Artificial intelligence in medicine: neural networks for analyzing systemic hemodynamics
Evgenia A. Sokolova , Timofey V. Sergeev , Maria V. Kuropatenko
Medical academic journal ›› 2024, Vol. 24 ›› Issue (2) : 5 -12.
Artificial intelligence in medicine: neural networks for analyzing systemic hemodynamics
Artificial neural networks are capable of efficiently processing large data sets, as well as solving the tasks of prediction, classification and data recovery. The article considers each of the above tasks in detail and studies literature sources devoted to the topic under study. Artificial neural networks cope with the tasks with a high degree of accuracy. The methods of application of neural networks for the analysis of systemic haemodynamics are described. Modern neural networks can analyse medical data and are able to work with incomplete data, find hidden patterns in them, and can be adapted to solve a wide range of problems. Our laboratory is developing an artificial neural network capable of classifying indicators describing the state of haemodynamics of subjects and recovering missing or incomplete data. Thus, artificial neural networks can act as an efficient method of analysing systemic hemodynamic parameters.
artificial intelligence / artificial neural networks / haemodynamics / systemic haemodynamics / neural networks
| [1] |
Zou J, Han Y, So SS. Overview of artificial neural networks. Methods Mol Biol. 2008;458:15–23. doi: 10.1007/978-1-60327-101-1_2 |
| [2] |
Zou J., Han Y., So S.S. Overview of artificial neural networks // Methods Mol Biol. 2008. Vol. 458. P. 15–23. doi: 10.1007/978-1-60327-101-1_2 |
| [3] |
Bahmer A, Gupta D, Effenberger F. Modern artificial neural networks: is evolution cleverer? Neural Comput. 2023;35(5):763–806. doi: 10.1162/neco_a_01575 |
| [4] |
Bahmer A., Gupta D., Effenberger F. Modern artificial neural networks: Is evolution cleverer? // Neural Comput. 2023. Vol. 35, N 5. P. 763–806. doi: 10.1162/neco_a_01575 |
| [5] |
Kulikowski CA. An opening chapter of the first generation of artificial intelligence in medicine: The First Rutgers AIM Workshop, June 1975. Yearb Med Inform. 2015;10(1):227–233. doi: 10.15265/IY-2015-016 |
| [6] |
Kulikowski C.A. An opening chapter of the first generation of artificial intelligence in medicine: The First Rutgers AIM Workshop, June 1975 // Yearb Med Inform. 2015. Vol. 10, N 1. P. 227–233. doi: 10.15265/IY-2015-016 |
| [7] |
Myatra SN, Jagiasi BG, Singh NP, Divatia JV. Role of artificial intelligence in haemodynamic monitoring. Indian J Anaesth. 2024;68(1):93–99. doi: 10.4103/ija.ija_1260_23 |
| [8] |
Myatra S.N., Jagiasi B.G., Singh N.P., Divatia J.V. Role of artificial intelligence in haemodynamic monitoring // Indian J Anaesth. 2024. Vol. 68, N 1. P. 93–99. doi: 10.4103/ija.ija_1260_23 |
| [9] |
Faustova KI. Neural networks: application today and development prospects. Territoriya nauki. 2017;4:83–87. (In Russ.) EDN: ZXPNRL |
| [10] |
Фаустова К.И. Нейронные сети: применение сегодня и перспективы развития // Территория науки. 2017. № 4. С. 83–87. EDN: ZXPNRL |
| [11] |
Munir K, Elahi H, Ayub A, et al. Cancer diagnosis using deep learning: a bibliographic review. Cancers. 2019;11(9):1235. doi: 10.3390/cancers11091235 |
| [12] |
Munir K., Elahi H., Ayub A., et al. Cancer diagnosis using deep learning: a bibliographic review // Cancers. 2019. Vol. 11, N 9. P. 1235. doi: 10.3390/cancers11091235 |
| [13] |
Li H, Boulanger P. Structural anomalies detection from electrocardiogram (ECG) with spectrogram and handcrafted features. Sensors. 2022;22(7):2467. doi: 10.3390/s22072467 |
| [14] |
Li H., Boulanger P. Structural anomalies detection from electrocardiogram (ECG) with spectrogram and handcrafted features // Sensors. 2022. Vol. 22, N 7. P. 2467. doi: 10.3390/s22072467 |
| [15] |
Akbilgic O, Butler L, Karabayir I, et al. ECG-AI: electrocardiographic artificial intelligence model for prediction of heart failure. Eur Heart J Dig Health. 2021;2(4):626–634. doi: 10.1093/ehjdh/ztab080 |
| [16] |
Akbilgic O., Butler L., Karabayir I., et al. ECG-AI: electrocardiographic artificial intelligence model for prediction of heart failure // Eur Heart J Dig Health. 2021. Vol. 2, N 4. P. 626–634. doi: 10.1093/ehjdh/ztab080 |
| [17] |
Grün D, Rudolph F, Gumpfer N, et al. Identifying heart failure in ECG data with artificial intelligence – a meta-analysis. Front Digit Health. 2021;2:584555. doi: 10.3389/fdgth.2020.584555 |
| [18] |
Grün D., Rudolph F., Gumpfer N., et al. Identifying heart failure in ECG data with artificial intelligence – a meta-analysis // Front Digit Health. 2021. Vol. 2. P. 584555. doi: 10.3389/fdgth.2020.584555 |
| [19] |
Ulloa-Cerna AE, Jing L, Pfeifer JM, et al. rECHOmmend: An ECG-based machine learning approach for identifying patients at increased risk of undiagnosed structural heart disease detectable by echocardiography. Circulation. 2022;146(1):36–47. doi: 10.1161/circulationaha.121.057869 |
| [20] |
Ulloa-Cerna A.E., Jing L., Pfeifer J.M., et al. rECHOmmend: An ECG-based machine learning approach for identifying patients at increased risk of undiagnosed structural heart disease detectable by echocardiography // Circulation. 2022. Vol. 146, N 1. P. 36–47. doi: 10.1161/circulationaha.121.057869 |
| [21] |
Oscanoa JA, Middione MJ, Alkan C, et al. Deep learning-based reconstruction for cardiac MRI: a review. Bioengineering. 2023;10(3):334. doi: 10.3390/bioengineering10030334 |
| [22] |
Oscanoa J.A., Middione M.J., Alkan C., et al. Deep learning-based reconstruction for cardiac MRI: a review // Bioengineering. 2023. Vol. 10, N 3. P. 334. doi: 10.3390/bioengineering10030334 |
| [23] |
Onishchenko PS, Klyshnikov KYu, Ovcharenko EA. Artificial neural networks in cardiology: analysis of graphic data. Bulletin of Siberian Medicine. 2021;20(4):193–204. EDN: XVBERA doi: 10.20538/1682-0363-2021-4-193-204 |
| [24] |
Онищенко П.С., Клышников К.Ю., Овчаренко Е.А. Искусственные нейронные сети в кардиологии: анализ графических данных // Бюллетень сибирской медицины. 2021. Т. 20, № 4. С. 193–204. EDN: XVBERA doi: 10.20538/1682-0363-2021-4-193-204 |
| [25] |
Radzhabov AG. Decision making support system for the diagnostics of the cardiovascular system pathologies by the X-ray images of the chest. Doklady BGUIR. 2023;21(1):98–103. EDN: UEZBKC doi: 10.35596/1729-7648-2023-21-1-98-103 |
| [26] |
Раджабов А.Г. Система поддержки принятия решений для диагностики патологий сердечно-сосудистой системы по рентгеновским изображениям грудной клетки // Доклады БГУИР. 2023. Т. 21, № 1. С. 98–103. EDN: UEZBKC doi: 10.35596/1729-7648-2023-21-1-98-103 |
| [27] |
Chikov AE, Pavlov EA, Egorov NA, et al. Artificial intelligence modeling of physiological parameters at anaerobic threshold. Human Sport Medicine. 2022;22(S2):46–53. EDN: MFTEDC doi: 10.14529/hsm22s206 |
| [28] |
Чиков А.Е., Павлов Е.А., Егоров Н.А. и др. Моделирование физиологических показателей на уровне порога анаэробного обмена с использованием методов искусственного интеллекта // Человек. Спорт. Медицина. 2022. Т. 22, № S2. С. 46–53. EDN: MFTEDC doi: 10.14529/hsm22s206 |
| [29] |
Osipova OA, Kontsevaya AV, Demko VV, et al. Elements of artificial intelligence in a predictive personalized model of pharmacotherapy choice in patients with heart failure with mildly reduced ejection fraction of ischemic origin. Cardiovascular Therapy and Prevention. 2023;22(7):16–24. EDN: XLOMXO doi: 10.15829/1728-8800-2023-3619 |
| [30] |
Осипова О.А., Концевая А.В., Демко В.В. и др. Использование элементов искусственного интеллекта в прогнозирующей модели персонализированного подхода к выбору фармакотерапии у больных хронической сердечной недостаточностью с умеренно низкой фракцией выброса ишемического генеза // Кардиоваскулярная терапия и профилактика. 2023. Т. 22, № 7. С. EDN: XLOMXO doi: 10.15829/1728-8800-2023-3619 |
| [31] |
Bunicheva AYa, Kochetov EV, Muxin SI. Mathematical modeling of building a neural network for diagnosing blood flow disorders. Vestnik Moskovskogo universiteta. Ser. 15. Vychislitel’naya matematika i kibernetika. 2022;3:18–25. (In Russ.) EDN: PTZOLL |
| [32] |
Буничева А.Я., Кочетов Е.В., Мухин С.И. Математическое моделирование построения нейросети для диагностики нарушений кровотока // Вестник Московского университета. Серия 15. Вычислительная математика и кибернетика. 2022. № 3. С. 18–25. EDN: PTZOLL |
| [33] |
Deng X, Da F, Shao H. Hemodynamic analysis and diagnosis based on multi-deep learning models. Fluid Dynamics and Materials Processing. 2023;19(6):1369–1383. doi: 10.32604/fdmp.2023.024836 |
| [34] |
Deng X., Da F., Shao H. Hemodynamic analysis and diagnosis based on multi-deep learning models // Fluid Dynamics and Materials Processing. 2023. Vol. 19, N 6. P. 1369–1383. doi: 10.32604/fdmp.2023.024836 |
| [35] |
Obukhov AD, Korobova IL, Nazarova AO, Zajceva DV. Application of machine learning in EEG analysis to detect phobic reactions in virtual reality. Information and Control Systems. 2023;4:56–70. EDN: DJQEDW doi: 10.31799/1684-8853-2023-4-56-70 |
| [36] |
Обухов А.Д., Коробова И.Л., Назарова А.О., Зайцева Д.В. Применение машинного обучения при анализе ЭЭГ для выявления фобической реакции в виртуальной реальности // Информационно-управляющие системы. 2023. № 4. С. 56–70. EDN: DJQEDW doi: 10.31799/1684-8853-2023-4-56-70 |
| [37] |
Dudarev VA. Approach to reproducing of missed data in learning samples for computer-aided inorganic compounds design. Fine Chemical Technologies. 2014;9(1):73–75. (In Russ.) EDN: SACGWV |
| [38] |
Дударев В.А. Подход к заполнению пропусков в обучающих выборках для компьютерного конструирования неорганических соединений // Вестник МИТХТ им. М.В. Ломоносова. 2014. Т. 9, № 1. С. 73–75. EDN: SACGWV |
| [39] |
Desherevskii AV, Zhuravlev VI, Nikolsky AN., et al. Problems in analyzing time series with gaps and their solution with the WinABD software package. Izv Atmos Ocean Phys. 2017;53:659–678. EDN: XYGCRN doi: 10.1134/S0001433817070027 |
| [40] |
Desherevskii A.V., Zhuravlev V.I., Nikolsky A.N., et al. Problems in analyzing time series with gaps and their solution with the WinABD software package // Izvestiya, Atmospheric and Oceanic Physics. 2017. N 53. P. 659–678. EDN: XYGCRN doi: 10.1134/S0001433817070027 |
| [41] |
Stashkova OV, Shestopal OV. Use artificial neural networks for restoration of initial data array. Bulletin of higher educational institutions. North Caucasus region. Technical sciences. 2017;1(193):37–42. EDN: YFNEYT doi: 10.17213/0321-2653-2017-1-37-42 |
| [42] |
Сташкова О.В., Шестопал О.В. Использование искусственных нейронных сетей для восстановления пропусков в массиве исходных данных // Известия высших учебных заведений. Северо-Кавказский регион. Технические науки. 2017. № 1(193). С. 37–42. EDN: YFNEYT doi: 10.17213/0321-2653-2017-1-37-42 |
| [43] |
Agapova EA, Anisimov AA, Kuropatenko MV, et al. Algorithm for the joint analysis of beat-to-beat arterial pressure and stroke volume for studying systemic vasoconstrictor and vasodilator responses. In: Velichko E, Kapralova V, Karaseov P, editors. International Youth Conference on Electronics, Telecommunications and Information Technologies. Springer, Cham. Springer Proceedings in Physics; 2022. Vol 268. P. 97–102. doi: 10.1007/978-3-030-81119-8_10 |
| [44] |
Agapova E.A., Anisimov A.A., Kuropatenko M.V., et al. Algorithm for the joint analysis of beat-to-beat arterial pressure and stroke volume for studying systemic vasoconstrictor and vasodilator responses. In: Velichko E., Kapralova V., Karaseov P., editors. International Youth Conference on Electronics, Telecommunications and Information Technologies. Springer, Cham. Springer Proceedings in Physics, 2022. Vol. 268. P. 97–102. doi: 10.1007/978-3-030-81119-8_10 |
| [45] |
Schmidt RF, Lang F, Heckmann M, editors. Physiologie des menschen mit Pathophysiologie. Textbook. Springer; 2019. |
| [46] |
Физиология человека с основами патофизиологии: в 2 т. Т. 2 / под ред. Р.Ф. Шмидта, Ф. Ланга, М. Хекманна / пер. с нем. под ред. М.А. Каменской. 2-е изд., испр., электрон. Москва: Лаборатория знаний, 2021. 497 с. |
| [47] |
Adams J. Defending explicability as a principle for the ethics of artificial intelligence in medicine. Med Health Care Philos. 2023;26(4):615–623. doi: 10.1007/s11019-023-10175-7 |
| [48] |
Adams J. Defending explicability as a principle for the ethics of artificial intelligence in medicine // Med Health Care Philos. 2023. Vol. 26, N 4. P. 615–623. doi: 10.1007/s11019-023-10175-7 |
| [49] |
María Soledad Paladino MSP. Artificial intelligence in medicine. Ethical reflections from the thought of Edmund Pellegrino. Cuad Bioet. 2023;34(110):25–35. doi: 10.30444/CB.140 |
| [50] |
María Soledad Paladino M.S.P. Artificial intelligence in medicine. Ethical reflections from the thought of Edmund Pellegrino // Cuad Bioet. 2023. Vol. 34, N 110. P. 25–35. doi: 10.30444/CB.140 |
| [51] |
Souza Filho EM, Fernandes FA, Pereira NCA, et al. Ethics, artificial intelligence and cardiology. Arq Bras Cardiol. 2020;115(3):579–583. doi: 10.36660/abc.20200143 |
| [52] |
Souza Filho E.M., Fernandes F.A., Pereira N.C.A., et al. Ethics, artificial intelligence and cardiology // Arq Bras Cardiol. 2020. Vol. 115, N 3. P. 579–583. doi: 10.36660/abc.20200143 |
| [53] |
Krajcer Z. Artificial Intelligence in cardiovascular medicine: historical overview, current status, and future directions. Tex Heart Inst J. 2022;49(2):e207527. doi: 10.14503/THIJ-20-7527 |
| [54] |
Krajcer Z. Artificial intelligence in cardiovascular medicine: historical overview, current status, and future directions // Tex Heart Inst J. 2022. Vol. 49, N 2. P. e207527. doi: 10.14503/THIJ-20-7527 |
| [55] |
Gusev AV, Sharova DE. Ethical problems in the development of artificial intelligence technologies in healthcare. Public Health. 2023;3(1):42–50. EDN: TPHVPE doi: 10.21045/2782-1676-2023-3-1-42-50 |
| [56] |
Гусев А.В., Шарова Д.Е. Этические проблемы развития технологий искусственного интеллекта в здравоохранении // Общественное здоровье. 2023. Т. 3, № 1. C. 42–50. EDN: TPHVPE doi: 10.21045/2782-1676-2023-3-1-42-50 |
Eco-Vector
/
| 〈 |
|
〉 |