-Martinez L., Maccioni R.B., Andrade V. et al. Neuroinflammation as a common feature of neurodegenerative disorders // Front. Pharmacol. 2019. Vol. 10. P. 1008. DOI: 10.3389/fphar.2019.01008

[109]

Schwab AD, Thurston MJ, Machhi J, et al. Immunotherapy for Parkinson’s disease. Neurobiol Dis. 2020;137:104760. DOI: 10.1016/j.nbd.2020.104760

[110]

Schwab A.D., Thurston M.J., Machhi J. et al. Immunotherapy for Parkinson’s disease // Neurobiol. Dis. 2020. Vol. 137. P. 104760. DOI: 10.1016/j.nbd.2020.104760

[111]

Hong GU, Cho JW, Kim SY, et al. Inflammatory mediators resulting from transglutaminase 2 expressed in mast cells contribute to the development of Parkinson’s disease in a mouse model. Toxicol Appl Pharmacol. 2018;358:10–22. DOI: 10.1016/j.taap.2018.09.003

[112]

Hong G.U., Cho J.W., Kim S.Y. et al. Inflammatory mediators resulting from transglutaminase 2 expressed in mast cells contribute to the development of Parkinson’s disease in a mouse model // Toxicol. Appl. Pharmacol. 2018. Vol. 358. P. 10–22. DOI: 10.1016/j.taap.2018.09.003

[113]

Kempuraj D, Thangavel R, Fattal R, et al. Mast cells release chemokine CCL2 in response to parkinsonian toxin 1-methyl-4-phenyl-pyridinium (MPP(+)). Neurochem Res. 2016;41(5):1042–1049. DOI: 10.1007/s11064-015-1790-z

[114]

Kempuraj D., Thangavel R., Fattal R. et al. Mast cells release chemokine CCL2 in response to parkinsonian toxin 1-methyl-4-phenyl-pyridinium (MPP(+)) // Neurochem. Res. 2016. Vol. 41, No. 5. P. 1042–1049. DOI: 10.1007/s11064-015-1790-z

[115]

Liu JQ, Chu SF, Zhou X, et al. Role of chemokines in Parkinson’s disease. Brain Res Bull. 2019;152:11–18. DOI: 10.1016/j.brainresbull.2019.05.020

[116]

Liu J.Q., Chu S.F., Zhou X. et al. Role of chemokines in Parkinson’s disease // Brain Res. Bull. 2019. Vol. 152. P. 11–18. DOI: 10.1016/j.brainresbull.2019.05.020

[117]

Selvakumar GP, Ahmed ME, Thangavel R, et al. A role for glia maturation factor dependent activation of mast cells and microglia in MPTP induced dopamine loss and behavioural deficits in mice. Brain Behav Immun. 2020;87:429–443. DOI: 10.1016/j.bbi.2020.01.013

[118]

Selvakumar G.P., Ahmed M.E., Thangavel R. et al. A role for glia maturation factor dependent activation of mast cells and microglia in MPTP induced dopamine loss and behavioural deficits in mice // Brain Behav. Immun. 2020. Vol. 87. P. 429–443. DOI: 10.1016/j.bbi.2020.01.013

[119]

Jones MK, Nair A, Gupta M. Mast cells in neurodegenerative disease. Front Cell Neurosci. 2019;13:171. DOI: 10.3389/fncel.2019.00171

[120]

Jones M.K., Nair A., Gupta M. Mast cells in neurodegenerative disease // Front. Cell. Neurosci. 2019. Vol. 13. P. 171. DOI: 10.3389/fncel.2019.00171

[121]

Moller T. Neuroinflammation in Huntington’s disease. J Neural Transm (Vienna). 2010;117(8):1001–1008. DOI: 10.1007/s00702-010-0430-7

[122]

Moller T. Neuroinflammation in Huntington’s disease // J. Neural. Transm. (Vienna). 2010. Vol. 117, No. 8. P. 1001–1008. DOI: 10.1007/s00702-010-0430-7

[123]

Maes M. A review on the acute phase response in major depression. Rev Neurosci. 1993;4(4):407–416. DOI: 10.1515/REVNEURO.1993.4.4.407

[124]

Maes M. A review on the acute phase response in major depression // Rev. Neurosci. 1993. Vol. 4, No. 4. P. 407–416. DOI: 10.1515/REVNEURO.1993.4.4.407

[125]

Enache D, Pariante CM, Mondelli V. Markers of central inflammation in major depressive disorder: A systematic review and meta-analysis of studies examining cerebrospinal fluid, positron emission tomography and post-mortem brain tissue. Brain Behav Immun. 2019;81:24–40. DOI: 10.1016/j.bbi.2019.06.015

[126]

Enache D., Pariante C.M., Mondelli V. Markers of central inflammation in major depressive disorder: A systematic review and meta-analysis of studies examining cerebrospinal fluid, positron emission tomography and post-mortem brain tissue // Brain Behav. Immun. 2019. Vol. 81. P. 24–40. DOI: 10.1016/j.bbi.2019.06.015

[127]

Eswarappa M, Neylan TC, Whooley MA, et al. Inflammation as a predictor of disease course in posttraumatic stress disorder and depression: A prospective analysis from the Mind Your Heart Study. Brain Behav Immun. 2019;75:220–227. DOI: 10.1016/j.bbi.2018.10.012

[128]

Eswarappa M., Neylan T.C., Whooley M.A. et al. Inflammation as a predictor of disease course in posttraumatic stress disorder and depression: A prospective analysis from the Mind Your Heart Study // Brain Behav. Immun. 2019. Vol. 75. P. 220–227. DOI: 10.1016/j.bbi.2018.10.012

[129]

Goldsmith DR, Rapaport MH, Miller BJ. A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatry. 2016;21(12):1696–1709. DOI: 10.1038/mp.2016.3

[130]

Goldsmith D.R., Rapaport M.H., Miller B.J. A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression // Mol. Psychiatry. 2016. Vol. 21, No. 12. P. 1696–1709. DOI: 10.1038/mp.2016.3

[131]

Hiles SA, Baker AL, de Malmanche T, Attia J. Interleukin-6, C-reactive protein and interleukin-10 after antidepressant treatment in people with depression: a meta-analysis. Psychol Med. 2012;42(10):2015–2026. DOI: 10.1017/S0033291712000128

[132]

Hiles S.A., Baker A.L., de Malmanche T., Attia J. Interleukin-6, C-reactive protein and interleukin-10 after antidepressant treatment in people with depression: a meta-analysis // Psychol. Med. 2012. Vol. 42, No. 10. P. 2015–2026. DOI: 10.1017/S0033291712000128

[133]

Milenkovic VM, Stanton EH, Nothdurfter C, et al. The role of chemokines in the pathophysiology of major depressive disorder. Int J Mol Sci. 2019;20(9):2283. DOI: 10.3390/ijms20092283

[134]

Milenkovic V.M., Stanton E.H., Nothdurfter C. et al. The role of chemokines in the pathophysiology of major depressive disorder // Int. J. Mol. Sci. 2019. Vol. 20, No. 9. P. 2283. DOI: 10.3390/ijms20092283

[135]

Wang AK, Miller BJ. Meta-analysis of cerebrospinal fluid cytokine and tryptophan catabolite alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder, and depression. Schizophr Bull. 2018;44(1):75–83. DOI: 10.1093/schbul/sbx035

[136]

Wang A.K., Miller B.J. Meta-analysis of cerebrospinal fluid cytokine and tryptophan catabolite alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder, and depression // Schizophr. Bull. 2018. Vol. 44, No. 1. P. 75–83. DOI: 10.1093/schbul/sbx035

[137]

Müller N. Immunology of major depression. Neuroimmunomodulation. 2014;21(2–3):123–130. DOI: 10.1159/000356540

[138]

Müller N. Immunology of major depression // Neuroimmunomodulation. 2014. Vol. 21, No. 2–3. P. 123–130. DOI: 10.1159/000356540

[139]

Dean B, Tawadros N, Scarr E, Gibbons AS. Regionally-specific changes in levels of tumour necrosis factor in the dorsolateral prefrontal cortex obtained postmortem from subjects with major depressive disorder. J Affect Disord. 2010;120(1–3):245–248. DOI: 10.1016/j.jad.2009.04.027

[140]

Dean B., Tawadros N., Scarr E., Gibbons A.S. Regionally-specific changes in levels of tumour necrosis factor in the dorsolateral prefrontal cortex obtained postmortem from subjects with major depressive disorder // J. Affect. Disord. 2010. Vol. 120, No. 1–3. P. 245–248. DOI: 10.1016/j.jad.2009.04.027

[141]

Kessing LV, Rytgaard HC, Gerds TA, et al. New drug candidates for depression – a nationwide population-based study. Acta Psychiatr Scand. 2019;139(1):68–77. DOI: 10.1111/acps.12957

[142]

Kessing L.V., Rytgaard H.C., Gerds T.A. et al. New drug candidates for depression - a nationwide population-based study // Acta. Psychiatr. Scand. 2019. Vol. 139, No. 1. P. 68–77. DOI: 10.1111/acps.12957

[143]

Fourrier C, Sampson E, Mills NT, Baune BT. Anti-inflammatory treatment of depression: study protocol for a randomised controlled trial of vortioxetine augmented with celecoxib or placebo. Trials. 2018;19(1):447. DOI: 10.1186/s13063-018-2829-7

[144]

Fourrier C., Sampson E., Mills N.T., Baune B.T. Anti-inflammatory treatment of depression: study protocol for a randomised controlled trial of vortioxetine augmented with celecoxib or placebo // Trials. 2018. Vol. 19, No. 1. P. 447. DOI: 10.1186/s13063-018-2829-7

[145]

Quinn AL, Dean OM, Davey CG, et al. Youth Depression Alleviation-Augmentation with an anti-inflammatory agent (YoDA-A): protocol and rationale for a placebo-controlled randomized trial of rosuvastatin and aspirin. Early Interv Psychiatry. 2018;12(1):45–54. DOI: 10.1111/eip.12280

[146]

Quinn A.L., Dean O.M., Davey C.G. et al. Youth Depression Alleviation-Augmentation with an anti-inflammatory agent (YoDA-A): protocol and rationale for a placebo-controlled randomized trial of rosuvastatin and aspirin // Early Interv. Psychiatry. 2018. Vol. 12, No. 1. P. 45–54. DOI: 10.1111/eip.12280

[147]

Suarez AL, Feramisco JD, Koo J, Steinhoff M. Psychoneuroimmunology of psychological stress and atopic dermatitis: pathophysiologic and therapeutic updates. Acta Derm Venereol. 2012;92(1):7–15. DOI: 10.2340/00015555-1188

[148]

Suarez A.L., Feramisco J.D., Koo J., Steinhoff M. Psychoneuroimmunology of psychological stress and atopic dermatitis: pathophysiologic and therapeutic updates // Acta. Derm. Venereol. 2012. Vol. 92, No. 1. P. 7–15. DOI: 10.2340/00015555-1188

[149]

Häuser W, Janke KH, Klump B, Hinz A. Anxiety and depression in patients with inflammatory bowel disease: comparisons with chronic liver disease patients and the general population. Inflamm Bowel Dis. 2011;17(2):621–632. DOI: 10.1002/ibd.21346

[150]

Häuser W., Janke K.H., Klump B., Hinz A. Anxiety and depression in patients with inflammatory bowel disease: comparisons with chronic liver disease patients and the general population // Inflamm. Bowel. Dis. 2011. Vol. 17, No. 2. P. 621–632. DOI: 10.1002/ibd.21346

[151]

Maes M, Kubera M, Obuchowiczwa E, et al. Depression’s multiple comorbidities explained by (neuro)inflammatory and oxidative and nitrosative stress pathways. Neuro Endocrinol Lett. 2011;32(1):7–24.

[152]

Maes M., Kubera M., Obuchowiczwa E. et al. Depression’s multiple comorbidities explained by (neuro)inflammatory and oxidative and nitrosative stress pathways // Neuro. Endocrinol. Lett. 2011. Vol. 32, No. 1. P. 7–24.

[153]

DellaGioia N, Hannestad J. A critical review of human endotoxin administration as an experimental paradigm of depression. Neurosci Biobehav Rev. 2010;34(1):130–143. DOI: 10.1016/j.neubiorev.2009.07.014

[154]

DellaGioia N., Hannestad J. A critical review of human endotoxin administration as an experimental paradigm of depression // Neurosci. Biobehav. Rev. 2010. Vol. 34, No. 1. P. 130–143. DOI: 10.1016/j.neubiorev.2009.07.014

[155]

Borsini A, Pariante CM, Zunszain PA, et al. The role of circulatory systemic environment in predicting interferon-alpha-induced depression: The neurogenic process as a potential mechanism. Brain Behav Immun. 2019;81:220–227. DOI: 10.1016/j.bbi.2019.06.018

[156]

Borsini A., Pariante C.M., Zunszain P.A. et al. The role of circulatory systemic environment in predicting interferon-alpha-induced depression: The neurogenic process as a potential mechanism // Brain Behav. Immun. 2019. Vol. 81. P. 220–227. DOI: 10.1016/j.bbi.2019.06.018

[157]

Capuron L, Ravaud A, Miller AH, Dantzer R. Baseline mood and psychosocial characteristics of patients developing depressive symptoms during interleukin-2 and/or interferon-alpha cancer therapy. Brain Behav Immun. 2004;18(3):205–213. DOI: 10.1016/j.bbi.2003.11.004

[158]

Capuron L., Ravaud A., Miller A.H., Dantzer R. Baseline mood and psychosocial characteristics of patients developing depressive symptoms during interleukin-2 and/or interferon-alpha cancer therapy // Brain Behav. Immun. 2004. Vol. 18, No. 3. P. 205–213. DOI: 10.1016/j.bbi.2003.11.004

[159]

Capuron L, Hauser P, Hinze-Selch D, et al. Treatment of cytokine-induced depression. Brain Behav Immun. 2002;16(5):575–580. DOI: 10.1016/s0889-1591(02)00007-7

[160]

Capuron L., Hauser P., Hinze-Selch D. et al. Treatment of cytokine-induced depression // Brain Behav. Immun. 2002. Vol. 16, No. 5. P. 575–580. DOI: 10.1016/s0889-1591(02)00007-7

[161]

Eller T, Vasar V, Shlik J, Maron E. Pro-inflammatory cytokines and treatment response to escitalopram in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(2):445–450. DOI: 10.1016/j.pnpbp.2007.09.015

[162]

Eller T., Vasar V., Shlik J., Maron E. Pro-inflammatory cytokines and treatment response to escitalopram in major depressive disorder // Prog. Neuropsychopharmacol. Biol. Psychiatry. 2008. Vol. 32, No. 2. P. 445–450. DOI: 10.1016/j.pnpbp.2007.09.015

[163]

Boddaert N, Salvador A, Chandesris MO, et al. Neuroimaging evidence of brain abnormalities in mastocytosis. Transl Psychiatry. 2017;7(8):e1197. DOI: 10.1038/tp.2017.137

[164]

Boddaert N., Salvador A., Chandesris M.O. et al. Neuroimaging evidence of brain abnormalities in mastocytosis // Transl. Psychiatry. 2017. Vol. 7, No. 8. P. e1197. DOI: 10.1038/tp.2017.137

[165]

Georgin-Lavialle S, Gaillard R, Moura D, Hermine O. Mastocytosis in adulthood and neuropsychiatric disorders. Transl Res. 2016;174:77–85.e1. DOI: 10.1016/j.trsl.2016.03.013

[166]

Georgin-Lavialle S., Gaillard R., Moura D., Hermine O. Mastocytosis in adulthood and neuropsychiatric disorders // Transl. Res. 2016. Vol. 174. P. 77–85.e1. DOI: 10.1016/j.trsl.2016.03.013

[167]

Kano M, Fukudo S, Tashiro A, et al. Decreased histamine H1 receptor binding in the brain of depressed patients. Eur J Neurosci. 2004;20(3):803–810. DOI: 10.1111/j.1460-9568.2004.03540.x

[168]

Kano M., Fukudo S., Tashiro A. et al. Decreased histamine H1 receptor binding in the brain of depressed patients // Eur. J. Neurosci. 2004. Vol. 20, No. 3. P. 803–810. DOI: 10.1111/j.1460-9568.2004.03540.x

[169]

Lamberti C, Ipponi A, Bartolini A, et al. Antidepressant-like effects of endogenous histamine and of two histamine H1 receptor agonists in the mouse forced swim test. Br J Pharmacol. 1998;123(7):1331–1336. DOI: 10.1038/sj.bjp.0701740

[170]

Lamberti C., Ipponi A., Bartolini A. et al. Antidepressant-like effects of endogenous histamine and of two histamine H1 receptor agonists in the mouse forced swim test // Br. J. Pharmacol. 1998. Vol. 123, No. 7. P. 1331–1336. DOI: 10.1038/sj.bjp.0701740

[171]

Ushakov VL, Malashenkova IK, Krynskiy SA, et al. Basic cognitive architecture, systemic inflammation, and immune dysfunction in schizophrenia. Modern Technologies in Medicine. 2019;11(3):32–40. DOI: 10.17691/stm2019.11.3.04

[172]

Ушаков В.Л., Малашенкова И.К., Крынский С.А. и др. Базовая когнитивная архитектура, системное воспаление и иммунная дисфункция при шизофрении // Современные технологии в медицине. 2019. Т. 11, № 3. С. 32–40. DOI: 10.17691/stm2019.11.3.04

[173]

Pandurangi AK, Buckley PF. Inflammation, antipsychotic drugs, and evidence for effectiveness of anti-inflammatory agents in schizophrenia. Curr Top Behav Neurosci. 2020;44:227–244. DOI: 10.1007/7854_2019_91

[174]

Pandurangi A.K., Buckley P.F. Inflammation, antipsychotic drugs, and evidence for effectiveness of anti-inflammatory agents in schizophrenia // Curr. Top. Behav. Neurosci. 2020. Vol. 44. P. 227–244. DOI: 10.1007/7854_2019_91

[175]

Angelidou A, Asadi S, Alysandratos KD, et al. Perinatal stress, brain inflammation and risk of autism-review and proposal. BMC Pediatr. 2012;12:89. DOI: 10.1186/1471-2431-12-89

[176]

Angelidou A., Asadi S., Alysandratos K.D. et al. Perinatal stress, brain inflammation and risk of autism-review and proposal // BMC Pediatr. 2012. Vol. 12. P. 89. DOI: 10.1186/1471-2431-12-89

[177]

Abdallah MW, Larsen N, Grove J, et al. Amniotic fluid inflammatory cytokines: potential markers of immunologic dysfunction in autism spectrum disorders. World J Biol Psychiatry. 2013;14(7):528–538. DOI: 10.3109/15622975.2011.639803

[178]

Abdallah M.W., Larsen N., Grove J. et al. Amniotic fluid inflammatory cytokines: potential markers of immunologic dysfunction in autism spectrum disorders // World J. Biol. Psychiatry. 2013. Vol. 14, No. 7. P. 528–538. DOI: 10.3109/15622975.2011.639803

[179]

Goines PE, Croen LA, Braunschweig D, et al. Increased midgestational IFN-, IL-4 and IL-5 in women bearing a child with autism: A case-control study. Mol Autism. 2011;2:13. DOI: 10.1186/2040-2392-2-13

[180]

Goines P.E., Croen L.A., Braunschweig D. et al. Increased midgestational IFN-, IL-4 and IL-5 in women bearing a child with autism: A case-control study // Mol. Autism. 2011. Vol. 2. P. 13. DOI: 10.1186/2040-2392-2-13

[181]

Ferretti CJ, Hollander E. The role of inflammation in autism spectrum disorder. In: Müller N, Myint AM, Schwarz M (eds). Immunology and Psychiatry. Current topics in neurotoxicity. Cham: Springer; 2015;8:275–312. DOI: 10.1007/978-3-319-13602-8_14

[182]

Ferretti C.J., Hollander E. The role of inflammation in autism spectrum disorder // Immunology and Psychiatry. Current topics in neurotoxicity. Ed. by N. Müller, A.M. Myint, M. Schwarz. Cham: Springer, 2015. Vol. 8. P. 275–312. DOI: 10.1007/978-3-319-13602-8_14

[183]

Ahmad SF, Ansari MA, Nadeem A, et al. Elevated IL-16 expression is associated with development of immune dysfunction in children with autism. Psychopharmacology (Berl). 2019;236(2):831–838. DOI: 10.1007/s00213-018-5120-4

[184]

Ahmad S.F., Ansari M.A., Nadeem A. et al. Elevated IL-16 expression is associated with development of immune dysfunction in children with autism // Psychopharmacology (Berl). 2019. Vol. 236, No. 2. P. 831–838. DOI: 10.1007/s00213-018-5120-4

[185]

Siniscalco D, Schultz S, Brigida AL, Antonucci N. Inflammation and neuro-immune dysregulations in autism spectrum disorders. Pharmaceuticals (Basel). 2018;11(2):56. DOI: 10.3390/ph11020056

[186]

Siniscalco D., Schultz S., Brigida A.L., Antonucci N. Inflammation and neuro-immune dysregulations in autism spectrum disorders // Pharmaceuticals (Basel). 2018. Vol. 11, No. 2. P. 56. DOI: 10.3390/ph11020056

[187]

Chez MG, Dowling T, Patel PB, et al. Elevation of tumor necrosis factor-alpha in cerebrospinal fluid of autistic children. Pediatr Neurol. 2007;36(6):361–365. DOI: 10.1016/j.pediatrneurol.2007.01.012

[188]

Chez M.G., Dowling T., Patel P.B. et al. Elevation of tumor necrosis factor-alpha in cerebrospinal fluid of autistic children // Pediatr. Neurol. 2007. Vol. 36, No. 6. P. 361–365. DOI: 10.1016/j.pediatrneurol.2007.01.012

[189]

Vargas DL, Nascimbene C, Krishnan C, et al. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol. 2005;57(1):67–81. DOI: 10.1002/ana.20315

[190]

Vargas D.L., Nascimbene C., Krishnan C. et al. Neuroglial activation and neuroinflammation in the brain of patients with autism // Ann. Neurol. 2005. Vol. 57, No. 1. P. 67–81. DOI: 10.1002/ana.20315

[191]

Li X, Chauhan A, Sheikh AM, et al. Elevated immune response in the brain of autistic patients. J Neuroimmunol. 2009;207(1–2): 111–116. DOI: 10.1016/j.jneuroim.2008.12.002

[192]

Li X., Chauhan A., Sheikh A.M. et al. Elevated immune response in the brain of autistic patients // J. Neuroimmunol. 2009. Vol. 207, No. 1–2. P. 111–116. DOI: 10.1016/j.jneuroim.2008.12.002

[193]

Wei H, Zou H, Sheikh AM, et al. IL-6 is increased in the cerebellum of autistic brain and alters neural cell adhesion, migration and synaptic formation. J Neuroinflammation. 2011;8:52. DOI: 10.1186/1742-2094-8-52

[194]

Wei H., Zou H., Sheikh A.M. et al. IL–6 is increased in the cerebellum of autistic brain and alters neural cell adhesion, migration and synaptic formation // J. Neuroinflammation. 2011. Vol. 8. P. 52. DOI: 10.1186/1742-2094-8-52

[195]

Theoharides TC. Autism spectrum disorders and mastocytosis. Int J Immunopathol Pharmacol. 2009;22(4):859–865. DOI: 10.1177/039463200902200401

[196]

Theoharides T.C. Autism spectrum disorders and mastocytosis // Int. J. Immunopathol. Pharmacol. 2009. Vol. 22, No. 4. P. 859–865. DOI: 10.1177/039463200902200401

[197]

Theoharides TC, Tsilioni I, Patel AB, Doyle R. Atopic diseases and inflammation of the brain in the pathogenesis of autism spectrum disorders. Transl Psychiatry. 2016;6(6):e844. DOI: 10.1038/tp.2016.77

[198]

Theoharides T.C., Tsilioni I., Patel A.B., Doyle R. Atopic diseases and inflammation of the brain in the pathogenesis of autism spectrum disorders // Transl. Psychiatry. 2016. Vol. 6, No. 6. P. e844. DOI: 10.1038/tp.2016.77

[199]

Theoharides TC. Is a subtype of autism an ‘allergy of the brain’? Clin Ther. 2013;35(5):584–591. DOI: 10.1016/j.clinthera.2013.04.009

[200]

Theoharides T.C. Is a subtype of autism an ‘allergy of the brain’? // Clin. Ther. 2013. Vol. 35, No. 5. P. 584–591. DOI: 10.1016/j.clinthera.2013.04.009

[201]

Theoharides TC, Stewart JM, Panagiotidou S, Melamed I. Mast cells, brain inflammation and autism. Eur J Pharmacol. 2016;778:96–102. DOI: 10.1016/j.ejphar.2015.03.086

[202]

Theoharides T.C., Stewart J.M., Panagiotidou S., Melamed I. Mast cells, brain inflammation and autism // Eur. J. Pharmacol. 2016. Vol. 778. P. 96–102. DOI: 10.1016/j.ejphar.2015.03.086

[203]

Song Y, Lu M, Yuan H, et al. Mast cell-mediated neuroinflammation may have a role in attention deficit hyperactivity disorder (Review). Exp Ther Med. 2020;20(2):714–726. DOI: 10.3892/etm.2020.8789

[204]

Song Y., Lu M., Yuan H. et al. Mast cell-mediated neuroinflammation may have a role in attention deficit hyperactivity disorder (Review) // Exp. Ther. Med. 2020. Vol. 20, No. 2. P. 714–726. DOI: 10.3892/etm.2020.8789

[205]

Rozniecki JJ, Dimitriadou V, Lambracht-Hall M, et al. Morphological and functional demonstration of rat dura mater mast cell–neuron interactions in vitro and in vivo. Brain Res. 1999;849(1–2):1–15. DOI: 10.1016/S0006-8993(99)01855-7

[206]

Rozniecki J.J., Dimitriadou V., Lambracht-Hall M. et al. Morphological and functional demonstration of rat dura mater mast cell–neuron interactions in vitro and in vivo // Brain Res. 1999. Vol. 849, No. 1–2. P. 1–15. DOI: 10.1016/S0006-8993(99)01855-7

[207]

Koroleva K, Gafurov O, Guselnikova V, et al. Meningeal mast cells contribute to ATP-induced nociceptive firing in trigeminal nerve terminals: direct and indirect purinergic mechanisms triggering migraine pain. Front Cell Neurosci. 2019;13:195. DOI: 10.3389/fncel.2019.00195

[208]

Koroleva K., Gafurov O., Guselnikova V. et al. Meningeal mast cells contribute to ATP-induced nociceptive firing in trigeminal nerve terminals: direct and indirect purinergic mechanisms triggering migraine pain // Front. Cell. Neurosci. 2019. Vol. 13. P. 195. DOI: 10.3389/fncel.2019.00195

[209]

Green DP, Limjunyawong N, Gour N, et al. A Mast-cell-specific receptor mediates neurogenic inflammation and pain. Neuron. 2019;101(3):412–420.e3. DOI: 10.1016/j.neuron.2019.01.012

[210]

Green D.P., Limjunyawong N., Gour N. et al. A Mast-cell-specific receptor mediates neurogenic inflammation and pain // Neuron. 2019. Vol. 101, No. 3. P. 412–420.e3. DOI: 10.1016/j.neuron.2019.01.012

[211]

Ramachandran R. Neurogenic inflammation and its role in migraine. Semin Immunopathol. 2018;40(3):301–314. DOI: 10.1007/s00281-018-0676-y

[212]

Ramachandran R. Neurogenic inflammation and its role in migraine // Semin. Immunopathol. 2018. Vol. 40, No. 3. P. 301–314. DOI: 10.1007/s00281-018-0676-y

[213]

Dimitriadou V, Henry P, Brochet B, et al. Cluster headache: ultrastructural evidence for mast cell degranulation and interaction with nerve fibres in the human temporal artery. Cephalalgia. 1990;10(5):221–228. DOI: 10.1046/j.1468-2982.1990.1005221.x

[214]

Dimitriadou V., Henry P., Brochet B. et al. Cluster headache: ultrastructural evidence for mast cell degranulation and interaction with nerve fibres in the human temporal artery // Cephalalgia. 1990. Vol. 10, No. 5. P. 221–228. DOI: 10.1046/j.1468-2982.1990.1005221.x

[215]

Hassler SN, Ahmad FB, Burgos-Vega CC, et al. Protease activated receptor 2 (PAR2) activation causes migraine-like pain behaviors in mice. Cephalalgia. 2019;39(1):111–122. DOI: 10.1177/0333102418779548

[216]

Hassler S.N., Ahmad F.B., Burgos-Vega C.C. et al. Protease activated receptor 2 (PAR2) activation causes migraine-like pain behaviors in mice // Cephalalgia. 2019. Vol. 39, No. 1. P. 111–122. DOI: 10.1177/0333102418779548

[217]

Monro J, Carini C, Brostoff J. Migraine is a food-allergic disease. Lancet. 1984;2(8405):719–721. DOI: 10.1016/s0140-6736(84)92626-6

[218]

Monro J., Carini C., Brostoff J. Migraine is a food-allergic disease // Lancet. 1984. Vol. 2, No. 8405. P. 719–721. DOI: 10.1016/s0140-6736(84)92626-6

[219]

Karpova MI, Simbirtsev AS, Shamurov YS. State of immune system in patients with primary headaches. Medical Immunology. 2010;12(6):529–536. (In Russ.). DOI: 10.15789/1563-0625-2010-6-529-536

[220]

Карпова М.И., Симбирцев А.С., Шамуров Ю.С. Состояние иммунной системы у больных первичными головными болями // Медицинская иммунология. 2010. Т. 12, № 6. С. 529–536. DOI: 10.15789/1563-0625-2010-6-529-536

[221]

Iljazi A, Ayata C, Ashina M, Hougaard A. The role of endothelin in the pathophysiology of migraine – a systematic review. Curr Pain Headache Rep. 2018;22(4):27. DOI: 10.1007/s11916-018-0682-8

[222]

Iljazi A., Ayata C., Ashina M., Hougaard A. The role of endothelin in the pathophysiology of migraine – a systematic review // Curr. Pain. Headache Rep. 2018. Vol. 22, No. 4. P. 27. DOI: 10.1007/s11916-018-0682-8

[223]

Yuan H, Silberstein SD. Histamine and migraine. Headache. 2018;58(1):184–193. DOI: 10.1111/head.13164

[224]

Yuan H., Silberstein S.D. Histamine and migraine // Headache. 2018. Vol. 58, No. 1. P. 184–193. DOI: 10.1111/head.13164

[225]

Karatygina NV. Non-steroidal anti-inflammatory medicines in complex therapy of migraine. Russian Medical Journal. 2015;23(30):12–15. (In Russ.)

[226]

Каратыгина Н.В. Место нестероидных противовоспалительных средств в комплексной терапии мигрени // Русский медицинский журнал. 2015. Т. 23, № 30. С. 12–15.

[227]

Goldstein J, Hagen M, Gold M. Results of a multicenter, double-blind, randomized, parallel-group, placebo-controlled, single-dose study comparing the fixed combination of acetaminophen, acetylsalicylic acid, and caffeine with ibuprofen for acute treatment of patients with severe migraine. Cephalalgia. 2014;34(13):1070–1078. DOI: 10.1177/0333102414530527

[228]

Goldstein J., Hagen M., Gold M. Results of a multicenter, double-blind, randomized, parallel-group, placebo-controlled, single-dose study comparing the fixed combination of acetaminophen, acetylsalicylic acid, and caffeine with ibuprofen for acute treatment of patients with severe migraine // Cephalalgia. 2014. Vol. 34, No. 13. P. 1070–1078. DOI: 10.1177/0333102414530527

[229]

Olness K, Hall H, Rozniecki JJ, et al. Mast cell activation in children with migraine before and after training in self-regulation. Headache. 1999;39(2):101–107. DOI: 10.1046/j.1526-4610.1999.3902101.x

[230]

Olness K., Hall H., Rozniecki J.J. et al. Mast cell activation in children with migraine before and after training in self-regulation // Headache. 1999. Vol. 39, No. 2. P. 101–107. DOI: 10.1046/j.1526-4610.1999.3902101.x

[231]

Worm J, Falkenberg K, Olesen J. Histamine and migraine revisited: mechanisms and possible drug targets. J Headache Pain. 2019;20(1):30. DOI: 10.1186/s10194-019-0984-1

[232]

Worm J., Falkenberg K., Olesen J. Histamine and migraine revisited: mechanisms and possible drug targets // J. Headache Pain. 2019. Vol. 20, No. 1. P. 30. DOI: 10.1186/s10194-019-0984-1

[233]

Nurkhametova DF, Koroleva KS, Gafurov OS, et al. Mast cell mediators as pain triggers in migraine: comparison of histamine and serotonin in the activation of primary afferents in the meninges in rats. Neurosci Behav Physiol. 2020;50(7):900–906. DOI: 10.1007/s11055-020-00983-2

[234]

Нурхаметова Д.Ф., Королёва К.С., Гафуров О.Ш. и др. Медиаторы тучных клеток как триггеры боли при мигрени: сравнение гистамина и серотонина в активации первичных афферентов в менингеальных оболочках крысы // Российский физиологический журнал им. И.М. Сеченова. 2019. Т. 105, № 10. С. 1225–1235. DOI: 10.1134/S0869813919100078

[235]

Togha M, Malamiri RA, Rashidi-Ranjbar N, et al. Efficacy and safety of cinnarizine in the prophylaxis of migraine headaches in children: an open, randomized comparative trial with propranolol. Acta Neurol Belg. 2012;112(1):51–55. DOI: 10.1007/s13760-012-0011-7

[236]

Togha M., Malamiri R.A., Rashidi-Ranjbar N. et al. Efficacy and safety of cinnarizine in the prophylaxis of migraine headaches in children: an open, randomized comparative trial with propranolol // Acta. Neurol. Belg. 2012. Vol. 112, No. 1. P. 51–55. DOI: 10.1007/s13760-012-0011-7

[237]

Levy D. Endogenous mechanisms underlying the activation and sensitization of meningeal nociceptors: the role of immuno-vascular interactions and cortical spreading depression. Curr Pain Headache Rep. 2012;16(3):270–277. DOI: 10.1007/s11916-012-0255-1

[238]

Levy D. Endogenous mechanisms underlying the activation and sensitization of meningeal nociceptors: the role of immuno-vascular interactions and cortical spreading depression // Curr. Pain Headache Rep. 2012. Vol. 16, No. 3. P. 270–277. DOI: 10.1007/s11916-012-0255-1

[239]

Borkum JM. Migraine triggers and oxidative stress: a narrative review and synthesis. Headache. 2016;56(1):12–35. DOI: 10.1111/head.12725

[240]

Borkum J.M. Migraine triggers and oxidative stress: a narrative review and synthesis // Headache. 2016. Vol. 56, No. 1. P. 12–35. DOI: 10.1111/head.12725

RIGHTS & PERMISSIONS

Grigorev I.P., Korzhevskii D.E.

AI Summary AI Mindmap
PDF (252KB)

152

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/