Alterations in the expression of dopamine catabolism genes in DAT-KO rats with induced valproate syndrome

Ilya R. Nazarov , Daria A. Obukhova , Valentina M. Kudrinskaya , Nina S. Pestereva

Medical academic journal ›› 2024, Vol. 24 ›› Issue (3) : 110 -117.

PDF
Medical academic journal ›› 2024, Vol. 24 ›› Issue (3) : 110 -117. DOI: 10.17816/MAJ631380
Original research
research-article

Alterations in the expression of dopamine catabolism genes in DAT-KO rats with induced valproate syndrome

Author information +
History +
PDF

Abstract

BACKGROUND: Autism spectrum disorder and attention deficit hyperactivity disorder are complex disorders of nervous development. Both diseases are diagnosed in childhood and are often comorbital. Rats with a knockout of the dopamine transporter gene (DAT) exhibit symptoms characteristic of attention deficit hyperactivity disorder. Prenatal treatment with valproic acid is used to model autism spectrum disorder. Dysfunction of the dopaminergic system may be one of the causes of attention deficit hyperactivity disorder and autism spectrum disorder. However the neurochemical mechanisms underlying dysfunction of the dopaminergic system and contributing to the pathogenesis of attention deficit hyperactivity disorder require further studies.

AIM: Therefore, the aim of the work was to investigate the expression levels of dopamine catabolism genes in heterozygous rats with a knockout of the DAT encoding gene and induced valproate syndrome.

MATERIALS AND METHODS: The work was performed on 32 rats aged 40 days (adolescence). In total, 4 groups of baby rats were formed in the study: DAT:Salt, DAT:VPA, WT:VPA and WT:Salt, where DAT/WT is the presence or absence of a genetic factor (DAT is a heterozygote for knockout of the SLC6A3 gene, WT is the wild type), VPA/Salt is the presence or absence of a toxic factor (induced valproate syndrome).

RESULTS: The expression of mRNA monoamine oxidase A and monoamine oxidase B in the midbrain was reduced in the groups DAT:Sat, DAT:VPA, WT:VPA compared to the control group WT:Salt. The expression mRNA of catechol-O-methyltransferase mRNA in the midbrain of rats DAT:Salt is significantly higher than in the control group WT:Salt, however, the treatment with valproic acid leads to a decrease in catechol-O-methyltransferase expression in heterozygous rats by knocking out the SLC6A3 gene. No changes in the expression of monoamine oxidase A, monoamine oxidase B, catechol-O-methyltransferase mRNA were observed in the prefrontal cortex and striatum.

CONCLUSIONS: The development of valproate syndrome and/or reduce dopamine reuptake leads to a decrease in the levels of monoamine oxidase A and monoamine oxidase B mRNA in the rat midbrain. Prenatal exposure to valproic acid led to a decrease in the level of catechol-O-methyltransferase mRNA in the midbrain of heterozygous rats by knockout of the DAT gene.

Keywords

autism spectrum disorder / attention deficit hyperactivity disorder / valproic acid / valproic syndrome / dopamine

Cite this article

Download citation ▾
Ilya R. Nazarov, Daria A. Obukhova, Valentina M. Kudrinskaya, Nina S. Pestereva. Alterations in the expression of dopamine catabolism genes in DAT-KO rats with induced valproate syndrome. Medical academic journal, 2024, 24(3): 110-117 DOI:10.17816/MAJ631380

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lai M-C, Kassee C, Besney R, et al. Prevalence of co-occurring mental health diagnoses in the autism population: a systematic review and meta-analysis. Lancet Psychiatry. 2019;6(10):819–829. doi: 10.1016/S2215-0366(19)30289-5

[2]

Lai M.-C., Kassee C., Besney R., et al. Prevalence of co-occurring mental health diagnoses in the autism population: a systematic review and meta-analysis // Lancet Psychiatry. 2019. Vol. 6, N 10. P. 819–829. doi: 10.1016/S2215-0366(19)30289-5

[3]

Marotta R, Risoleo MC, Messina G, et al. The neurochemistry of autism. Brain Sci. 2020;10(3):163. doi: 10.3390/brainsci10030163

[4]

Marotta R., Risoleo M.C., Messina G., et al. The neurochemistry of autism // Brain Sci. 2020. Vol. 10, N 3. P. 163. doi: 10.3390/brainsci10030163

[5]

Pavăl D. A dopamine hypothesis of autism spectrum disorder. Dev Neurosci. 2017;39(5):355–360. doi: 10.1159/000478725

[6]

Pavăl D. A dopamine hypothesis of autism spectrum disorder // Dev Neurosci. 2017. Vol. 39, N 5. P. 355–360. doi: 10.1159/000478725

[7]

Inui T, Kumagaya S, Myowa-Yamakoshi M. Neurodevelopmental Hypothesis about the etiology of autism spectrum disorders. Front Hum Neurosci. 2017;11:354. doi: 10.3389/fnhum.2017.00354

[8]

Inui T., Kumagaya S., Myowa-Yamakoshi M. Neurodevelopmental hypothesis about the etiology of autism spectrum disorders // Front Hum Neurosci. 2017. Vol. 11. P. 354. doi: 10.3389/fnhum.2017.00354

[9]

Banerjee A, Engineer CT, Sauls BL, et al. Abnormal emotional learning in a rat model of autism exposed to valproic acid in utero. Front Behav Neurosci. 2014;8:387. doi: 10.3389/fnbeh.2014.00387

[10]

Banerjee A., Engineer C.T., Sauls B.L., et al. Abnormal emotional learning in a rat model of autism exposed to valproic acid in utero // Front Behav Neurosci. 2014. Vol. 8. P. 387. doi: 10.3389/fnbeh.2014.00387

[11]

Chaliha D, Albrecht M, Vaccarezza M, et al. A systematic review of the valproic-acid-induced rodent model of autism. Dev Neurosci. 2020;42(1):12–48. doi: 10.1159/000509109

[12]

Chaliha D., Albrecht M., Vaccarezza M., et al. A systematic review of the valproic-acid-induced rodent model of autism // Dev Neurosci. 2020. Vol. 42, N 1. P. 12–48. doi: 10.1159/000509109

[13]

Favre MR, Barkat TR, Lamendola D, et al. General developmental health in the VPA-rat model of autism. Front Behav Neurosci. 2013;7:88. doi: 10.3389/fnbeh.2013.00088

[14]

Favre M.R., Barkat T.R., Lamendola D., et al. General developmental health in the VPA-rat model of autism // Front Behav Neurosci. 2013. Vol. 7. P. 88. doi: 10.3389/fnbeh.2013.00088

[15]

Tartaglione AM, Schiavi S, Calamandrei G, Trezza V. Prenatal valproate in rodents as a tool to understand the neural underpinnings of social dysfunctions in autism spectrum disorder. Neuropharmacology. 2019;159:107477. doi: 10.1016/j.neuropharm.2018.12.024

[16]

Tartaglione A.M., Schiavi S., Calamandrei G., Trezza V. Prenatal valproate in rodents as a tool to understand the neural underpinnings of social dysfunctions in autism spectrum disorder // Neuropharmacology. 2019. Vol. 159. P. 107477. doi: 10.1016/j.neuropharm.2018.12.024

[17]

Hegarty SV, Sullivan AM, O’Keeffe GW. Midbrain dopaminergic neurons: a review of the molecular circuitry that regulates their development. Dev Biol. 2013;379(2):123–138. doi: 10.1016/j.ydbio.2013.04.014

[18]

Hegarty S.V., Sullivan A.M., O’Keeffe G.W. Midbrain dopaminergic neurons: a review of the molecular circuitry that regulates their development // Dev Biol. 2013. Vol. 379, N 2. P. 123–138. doi: 10.1016/j.ydbio.2013.04.014

[19]

Iijima Y, Behr K, Iijima T, et al. Distinct defects in synaptic differentiation of neocortical neurons in response to prenatal valproate exposure. Sci Rep. 2016;6:27400. doi: 10.1038/srep27400

[20]

Iijima Y., Behr K., Iijima T., et al. Distinct defects in synaptic differentiation of neocortical neurons in response to prenatal valproate exposure // Sci Rep. 2016. Vol. 6. P. 27400. doi: 10.1038/srep27400

[21]

Qi C, Luo LD, Feng I, Ma S. Molecular mechanisms of synaptogenesis. Front Synaptic Neurosci. 2022;14:939793. doi: 10.3389/fnsyn.2022.939793

[22]

Qi C., Luo L.D., Feng I., Ma S. Molecular mechanisms of synaptogenesis // Front Synaptic Neurosci. 2022. Vol. 14. P. 939793. doi: 10.3389/fnsyn.2022.939793

[23]

Wang L, Liu Y, Li S, et al. Wnt signaling pathway participates in valproic acid-induced neuronal differentiation of neural stem cells. Int J Clin Exp Pathol. 2015;8(1):578–585.

[24]

Wang L., Liu Y., Li S., et al. Wnt signaling pathway participates in valproic acid-induced neuronal differentiation of neural stem cells // Int J Clin Exp Pathol. 2015. Vol. 8, N 1. P. 578–585.

[25]

Luo SX, Huang EJ. Dopaminergic neurons and brain reward pathways: from neurogenesis to circuit assembly. Am J Pathol. 2016;186(3):478–488. doi: 10.1016/j.ajpath.2015.09.023

[26]

Luo S.X., Huang E.J. Dopaminergic neurons and brain reward pathways: from neurogenesis to circuit assembly // Am J Pathol. 2016. Vol. 186, N 3. P. 478–488. doi: 10.1016/j.ajpath.2015.09.023

[27]

Meiser J, Weindl D, Hiller K. Complexity of dopamine metabolism. Cell Commun Signal. 2013;11(1):34. doi: 10.1186/1478-811X-11-34

[28]

Meiser J., Weindl D., Hiller K. Complexity of dopamine metabolism // Cell Commun Signal. 2013. Vol. 11, N 1. P. 34. doi: 10.1186/1478-811X-11-34

[29]

Larsen MB, Sonders MS, Mortensen OV, et al. Dopamine transport by the serotonin transporter: a mechanistically distinct mode of substrate translocation. J Neurosci. 2011;31(17):6605–6615. doi: 10.1523/JNEUROSCI.0576-11.2011

[30]

Larsen M.B., Sonders M.S., Mortensen O.V., et al. Dopamine transport by the serotonin transporter: a mechanistically distinct mode of substrate translocation // J Neurosci. 2011. Vol. 31, N 17. P. 6605–6615. doi: 10.1523/JNEUROSCI.0576-11.2011

[31]

Choi CS, Hong M, Kim KC, et al. Effects of atomoxetine on hyper-locomotive activity of the prenatally valproate-exposed rat offspring. Biomol Ther (Seoul). 2014;22(5):406–413. doi: 10.4062/biomolther.2014.027

[32]

Choi C.S., Hong M., Kim K.C., et al. Effects of atomoxetine on hyper-locomotive activity of the prenatally valproate-exposed rat offspring // Biomol Ther (Seoul). 2014. Vol. 22, N 5. P. 406–413. doi: 10.4062/biomolther.2014.027

[33]

Xu H, Yang F. The interplay of dopamine metabolism abnormalities and mitochondrial defects in the pathogenesis of schizophrenia. Transl Psychiatry. 2022;12(1):464. doi: 10.1038/s41398-022-02233-0

[34]

Xu H., Yang F. The interplay of dopamine metabolism abnormalities and mitochondrial defects in the pathogenesis of schizophrenia // Transl Psychiatry. 2022. Vol. 12, N 1. P. 464. doi: 10.1038/s41398-022-02233-0

[35]

Efimova EV, Gainetdinov RR, Budygin EA, Sotnikova TD. Dopamine transporter mutant animals: a translational perspective. J Neurogenet. 2016;30(1):5–15. doi: 10.3109/01677063.2016.1144751

[36]

Efimova E.V., Gainetdinov R.R., Budygin E.A., Sotnikova T.D. Dopamine transporter mutant animals: a translational perspective // J Neurogenet. 2016. Vol. 30, N 1. P. 5–15. doi: 10.3109/01677063.2016.1144751

[37]

Leo D, Sukhanov I, Gainetdinov RR. Novel translational rat models of dopamine transporter deficiency. Neural Regen Res. 2018;13(12):2091–2093. doi: 10.4103/1673-5374.241453

[38]

Leo D., Sukhanov I., Gainetdinov R.R. Novel translational rat models of dopamine transporter deficiency // Neural Regen Res. 2018. Vol. 13, N 12. P. 2091–2093. doi: 10.4103/1673-5374.241453

[39]

Ali EHA, Elgoly AHM. Combined prenatal and postnatal butyl paraben exposure produces autism-like symptoms in offspring: comparison with valproic acid autistic model. Pharmacol Biochem Behav. 2013;111:102–110. doi: 10.1016/j.pbb.2013.08.016

[40]

Ali E.H.A., Elgoly A.H.M. Combined prenatal and postnatal butyl paraben exposure produces autism-like symptoms in offspring: comparison with valproic acid autistic model // Pharmacol Biochem Behav. 2013. Vol. 111. P. 102–110. doi: 10.1016/j.pbb.2013.08.016

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

78

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/