Delayed effects of antibiotic therapy in endotoxinemia

Ekaterina S. Kukushkina , Elena Ya. Lebedeva , Victoria A. Maystrenko , Valentina M. Kudrinskaya

Medical academic journal ›› 2024, Vol. 24 ›› Issue (2) : 79 -91.

PDF
Medical academic journal ›› 2024, Vol. 24 ›› Issue (2) : 79 -91. DOI: 10.17816/MAJ631406
Original research
research-article

Delayed effects of antibiotic therapy in endotoxinemia

Author information +
History +
PDF

Abstract

BACKGROUND: Nowadays, due to the increasing number of infectious and inflammatory diseases, the problem of the use of antibacterial drugs becomes especially important. As a result of the action of toxins, inflammatory processes can affect the central nervous system with the subsequent development of neuroinflammation. Activation of neuroinflammation leads to dysregulation of many physiological functions. These negative appearances can be observed even after a long period. It is known that doxycycline is a tetracycline-type antibiotic, which is able to penetrate the blood-brain barrier and has anti-inflammatory activity.

AIM: The aim of this study was to investigate the nature of delayed physiological changes in rats against the background of administration of the antibacterial drug doxycycline in the LPS-induced model of neuroinflammation.

MATERIALS AND METHODS: Four groups of Wistar rats, 10 males in each group, were used in the experiment. The first group was injected once intraperitoneally with physiological solution, the second group — with lipopolysaccharide (1 mg/kg). Animals of the third and fourth groups received intragastrically doxycycline solution (25 mg/kg) daily for two weeks. On the 15th day of the experiment, rats from the fourth group were injected with lipopolysaccharide (1 mg/kg). Body weight of animals, mass coefficients of immunocompetent organs, as well as behaviour and motor activity of rats in the “Open Field” test were evaluated at several time points.

RESULTS: It was shown that systemic injection of lipopolysaccharide led to an increase in the mass coefficients of spleen, kidneys and adrenal glands compared to the group of animals receiving doxycycline beforehand. These changes were noted 48 h and 2 months after the injection of endotoxin. In the “Open Field” test, animals that were injected with doxycycline and lipopolysaccharide showed no violations of motor activity and research behavior, unlike the group that received only lipopolysaccharide.

CONCLUSIONS: It can be assumed that the physiological effects of doxycycline in the lipopolysaccharide-induced model of neuroinflammation revealed at early and late terms are not limited to the antibacterial effect of the drug and are mediated by anti-inflammatory and potential neuroprotective effects on the central nervous system.

Keywords

neuroinflammation / endotoxinemia / antibacterial drugs / doxycycline / behavior / rats

Cite this article

Download citation ▾
Ekaterina S. Kukushkina, Elena Ya. Lebedeva, Victoria A. Maystrenko, Valentina M. Kudrinskaya. Delayed effects of antibiotic therapy in endotoxinemia. Medical academic journal, 2024, 24(2): 79-91 DOI:10.17816/MAJ631406

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kent S, Bluthé RM, Kelley KW, Dantzer R. Sickness behavior as a new target for drug development. Trends Pharmacol Sci. 1992;13(1):24–28. doi: 10.1016/0165-6147(92)90012-u

[2]

Kent S., Bluthé R.M., Kelley K.W., Dantzer R. Sickness behavior as a new target for drug development // Trends Pharmacol Sci. 1992. Vol. 13, N 1. P. 24–28. doi: 10.1016/0165-6147(92)90012-u

[3]

Ascherio A, Schwarzschild MA. The epidemiology of Parkinson’s disease: risk factors and prevention. Lancet Neurol. 2016;15(12):1257–1272. doi: 10.1016/S1474-4422(16)30230-7

[4]

Ascherio A., Schwarzschild M.A. The epidemiology of Parkinson’s disease: risk factors and prevention // Lancet Neurol. 2016. Vol. 15. P. 1257–1272. doi: 10.1016/S1474-4422(16)30230-7

[5]

Moyse E, Krantic S, Djellouli N, et al. Neuroinflammation: a possible link between chronic vascular disorders and neurodegenerative diseases. Front Aging Neurosci. 2022;14:827263. doi: 10.3389/fnagi.2022.827263

[6]

Moyse E., Krantic S., Djellouli N., et al. Neuroinflammation: a possible link between chronic vascular disorders and neurodegenerative diseases // Front Aging Neurosci. 2022. Vol. 14. P. 827263. doi: 10.3389/fnagi.2022.827263

[7]

Lazzarini M, Martin S, Mitkovski M, et al. Doxycycline restrains glia and confers neuroprotection in a 6-OHDA Parkinson model. Glia. 2013;61(7):1084–1100. doi: 10.1002/glia.22496

[8]

Lazzarini M., Martin S., Mitkovski M., et al. Doxycycline restrains glia and confers neuroprotection in a 6-OHDA Parkinson model // Glia. 2013. Vol. 61, N 7. P. 1084–1100. doi: 10.1002/glia.22496

[9]

Zhang JC, Yao W, Dong C, et al. Blockade of interleukin-6 receptor in the periphery promotes rapid and sustained antidepressant actions: a possible role of gut-microbiota-brain axis. Transl Psychiatry. 2017;7(5):e1138. doi: 10.1038/tp.2017.112

[10]

Zhang J.C., Yao W., Dong C., et al. Blockade of interleukin-6 receptor in the periphery promotes rapid and sustained antidepressant actions: a possible role of gut-microbiota-brain axis // Transl Psychiatry. 2017. Vol. 7, N 5. P. e1138. doi: 10.1038/tp.2017.112

[11]

Balducci C, Santamaria G, La Vitola P, et al. Doxycycline counteracts neuroinflammation restoring memory in Alzheimer’s disease mouse models. Neurobiol Aging. 2018;70:128–139. doi: 10.1016/j.neurobiolaging.2018.06.002

[12]

Balducci C., Santamaria G., La Vitola P., et al. Doxycycline counteracts neuroinflammation restoring memory in Alzheimer’s disease mouse models // Neurobiol Aging. 2018. Vol. 70. P. 128–139. doi: 10.1016/j.neurobiolaging.2018.06.002

[13]

Mello BS, Monte AS, McIntyre RS, et al. Effects of doxycycline on depressive-like behavior in mice after lipopolysaccharide (LPS) administration. J Psychiatr Res. 2013;47(10):1521–1529. doi: 10.1016/j.jpsychires.2013.06.008

[14]

Mello B.S., Monte A.S., McIntyre R.S., et al. Effects of doxycycline on depressive-like behavior in mice after lipopolysaccharide (LPS) administration // J Psychiatr Res. 2013. Vol. 47, N 10. P. 1521–1529. doi: 10.1016/j.jpsychires.2013.06.008

[15]

The procedure for testing animals in the “Open field” [Internet]. Available from: https://www.openscience.ru/index.php?article=001. Accessed: 2024 July 4. (In Russ.)

[16]

Процедура тестирования животных в «Открытом поле» [Электронный ресурс]. Режим доступа: https://www.openscience.ru/index.php?article=001. Дата обращения: 04.07.2024.

[17]

Chaskiel L, Bristow AD, Bluthé RM, et al. Interleukin-1 reduces food intake and body weight in rat by acting in the arcuate hypothalamus. Brain Behav Immun. 2019;81:560–573. doi: 10.1016/j.bbi.2019.07.017

[18]

Chaskiel L., Bristow A.D., Bluthé R.M., et al. Interleukin-1 reduces food intake and body weight in rat by acting in the arcuate hypothalamus // Brain Behav Immun. 2019. Vol. 81. P. 560–573. doi: 10.1016/j.bbi.2019.07.017

[19]

Borges BdeC, Rorato RC, Uchoa ET, et al. Protein tyrosine phosphatase-1B contributes to LPS-induced leptin resistance in male rats. Am J Physiol Endocrinol Metab. 2015;308(1):E40–E50. doi: 10.1152/ajpendo.00094.2014

[20]

Borges B.deC., Rorato R.C., Uchoa E.T., et al. Protein tyrosine phosphatase-1B contributes to LPS-induced leptin resistance in male rats // Am J Physiol Endocrinol Metab. 2015. Vol. 308, N 1. P. E40–E50. doi: 10.1152/ajpendo.00094.2014

[21]

Yrjänheikki J, Keinänen R, Pellikka M, et al. Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc Natl Acad Sci USA. 1998;95(26):15769–15774. doi: 10.1073/pnas.95.26.15769

[22]

Yrjänheikki J., Keinänen R., Pellikka M., et al. Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia // Proc Natl Acad Sci USA. 1998. Vol. 95, N 26. P. 15769–15774. doi: 10.1073/pnas.95.26.15769

[23]

Smith K, Leyden JJ. Safety of doxycycline and minocycline: a systematic review. Clin Ther. 2005;27(9):1329–1342. doi: 10.1016/j.clinthera.2005.09.005

[24]

Smith K., Leyden J.J. Safety of doxycycline and minocycline: a systematic review // Clin Ther. 2005. Vol. 27, N 9. P. 1329–1342. doi: 10.1016/j.clinthera.2005.09.005

[25]

Konev YuV. The role of endotoxin (LPS) in the pathogenesis of metabolic syndrome and atherosclerosis. Experimental and Clinical Gastroenterology. 2012;(11):11–22. EDN: SELTVL

[26]

Конев Ю.В. Роль эндотоксина (ЛПС) в патогенезе метаболического синдрома и атеросклероза // Экспериментальная и клиническая гастроэнтерология. 2012. № 11. C. 11–22. EDN: SELTVL

[27]

Badshah H, Ali T, Kim MO. Osmotin attenuates LPS-induced neuroinflammation and memory impairments via the TLR4/NFκB signaling pathway. Sci Rep. 2016;6:24493. doi: 10.1038/srep24493

[28]

Badshah H., Ali T., Kim M.O. Osmotin attenuates LPS-induced neuroinflammation and memory impairments via the TLR4/NFκB signaling pathway // Sci Rep. 2016. Vol. 6. P. 24493. doi: 10.1038/srep24493

[29]

Xiao K, Zou WH, Yang Z, et al. The role of visfatin on the regulation of inflammation and apoptosis in the spleen of LPS-treated rats. Cell Tissue Res. 2015;359(2):605–618. doi: 10.1007/s00441-014-1997-3

[30]

Xiao K., Zou W.H., Yang Z., et al. The role of visfatin on the regulation of inflammation and apoptosis in the spleen of LPS-treated rats // Cell Tissue Res. 2015. Vol. 359, N 2. P. 605–618. doi: 10.1007/s00441-014-1997-3

[31]

Deng Z, Yan S, Hu H, et al. Proteomic profile of carbonylated proteins in rat liver: discovering possible mechanisms for tetracycline-induced steatosis. Proteomics. 2015;15(1):148–159. doi: 10.1002/pmic.201400115

[32]

Deng Z., Yan S., Hu H., et al. Proteomic profile of carbonylated proteins in rat liver: discovering possible mechanisms for tetracycline-induced steatosis // Proteomics. 2015. Vol. 15, N 1. P. 148–159. doi: 10.1002/pmic.201400115

[33]

Varma S, Nathanson J, Dowlatshahi M, et al. Doxycycline-induced cholestatic liver injury. Clin J Gastroenterol. 2021;14(5):1503–1510. doi: 10.1007/s12328-021-01475-7

[34]

Varma S., Nathanson J., Dowlatshahi M., et al. Doxycycline-induced cholestatic liver injury // Clin J Gastroenterol. 2021. Vol. 14, N 5. P. 1503–1510. doi: 10.1007/s12328-021-01475-7

[35]

Shishkina GT, Lanshakov DA, Bannova AV, et al. Doxycycline used for control of transgene expression has its own effects on behaviors and Bcl-xL in the rat hippocampus. Cell Mol Neurobiol. 2018;38(1):281–288. doi: 10.1007/s10571-017-0545-6

[36]

Shishkina G.T., Lanshakov D.A., Bannova A.V., et al. Doxycycline used for control of transgene expression has its own effects on behaviors and Bcl-xL in the rat hippocampus // Cell Mol Neurobiol. 2018. Vol. 38, N 1. P. 281–288. doi: 10.1007/s10571-017-0545-6

[37]

Shishkina GT, Bannova AV, Komysheva NP, Dygalo NN. Doxycycline attenuates anxiety and microglia activation induced by repeated lipopolysaccharide. Eur Neuropsychopharmacol. 2019;29:179–180. doi: 10.1016/j.euroneuro.2019.09.276

[38]

Shishkina G.T., Bannova A.V., Komysheva N.P., Dygalo N.N. Doxycycline attenuates anxiety and microglia activation induced by repeated lipopolysaccharide // Eur Neuropsychopharmacol. 2019. Vol. 29. P. 179–180. doi: 10.1016/j.euroneuro.2019.09.276

[39]

Santa-Cecília FV, Socias B, Ouidja MO, et al. Doxycycline suppresses microglial activation by inhibiting the p38 MAPK and NF-kB signaling pathways. Neurotox Res. 2016;29(4):447–459. doi: 10.1007/s12640-015-9592-2

[40]

Santa-Cecília F.V., Socias B., Ouidja M.O., et al. Doxycycline suppresses microglial activation by inhibiting the p38 MAPK and NF-kB signaling pathways // Neurotox Res. 2016. Vol. 29, N 4. P. 447–459. doi: 10.1007/s12640-015-9592-2

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

55

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/